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Abstract— This article addresses the problem of direct vision-
based robot control where the equilibrium state is defined
via a reference image. Direct methods refer to intensity-based
nonmetric techniques to perform that stabilization. Intensity-
based strategies provide for higher accuracy, whereas not
requiring any metric information improves their versatility.
However, existing direct techniques either have a coupled error
dynamics, or are designed for planar objects only. This paper
proposes a new direct technique that decouples the translational
motion from the rotational one for the general case of both
planar and nonplanar targets under general translational and
rotational displacements. Furthermore, for the important case
of a fronto-parallel planar object, the proposed technique leads
to a fully diagonal interaction matrix. The equilibrium state
is made locally exponentially stable for all those cases. These
improvements are theoretically proven and experimentally
demonstrated using a 6-DoF robotic arm.

I. INTRODUCTION

Visual servoing refers to the use of image feedback to con-

trol a robot with respect to the scene. Its typical application

consists in stabilizing the robot at a pose defined by means

of a reference image, also called goal image. Although there

exists a variety of well-established solutions to this problem

[2], its vast majority: 1) is based on image features, such

as points, lines, etc. Thus, they strongly depend on some

particular features, on an error-prone feature matching, and

on special tuning procedures; and 2) requires (at least coarse)

metric information to provide a provably stabilizing control

law. This holds even for image-based visual servoing tech-

niques, where depth estimates are necessary in the interaction

matrix. These two topics are discussed next.

Techniques of vision-based estimation can generally be

classified into feature- or intensity-based. Despite the afore-

mentioned drawbacks, the vast majority of existing visual

servoing schemes are indeed based on image features. This

is probably due to its relatively large domain of convergence.

Differently, there are no steps of feature extraction and

matching within intensity-based techniques of estimation.

These techniques directly exploit the intensity value of the

pixels so as to recover the needed parameters. Therefore,

they make use of raw and dense image data, what allows

for attaining high levels of versatility and accuracy. Another

advantage refers to their possibility of ensuring robustness

to arbitrary illumination changes, even in color images [7].

As for nonmetric visual servoing, in spite of its increased

level of versatility and robustness [9], there exist only few

works on such class of vision-based control. A possible

reason is the difficulty to find an interesting control error

that is diffeomorphic to the camera pose (at least around the
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equilibrium), and is regulated by a nonmetric control law. An

early work on nonmetric visual navigation is given in [1],

where a ground robot is used. Recently, a general intensity-

based nonmetric technique has been presented in [8], called

Direct Visual Servoing (DVS). It is general in the sense that

all 6 DoF of a robot are stabilized with respect to both planar

and nonplanar objects, under both translational and rotational

displacements between the reference and current frames.

Nevertheless, the error dynamics in the DVS is coupled.

This article proposes a new decoupled DVS technique. The

decoupling idea briefly presented in [3] for planar objects

is here developed and extended to general surfaces and

displacements as in [8]. The translational motion is thus

decoupled from the rotational one in the general scenario.

Furthermore, for the important case of a fronto-parallel

planar object, it is shown that the proposed technique leads

to a fully diagonal interaction matrix. The new control error

is theoretically proved to be diffeomorphic to the camera

pose around the equilibrium, and the latter is proved to be

locally exponentially stable. These improvements are also

confirmed with experiments using both synthetic and real

data, for both planar and nonplanar objects, simulating and

applying a camera-mounted 6-DoF holonomic robot.

II. THEORETICAL BACKGROUND

This section defines the notation used throughout this arti-

cle and recalls essential models and methods. Let ‖v‖, v̂ and

v′ denote the Euclidean norm, an estimate, and a transformed

version of the variable v, respectively. An asterisk, e.g.,

v∗, is used to indicate that v is defined with respect to

the reference frame F∗. The notations [w]× and vex([w]×)
represent, respectively, the antisymmetric matrix associated

to the vector w = [w1, w2, w3]
⊤ and its inverse mapping:

[w]× =




0 −w3 w2

w3 0 −w1

−w2 w1 0



, vex([w]×) =




w1

w2

w3



 . (1)

A. Two-view Geometry

The relation between corresponding points p ↔ p∗ in

two perspective images can be described in different geome-

tries. Using projective geometry (which is an extension of

Euclidean geometry), the general relation is given by [4]

p ∝ Gp∗ + ρ∗e ∈ P
2, (2)

where the symbol “∝” denotes proportionality up to a

nonzero scale factor, G ∈ SL(3) is a projective homography

relative to a plane (projective basis), e ∈ R
3 denotes the

epipole, and ρ∗ ∈ R is the projective parallax of the 3D point

whose projection in the reference image I∗ is p∗, relatively

to that plane (see Fig. 1). This parallax is proportional to

the distance of that 3D point to that plane and is inversely

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 71



F∗ F

I

I∗

e

π m∗

π

m∗

p∗

p

Gp∗

Fig. 1. Two-view geometry. Given the 3-D point m∗, its projection p∗

in the image I∗ is related to its projection p in I by the point Gp∗, and
the point e multiplied by the projective parallax. This parallax is indeed the
ratio of the distances of the aligned points Gp∗, e and p.

proportional to its depth. The epipole is proportional to the

translation between the current and reference frames; and the

homography G can be characterized as

G ∝ G∞ + eq∗⊤, (3)

where the 3-vector q∗ is a representation of the line at infinity

of such plane in the reference image, and G∞ ∈ SL(3) is

the homography at infinity. Such homography is proportional

to a matrix that is similar to a rotation matrix. A procedure

to estimate the parameters {G, e, ρ∗} in (2) is recalled next.

B. Direct Visual Servoing: Estimation Aspects

In Direct Visual Servoing (DVS) [8], the estimation pro-

cedure to obtain all needed parameters directly exploits the

pixel intensities without any feature extraction or matching.

The basic framework for such intensity-based estimation

is the direct image registration. Direct image registration

consists in searching for the parameters that best transform

the current image such that each pixel intensity in the

current image I(p) is matched as closely as possible to the

corresponding one in the reference image I∗(p∗).
Therefore, a first step consists in devising a suitable pho-

togeometric transformation model. This can be performed by

choosing an appropriate model of illumination changes, e.g.,

[7], along with a warping model w(.) from (2). Formally,

the action of this transformation model on pixels is given by

I ′
gh(g,h,p∗) = S(p∗) · I

(
w(g,p∗)

)
+ β ≥ 0, (4)

where the operator “·” represents the componentwise mul-

tiplication of matrices, and the geometric and photometric

parameters are respectively gathered in g = {G, e, ρ∗}
and h = {S, β}, where S can be viewed as a surface

that compensates for both global and local illumination

variations, and β ∈ R.

A typical direct image registration system can then be

formulated as the following nonlinear optimization problem:

min
g={G,e,ρ∗

i
}

h={S,β}

1

2

n∑

i=1

[
I ′

gh(g,h,p∗
i ) − I∗(p∗

i )︸ ︷︷ ︸
di(g,h)

]2
, (5)

which seeks to minimize the norm of the vector of image

differences d(g,h) = {di(g,h)}n
i=1, i.e.,

d(g,h) =





I ′
gh

(
g,h,p∗

1

)
− I∗(p∗

1)

I ′
gh

(
g,h,p∗

2

)
− I∗(p∗

2)
...

I ′
gh

(
g,h,p∗

n

)
− I∗(p∗

n)




∈ R

n, (6)

where n is the number of pixels considered for exploita-

tion. Other cost functions may be considered instead of

that widely used sum-of-squared-differences. For example, a

robust function [5], e.g., an M-estimator, may be used if there

exist unknown occlusions. Finally, the nonlinear optimization

problem in (5) can be solved by standard iterative methods,

e.g., Gauss–Newton. For an improved solution in terms of

convergence properties, the reader is referred to [7].

C. Direct Visual Servoing: Control Aspects

The geometric parameters g = {G, e, ρ∗} estimated

using pixel intensities (see Section II-B) can be used to

visual servoing in robotics. The translational and rotational

nonmetric control errors proposed in the DVS, i.e., ευ ∈ R
3

and εω ∈ R
3 respectively, are given as

ε =

[
ευ

εω

]
=

[
(H − I)m∗′ + ρ∗e′

ϑµ

]
, (7)

where

H = K−1 GK; e′ = K−1 e; m∗′ = K−1 p∗, (8)

and ρ∗ ∈ R is the parallax of the chosen control point

p∗ ∈ P
2. The positive definite matrix K ∈ R

3×3 contains

the camera intrinsic parameters, i.e., focal lengths, skew and

principal point. Even for nonmetric techniques, (at least an

estimate of) such matrix is always needed to control all six

degrees of freedom of a robot, as it moves in the Euclidean

space. The rotational error εω in (7) is computed from the

homography H ∈ R
3×3 via

r =
1

2
vex

(
H − H⊤

)
, (9)

ϑ =

{
real

(
arcsin(‖r‖)

)
, if tr(H) ≥ 1,

π − real
(
arcsin(‖r‖)

)
, otherwise,

(10)

µ =
r

‖r‖
, (11)

where the function tr(·) denotes the trace of a matrix. If

‖r‖ = 0, then µ is not determined and therefore can be

chosen arbitrarily (e.g., µ = [0, 0, 1]⊤).

Let the control inputs be the translational and rotational

velocities of the camera, gathered in v = [υ⊤,ω⊤]⊤ ∈ R
6

respectively. The nonmetric control law

v = λ ε, (12)

with λ > 0, is proven in [8] to locally stabilize the

equilibrium ε = 0 if the control point (8) is chosen such

that its parallax is sufficiently small.
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III. PROPOSED DECOUPLED TECHNIQUE

This section presents the proposed decoupled direct visual

servoing technique, which extends some results from [3].

This new technique is intensity-based, nonmetric, and the

behavior of the translational motion is decoupled from the

rotational one. This is demonstrated for the general case of

both planar and nonplanar objects under general translational

and rotational displacements. Then, we show that it leads to

a fully decoupled system for the important case of a fronto-

parallel planar target.

A. Control Error and Some Properties

As in the DVS [8], the new control error is constructed

from the estimated parameters g = {G, e, ρ∗} (see Sec-

tion II-B). For the sake of simplicity, let us work with a

reduced version of the general control error in (7) as

ε
′ =

[
ε
′
υ

ε
′
ω

]
=

[
(H − I)m∗′ + ρ∗e′

vex(H − H⊤)

]
, (13)

whose rotational control error is equivalent to the original

one via ε
′
ω = 2r = 2ϑ−1‖r‖εω. Furthermore, around the

equilibrium it can be shown that ε
′
ω ≈ 2εω as ϑ−1‖r‖ ≈ 1.

This nonmetric control error is general in the sense that it

deals with both planar and nonplanar objects, under both

translational and rotational displacements between the refer-

ence and initial frames. Indeed, as in the general relation (2),

it does not assume ρ∗e′ = 0.

The new nonmetric control error is defined as

ε̄ = M ε
′, (14)

where

M =

[
2I [m∗′]×

−[c∗′]× I

]
(15)

is a constant (6×6)-matrix, and c∗′ is a 3-vector. Details on

choosing this vector will be given further on. More explicitly,

the new control error (14) writes

ε̄ =

[
2[(H − I)m∗′ + ρ∗e′] + [m∗′]×vex(H − H⊤)

vex(H − H⊤) − [c∗′]×[(H − I)m∗′ + ρ∗e′]

]
.

(16)

It is important to note that this control error is constructed

without requiring any metric information of the object,

regardless of its shape and of the camera displacement.

Theorem 3.1: The control error ε̄ defined in (14) is locally

diffeomorphic to the camera pose around the reference image

provided that

m∗′⊤c∗′ 6= 2, (17)

m∗′⊤q∗′ 6=
2

z∗
, (18)

where z∗ > 0 is the depth of the control point p∗, and

q∗′ = K⊤q∗. Furthermore, the linearization of the interac-

tion matrix of ε̄ at this configuration is given by

L̄
∣∣
ε̄=0

= −




2

z∗
I + [m∗′]×[q∗′]× 0

−
1

z∗
[c∗′]× + [q∗′]× 2I + [c∗′]×[m∗′]×



 .

(19)

Proof: Since ε̄ = M ε
′ and M is a constant matrix,

L̄ = ML′ with L̄ (resp. L′) the interaction matrix of ε̄ (resp.

ε
′). From [6], the linearization of L′ at ε

′ = 0 is given as

L′
∣∣
ε
′=0

= −

[
1

z∗
I −[m∗′]×

[q∗′]× 2I

]
, (20)

and (19) follows from (15) and (20). To conclude the proof,

there remains to show that the matrix (19) is invertible when

both (17) and (18) are satisfied. Since L̄
∣∣
ε̄=0

= ML′
∣∣
ε
′=0

,

L̄
∣∣
ε̄=0

is invertible provided that both M and L′
∣∣
ε
′=0

are

invertible. Let us first consider M. From Schur’s formula,

and (15), M is invertible provided that the matrix

M0 = 2I + [c∗′]×[m∗′]× (21)

is invertible. Consider any matrix Q such that Qm∗′ =
‖m∗′‖b3 with b3 = [0, 0, 1]⊤ the third canonical vector.

Using the fact that for any 3-vector x, Q[x]×Q⊤ = [Qx]×,

one verifies by multiplying (21) on the left by Q and on the

right by Q⊤ that

QM0 Q⊤ = 2I + [Qc∗′]×[‖m∗′‖b3]× . (22)

Since det(QM0 Q⊤) = det(M0), a straightforward calcu-

lation yields

det(M0) = 2(2 − 〈Qc∗′, ‖m∗′‖b3〉)
2 (23)

= 2(2 − 〈c∗′,m∗′〉)2. (24)

This shows that M0 (and consequently M) is invertible

provided the condition (17) is satisfied. A similar reasoning

shows that L′
∣∣
ε
′=0

is invertible provided (18) is satisfied.

A nice property of the linearized interaction matrix in (19)

is its block-triangular structure. This property is exploited

next to derive simple stabilizing feedback laws with nice

decoupling properties.

B. Control Law and Stability Analysis

In the sequel, consider a camera-mounted 6-DoF holo-

nomic robot observing a motionless rigid object of unknown

shape. Let the control inputs be the translational and rota-

tional velocities of the camera, gathered in the vector v ∈ R
6.

The nonmetric control law is simply defined as

v = Λ ε̄, (25)

with a diagonal gain matrix Λ = diag(Λv,Λw), and Λv =
diag(λ1, λ2, λ3), Λw = diag(λ4, λ5, λ6).

Theorem 3.2: The nonmetric control law (25) ensures

local exponential stability of the equilibrium ε̄ = 0 provided

that the following conditions are satisfied:

sign(λ1) = sign(λ2) = sign

(
2

z∗
− m∗′⊤q∗′

)
, (26)

sign(λ4) = sign(λ5) = sign(2 − m∗′⊤c∗′), (27)

λ3, λ6 > 0. (28)

Proof: From the expression (19) of the linearization of

the interaction matrix and applying the control law (25), the

linearization of the closed-loop system at ε̄ = 0 writes

˙̄ε = A ε̄, (29)
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with

A = L̄
∣∣
ε̄=0

Λ =

[
Avv 0

Awv Aww

]
(30)

and hence

Avv = −

[
2

z∗
I + [m∗′]×[q∗′]×

]
Λv , (31)

Aww = −
[

2I + [c∗′]×[m∗′]×
]
Λw . (32)

We first determine the analytic expression of the eigenvalues

of A. Since A is block triangular, its eigenvalues consist of

the union of the eigenvalues of Avv and Aww:

σ(A) = σ(Avv) ∪ σ(Aww), (33)

with σ(·) denoting the spectrum of a matrix. Let us first

consider Avv . If x denotes an eigenvector of Avv associated

with the eigenvalue µ, then for any rotation matrix Q, Qx

is an eigenvector of QAvvQ
⊤ associated with the same

eigenvalue µ. Thus, σ(Avv) = σ(QAvvQ
⊤). As in the proof

of Theorem 3.1, let us choose Q such that Qm∗′ = ‖m∗′‖b3

with b3 = [0, 0, 1]⊤. Then, a straightforward calculation

shows that QAvvQ
⊤ is upper-triangular so that its diagonal

terms correspond to its spectrum:

σ(QAvvQ
⊤) = σ(Avv) ={

−λ1

(
2

z∗
− m∗′⊤q∗′

)
,−λ2

(
2

z∗
− m∗′⊤q∗′

)
,−λ3

2

z∗

}
.

Applying the same procedure to Aww yields

σ(QAwwQ⊤) = σ(Aww) =
{
−λ4(2 − m∗′⊤c∗′),−λ5(2 − m∗′⊤c∗′),−2λ6

}
.

The proof directly follows from the above expressions of

σ(Avv) and σ(Aww).
Theorem 3.2 provides explicit conditions on the control gains

so as to ensure local exponential stability of the closed-loop

system. Since both m∗′ and c∗′ are defined by the user, the

unique important constraint is on the choice of λ1 and λ2.

However, since m∗ = z∗m∗′, a direct consequence of

(26)–(28) is that stability is garanteed ∀λi > 0, i =
1, 2, . . . , 6, if the two following conditions are satisfied:

m∗⊤q∗′ < 2, (34)

m∗′⊤c∗′ < 2. (35)

Let us note that these conditions can always be verified.

The condition (34), which also holds in the original DVS,

expresses the perpendicular distance between the chosen

control point and the reference plane. Given that this plane

corresponds to the dominant plane of the object, this condi-

tion can be easily satisfied if the control point is chosen such

that its parallax ρ∗ ∈ R is sufficient small. In fact, one could

simply choose a point that has ρ∗ = 0 as the dominant plane

crosses the object. As for condition (35), it represents the

length of the projection of m∗′ onto c∗′. It can then be easily

satisfied by setting, e.g., c∗′ = βm∗′/‖m∗′‖2, ∀β < 2. The

closed-loop system (29) is thus always locally exponentially

stable at the equilibrium, ∀λi > 0. Furthermore, the behavior

of the translational control error is decoupled from the

rotational one, as shown in (30).

C. A Fully Decoupled Matrix

The obtained interaction matrix (19) is lower triangular

in the general case. This section presents a case of special

interest. Indeed, it occurs very often in practice and such

matrix is purely diagonal. Consider a planar object such that

its scaled normal vector is n∗ = [0, 0, 1/d∗]⊤, i.e., a plane

fronto-parallel to the reference frame whose perpendicular

distance is of d∗ > 0. Let us choose the control point such

that m∗′ = [0, 0, 1]⊤ and set c∗′ = m∗′. As consequences,

1

z∗
= n∗⊤m∗′ =

1

d∗
, (36)

q∗′ = n∗, (37)

and the stability conditions (34) and (35) are satisfied.

Furthermore, the obtained interaction matrix (19) writes

L̄
∣∣
ε̄=0

= −





1
z∗

0 0 0 0 0
0 1

z∗
0 0 0 0

0 0 2
z∗

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2




. (38)

Therefore, a fully decoupled linear system (29) with strictly

negative diagonal elements is obtained ∀λi > 0. Once again,

let us remark that such matrix is used only for analysis

purposes, i.e., it is not needed for servoing the robot.

IV. EXPERIMENTAL RESULTS

This section reports experimental results using both syn-

thetic and real data, simulating and using a camera-mounted

six-DoF robotic arm. In all cases, the control objective

consists in stabilizing the robot such that the current image of

the object coincides with its image captured at the reference

pose. The control error and control law are both calculated at

the signal level, i.e., they do not use either image features or

metric information of the object. Indeed, pixel intensities are

directly exploited to estimate all needed projective parame-

ters. The direct image registration technique described in [7]

is used for this purpose. Comparative results are presented

using the Direct Visual Servoing (DVS) and the proposed

decoupled DVS, all using a control gain of λ = 0.4 and a

stop condition on the norm of the control errors of 10−3.

A. Synthetic Data

This first set of experiments uses a nonplanar object. The

used target is indeed a hyperbolic paraboloid, also known as

horse’s saddle, whose center is placed 1m away from the ref-

erence camera pose. The displacement of the initial camera

pose relative to the reference one is of [0.17,−0.11, 0.01]
meters (norm of 0.2m, i.e., of 20% of the center’s depth)

in translation, and of [−0.1,−0.31, 1.04] radians (norm of

62.4◦) in rotation. All these information is obviously not

available for the control computation. The focal lengths are

set to 500 pixels, no skew, and the principal point as the

middle of the image, which has 550 × 418 pixels. The

applied sampling period is of 30 ms, leading to a framerate

of 33.33Hz. The control point is chosen such that m∗′ =
[0, 0, 1]⊤. For the sake of simplicity, all pixel intensities

within the region of interest of size 200×150 pixels (i.e.,

within the grid) are exploited, and no illumination variations
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(a) reference pose (b) initial pose

(c) reference image (d) initial image

Fig. 2. Setup of the experiment using synthetic data. The target is nonplanar
(a horse’s saddle), and all pixels within the outlined image region (the grid)
are exploited. (Top) Configurations of the camera frame with respect to the
target, seen from different viewpoints. Only the exploited part of the object
is shown. (Bottom) Images as viewed by the camera at those relative poses.

have been imposed. The interested reader may refer to [7] for

numerous other estimation experiments, including varying

illumination conditions, different objects and color cameras.

The setup for this experiment is shown in Fig. 2.
1) DVS: This section presents the results obtained using

the reduced control error (13) under that setup. Let us remark

that such setup is particularly unfavourable for most 2D

visual servoing techniques due to the relatively large initial

rotational displacement around the ~z-axis. This does not hold

for the DVS technique. Indeed, it successfully performs the

task accurately, whose convergence is established after 905

images without nearly any camera retreat. The corresponding

results are shown in Fig. 3. Nevertheless, one can observe

that there exists a coupling of the translational velocities with

rotational ones, in particular vx for such experiment.
2) Decoupled DVS: This section presents the results ob-

tained using the decoupled control error (16) with c∗′ = m∗′.

As for the DVS technique, it successfully performs the task

without nearly any camera retreat, whose convergence is now

established after only 762 images. The rate of convergence

is thus improved. Indeed, the coupling in the translational

velocities observed in the previous DVS is far less severe

using this technique. Furthermore, it fully disappears near

the equilibrium. See Fig. 4 for the corresponding results.

B. Real Data

This second set of experiments uses a planar object,

which is placed about 0.7m away from the reference pose.

The displacement of the initial robot pose relative to the

reference one is of [0.13,−0.23,−0.08] meters (norm of

0.27m, i.e., of about 38% of the depths) in translation, and
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Fig. 3. Direct visual servoing with respect to a nonplanar object. (Top)
Control inputs, i.e., the camera velocities. The translational velocities are
coupled with the rotational ones, in particular vx for such experiment.
(Bottom) Motion of the camera in the Cartesian space towards convergence.
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Fig. 4. Decoupled direct visual servoing with respect to a nonplanar
object. (Top) Control inputs, i.e., camera velocities. A decoupling behavior
of the translational velocities is observed as we compare them with Fig. 3.
(Bottom) Motion of the camera in the Cartesian space towards convergence.

of [−20.3, 2.17, 14.59] degrees (norm of 25◦) in rotation.

These are obviously unknown by the algorithms. To show the

robustness of the techniques, a coarsely calibrated webcam is

used. Indeed, the focal lengths are simply set to 420 pixels,

no skew and the principal point as the middle of the image,

which has 320×240 pixels. This camera is placed on the end-

effector of a 6-axis robotic arm, and the hand/eye calibration

is also coarsely set. The framerate is of about 30Hz, which is

the maximum of the webcam. The chosen reference template

has 70 × 70 pixels (to satisfy real-time constraints), and the

control point is chosen as its center. See Fig. 5 for this setup.

1) DVS: As in the previous set of experiments, the

reduced control error (13) is used here. The corresponding
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(a) reference pose (b) initial pose

(c) reference image (d) initial image

Fig. 5. Setup of the the experiment using real data. It uses a planar object
and a coarsely calibrated camera-mounted robotic arm. (Top) Configurations
of the robot relative to the target. (Bottom) Images as viewed by the mounted
camera at those poses. All pixels within the outlined region are exploited.

results are shown in Fig. 6. Once again, the servoing task is

successfully performed, with convergence after 417 images.

Nevertheless, there exist a coupling of the translational

velocities with rotational ones.

2) Decoupled DVS: Again, the decoupled control error

(16) with c∗′ = m∗′ is used here. The task is also suc-

cessfully performed, with convergence after 309 images. The

rate of convergence is thus improved. The coupling behavior

previously observed is indeed reduced. See Fig. 7 for the

corresponding results.

V. CONCLUSIONS

This article has proposed a general intensity-based non-

metric visual servoing technique that decouples the error

dynamics. This new decoupled technique is general in the

sense that it deals with both planar and nonplanar objects, un-

der both translation and rotation displacements between the

reference and initial frames. The proposed technique directly

exploits the pixel intensities without extracting or matching

image features, does not require any metric information of

the object, and is proven to locally exponentially stabilize the

equilibrium state. Comparative results with a state-of-the-art

direct technique using a camera-mounted 6-DoF robotic arm

confirm the improvements. In future work we plan to exploit

the proposed framework for the control of other mechanical

systems, such as nonholonomic and underactuated robots.
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