
Autonomous Mobile Acoustic Relay Positioning as a Multi-Armed

Bandit with Switching Costs

Mei Yi Cheung, Joshua Leighton, Franz S. Hover

Abstract— Underwater acoustic communication channels dis-
play highly variable and stochastic performance, especially
in multipath-limited shallow-water and harbor environments.
A mobile acoustic node can, however, learn the channel’s
properties as it moves about. Maximizing the cumulative data
transmission through adaptive node positioning is a clean
exploitation vs. exploration scenario because learning about
poorly characterized locations must be balanced against ex-
ploiting known ones. While this problem is well described
with the stochastic multi-armed bandit formalism, the classical
assumption of costless switching is untenable in the field, where
slow-moving vehicles often cover large distances. We present a
heuristic adaptation to the MAB Gittins index rule with limited
policy enumeration to account for switching costs, and describe
field experiments conducted in the Charles River (Boston MA).
The field data establish that the MAB and its switching cost
extension are tractable in this application, and that performance
is consistently superior to that of ǫ-greedy policies.

I. INTRODUCTION

Acoustic communications is the main practical means of

underwater wireless data transmission. It has wide-ranging

ocean applications, such as data collection from underwater

sensor networks for monitoring ocean processes, remote

control of untethered mobile robots and point-to-point com-

munication. In recent years, research on underwater acoustic

communications systems has led to significant improvements

in performance, through modern channel estimation, cod-

ing and error correction schemes (e.g. [1], [2]). However,

channel performance remains strongly dependent on local

environment properties such as temperature, salinity, wind

and waves, and may vary on several time scales [3]. In

shallow water, surface and bottom conditions as well as

man-made structures cause multipath interference that affects

performance in a spatially complex manner. Sophisticated ray

and beam-tracing algorithms can be used to predict these

effects but may be computationally expensive even in a two-

dimensional setting and require measuring or modeling of

environmental properties [4], [5].

It is challenging to predict the performance of the acoustic

channel, especially in relation to the position of the nodes.

Thus, in previous work [6], we posed the problem of improv-

ing cumulative data transmitted between fixed source and

destination nodes by adaptively positioning a mobile relay.

The relay learns about local channel performance when it

transmits and must trade off exploring poorly characterized

sites with exploiting known ones for throughput. Formulating

this problem as a multi-armed bandit (MAB) allowed us
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to use an elegant and optimal decision rule in the form

of Gittins indices [7] for a discretized space of potential

relay locations. Using autonomous vehicles in the field, we

showed that the Gittins index rule improved cumulative data

transmission by 14% and 19% over a simple touring strategy

[6]. However, the experiments also showed that 60% of the

total mission time was spent in transit between locations. For

an underwater vehicle traveling between distant waypoints,

generally slow vehicle speeds mean that choosing to switch

location may take much longer than choosing to sample again

at the present location, a tradeoff not accounted for by the

MAB algorithm. Additionally, in practice, the performance

of the acoustic link may be adversely affected during transit

by factors like increased vehicle propulsion noise [8].

In this paper, we address switching costs explicitly from

an algorithmic point of view and describe an adaptation of

the Gittins index rule with limited-horizon lookahead policy

enumeration. Introducing switching costs into the canonical

MAB framework removes the property of arm-independence,

and Banks and Sundarum proved that no optimal index policy

solution exists for the MABSC [9]. Subsequent research has

focused on deriving general properties of the optimal policy

[10], deriving explicit optimal policies for special cases [11],

[12] and bounding approximations to the optimal policy [13].

The problem has also been reformulated as a semi-Markov

multi-armed restless bandit, for which marginal productivity

indices are a near-optimal solution1 [14]. For a recent sur-

vey, see Jun [15]. Applying the main result of Asawa and

Teneketzis [10] allows us to adapt the Gittins index policy

for switching costs with limited-horizon policy enumeration

by reducing the frequency of expensive computations.

ǫ-greedy algorithms, which combine myopic greedy be-

havior with heuristic random sampling, are well-known al-

ternatives to the MAB [16]. An ǫ-greedy algorithm plays the

best arm (1− ǫ) of the time and switches to a random arm

ǫ of the time. ǫ-decreasing is a variation where the value

of ǫ decreases with time constant τ . These algorithms are

simple to implement and must be tuned heuristically for

good performance. Drawing samples from a large survey

dataset collected in the field, we apply the MAB, MABSC

and ǫ-greedy decision policies to the same data and compare

the performance of each of these decision rules. We show

that the real-time performance of the MABSC heuristic is

competitive with that of ǫ-greedy algorithms, while at the

same time gathering more information on the field.

1For a stationary process with switching costs, the MPI is equivalent to
Asawa & Teneketzis’s switching index
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Section II of this paper describes the MAB formulation

for the adaptive positioning problem, a heuristic for the

inclusion of switching costs and asymptotic policy bounds. In

Section III, we describe a hybrid field experiment conducted

with autonomous surface vehicles, and in Section IV we

compare the MAB algorithm with and without a switching

cost heuristic to well-known alternatives.

II. PROBLEM FORMULATION

A. Adaptive Relay Positioning as a Multi-Armed Bandit

The multi-armed bandit framework considers the problem

of dynamically allocating a resource between N competing

processes or “arms” so as to maximize the total expected

reward. Each arm is described by a sequence of states

x(1), · · · , x(n), where x(n) is a random variable represent-

ing the state of the arm after it has been operated n times.

In the multi-armed process, we denote the number of times

each arm i has been operated by ni, and denote its state by

xi(t), where t is the current global decision epoch:

t =

N
∑

i=1

ni. (1)

In general, the reward returned by each state R(xi(t)) is

a real non-negative random variable. We denote the state

of the multi-arm process at a given time by x̄, which is

the vector (x1 · · ·xN ). At each decision epoch, the process

allocates the available resource to a single arm, reaping its

associated state-dependent reward while the states of all other

arms remain frozen.

For the relay positioning problem, we define each potential

relay location as an arm. The relay “plays” the arm by relay-

ing on location, each acoustic transmission being described

by a Bernoulli trial:

Bi(t) =

{

1 if transmission success

0 otherwise
(2)

and the reward process of each arm is Bernoulli.

A dynamic allocation policy π is optimal if it defines at

each decision epoch t an arm for allocation it, such that the

expected value of the total expected reward Vπ is maximized.

For a discount factor 0 < β < 1, and an infinite horizon, the

total expected reward is:

Vπ(x̄) = E

[ ∞
∑

t=0

βtR(xit(t)) | x̄(0) = x̄

]

. (3)

Gittins and Jones showed that the optimal solution is an

index policy, with the value of playing an arm at any time

represented by an index νi that is a function only of that

machine’s current state xi(t) [7]. The Gittins index can be

understood as the expected discounted reward per unit time

maximized over all stopping times τ > 1, conditioned on

the process state at global time t:

νi(xi(t)) = max
τ>1

E

[

τ−1
∑

k=0

βkR(xi(k)) | xi(0) = xi(t)

]

E

[

τ−1
∑

k=0

βk | xi(0) = xi(t)

] . (4)

The optimal rule at each decision epoch is to play the

machine with the largest current Gittins index, defining the

policy π as:

it = argmax
i

(νi(xi(t))). (5)

A computational method for calculating the Gittins indices

for a Bernoulli reward process is described in Gittins [17].

The infinite horizon is approximated with a large finite

horizon and backwards induction is used to solve for indices.

B. Policy Enumeration for Switching Costs

We define constant costs c(i, j) to achieve a practical rep-

resentation of the attractiveness of taking one more sample

before investing in a lengthy transit. If tv(i, j) is the time

taken to travel from i to j, and tt is the time taken to relay

one transmission, then c(i, j) = tv(i, j)/tt — the number of

transmissions the relay could have made on location if it had

chosen to sample instead of travelling, or the approximate

potential value given up by choosing to transit. These costs

are the elements of a constant symmetric matrix whose

diagonals are 0. In the presence of switching costs, the index

policy was shown to be suboptimal [9]. The optimal solution

to the MABSC is one that maximizes:

Vπ(x̄) = E

{ ∞
∑

t=0

βt
[

R(xit(t))

− c(xit(t), xit(t+ 1))
]

| x̄(0) = x̄

}

. (6)

The assumption of arm-independence necessary to decom-

pose the N -dimensional problem into N one-dimensional

optimization problems no longer holds, since the reward

returned by a process no longer depends solely on the

number of times n an arm has been operated. For this

problem, we describe a solution of the priority-index policy

form, where separate “continuation” and “decision” indices

are used [18]. The continuation index νi is the Gittins index

previously defined, and determines if an arm previously

played should be continued. Asawa and Teneketzis showed

that it is optimal to continue playing an arm up to its stopping

time τ , and only making a decision to switch when the

stopping time is achieved (A&T Thm. 2.1) [10]. The stopping

time is achieved when the Gittins index of the current arm

falls below any value it has previously reached, thereby

defining the continuation rule:

if min
k<t

νik(xik(k)) ≤ νi(xi(t)), set it+1 = it. (7)

When the stopping time is achieved, i.e., the above condi-

tion does not hold, the decision index determines which arm

to switch to. The continuation rule can only increase the

number of times an arm is played, and reduces the required

computation frequency of the decision index. The decision

index is used to determine which arm to switch to when the

stopping time is achieved. We calculate a “policy” decision

index by maximizing an m-horizon look-ahead enumeration

of the expected reward rate over all possible policies π, where

π is any possible sequence of plays i1, ..., im ∀i ∈ 1, ..., N .
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Location-based switching costs are simple to include in this

formulation, and the value of being in the final state is

accounted for with an updated Gittins index νi:

ηπ(x̄(t)) =
e(x̄(t))

E

[

m
∑

k=0

βk | x̄(0) = x̄(t)

]

+ νi(x̂it+m
(t+m)), (8)

where

e(x̄(t)) = E

{ m
∑

k=0

βk
[

R(xik(k))−c(xik(k), xik+1
(k+1))

]

| x̄(0) = x̄(t)

}

. (9)

The adapted decision rule for MABSC is then

it+1 = argmax
i1

(ηπ(x̄(t))). (10)

If m = 0, canonical Gittins indices are returned. If m = 1,

switching indices described in [10] is returned. In general,

the number of possible policies scales exponentially with the

number of arms and the length of the lookahead horizon.

Since enumeration is computation-intensive, we apply A&T

Thm. 2.1 to reduce the number of required decision index

computations. Thus, longer horizons can be enumerated,

allowing the algorithm to capture the benefits of efficient

routing where a more myopic policy would not.

C. Asymptotic Efficiency

Asymptotically efficient suboptimal decision rules are

guaranteed to converge to the optimal arm as the number of

observations increases, and perform asymptotically as well

as optimal policies. We follow the construction of Agrawal

[13], who extended [19] to the case with switching costs, to

determine asymptotic efficiency for the MABSC adaptation.

We assume each reward distribution can be parametrized by

an unknown parameter θ and denote the optimal mean by

µ∗. An allocation rule’s “regret” is defined to be the loss in

reward due to suboptimal action:

Rt(θ̄) = R′

t(θ̄) + SW (11)

where R′

t(θ̄) is the sampling regret, SW is the switching

regret and θ̄ = {θ1, ..., θN}. For t ≤ ∞, let Tt(i) is the

number of times arm i is sampled,

Tt(i) =

t
∑

k=1

1 {ik = i}. (12)

Similarly, let St(i, j) is the number of times a switch i to j
was made. Then, the sampling and switching regret are:

R′

t(θ̄) =
∑

i:µ(θi)<µ∗

(µ∗ − µ(θi))E[Tt(i)] (13)

SW =
N
∑

i=1

N
∑

j=1

c(i, j)E[St(i, j)], (14)

For the lower bound to hold, the decision rule’s regret must

not increase sharply, i.e. the rule must be uniformly good. A

rule is uniformly good if it satisfies the following condition

for every parameter and cost configuration θ̄, c(i, j),

Rt(θ̄, c) = o(ta) ∀ a > 0 (15)

Assuming no arm is impossible to switch away from, this

rule is satisfied by the adapted MABSC decision rule as

suboptimal arms with decreasing Gittins indices are not

continued. For the class of uniformly good allocation rules,

Lai and Robbins [19] proved the following lower bound:

lim inf
t→∞

Rt(θ̄) ≥

[

∑

i:µ(θi)<µ∗

(µ∗ − µ(θi))

I(θi, θ∗)

]

log t (16)

where I(θi, θ
∗) is the Kulback-Leibler number. Agrawal

showed directly from Eqn. 16 that any asymptotically ef-

ficient decision rule takes about O(log t) samples from

any inferior process up to time t and proved that a block

allocation scheme where the expected number of switches

is controlled to o(log t) a priori is asymptotically efficient

[13]. Similarly, the adapted MABSC decision rule is a

block allocation rule where the use of Gittins continuation

indices guarantees asymptotic continuation of the optimal

process and decreased sampling of inferior processes. Given

that every arm can be switched to and away from, policy

enumeration by the decision process converges to the optimal

process and the number of switches decreases with time.

In comparison, the ǫ-greedy algorithm does not achieve the

lower bound as it must switch away from the optimal arm

ǫ% of the time, while the ǫ-decreasing algorithm does [20].

III. EXPERIMENT DESCRIPTION

We consider a one-way, two-link network, originating

from a source modem at the MIT Sailing Pavilion on the

Charles River Basin, and repeated by the mobile relay to a

station-keeping vehicle 580m across the river. A transmission

is considered successful if both links are successful. All field

experiments were conducted with custom autonomous sur-

face vehicles (Fig. 1) towing acoustic modem transducers at

fixed depth to simulate underwater communications, with the

benefit of GPS (noise covariance on the order of 10m2) and

WiFi connectivity for controlled experiments. The vehicles

travel at 1.5 m/s and maintain a station-keeping circle ten

meters in diameter on location.

Fig. 1. Autonomous surface vehicle operating off the MIT Sailing Pavilion.
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We use Woods Hole Oceanographic Institution (WHOI)

Micro-Modems [21], an established and commercially avail-

able technology for underwater acoustic data transmission,

and report SNR values from before the equalizer on the

receiving modem (“SNR-In”). Micro-Modem transmissions

were fixed at PSK Rate 2, with a message size of 192

bytes and an average two-hop transmission time of fifteen

seconds. We note that although programmable modem pa-

rameters such as packet encoding schemes can be included

combinatorially as additional machines, we have fixed these

for simplicity. No prior knowledge of the acoustic channel

was assumed beyond the usual spreading law to choose nine

candidate relay locations spaced 100m apart in a grid pattern

centered on the line between the source and destination nodes

(Fig. 1). The time taken to switch ranges from 1.1 to 3.2

minutes. In practice, the choice of potential relay locations

will be influenced by mission constraints. The depth of the

Charles River Basin ranges from two to twelve meters.

In the field it is difficult to compare the performance

of several competing algorithms as multiple relays would

share the same physical space and channel, resulting in

transmissions experiencing acoustic interference or extended

wait times. Conducting experiments on different days is

also undesirable as changing weather and surface conditions

make it difficult to objectively evaluate the improvement

in performance due to action by the algorithms. Thus, we

construct a hybrid experiment; first, by collecting a large

dataset of transmissions on a single experimental day. A

touring survey taking five transmissions at every location was

conducted for several hours. Then, each decision algorithm

was applied to the same dataset, i.e. transmission results were

sampled from the dataset for the appropriate time and loca-

tion and used to update the algorithm’s information state. The

shallow-water acoustic environment is in general difficult to

model and using field data allows us to capture complex

spatially-dependent behavior. The hybrid dataset contained

835 detected transmissions from source to relay and 636

detected transmissions from relay to destination, with 493

of these being successfully decoded relayed transmissions.

IV. EXPERIMENT RESULTS

A. Acoustic Channel Statistics

SNR-In values reported for all acoustic transmissions

during the data collection mission are presented in Fig. 2.

We note that the data demonstrates no clear spatial structure

and does not noticeably distinguish between locations of

different performance, with Site 7 as a possible exception.

The highest and lowest performing locations are situated

surprisingly close by. Altimetry data in the area visited by

the relay shows irregular bottom topography and a shallower

shelf to the northeast where Site 7 is situated [6]. Though not

visible, a deeper channel is also present towards the south

(Boston) bank where the destination node is situated. Fig.

3 shows SNR-In values by mission time and is color-coded

by location, with lost packets shown as dotted lines. Despite

high SNR-In values, multi-path interference in the shallow-

water environment makes packet decoding challenging.

Fig. 2. SNR-In of transmissions at each of nine potential relay locations
in the Charles River Basin. Site number is shown in black and final packet
success rates estimates over the entire mission are shown in red.
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SNR-In values for the five transmissions taken each tour

were averaged and Fig. 4 (left) shows the progression in each

site for the time-averaged values of SNR-In. There is no clear

trend in these values temporally and thus we assume the

Bernoulli transmission processes to be acceptably stationary

over the time scale of the experiment. Remarkably, as illus-

trated in Fig. 4 (right), there is essentially no correlation of

SNR-In with the corresponding grouped packet success rates

of those transmissions, with high variation in SNR-In even

for 100% success.
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Fig. 5. Cumulative performance of MAB, MABSC and tuned ǫ-greedy and ǫ-decreasing algorithms by observations (left), where 1 indicates 100% success
rate, and cumulative successful transmissions by calculated mission times (right).

B. Algorithm Comparison

We compare the performance of the Bernoulli Git-

tins index solution (MAB), the switching cost adaptation

(MABSC), ǫ-greedy, ǫ-decreasing algorithms and the initial

subset of the touring survey. Each algorithm was initialized

with an estimate of one at each site.2 and Site 1 was

designated as the starting site. Initializing ǫ-greedy algo-

rithms with a tour did not demonstrate consistently improved

algorithm performance, and in the interest of comparison we

fix the same start conditions for each algorithm. Indices were

initialized to one where appropriate. There was no restriction

on the expected number of switches for algorithms other

than algorithmically for the adapted MABSC. The look-

ahead horizon for policy enumeration was constrained by

a maximum computation time of 15 seconds or the time

taken to sample once, and a horizon of five took an average

of one second.3 ǫ-dependent algorithms were tuned with ǫ
and τ of differing orders of magnitude and only a high

performing subset is presented here for the sake of clarity.

We evaluate each algorithm’s performance in terms of the

average packet success rate achieved, which is computed

from the cumulative number of successful transmissions

drawn from the experimental dataset. Transmissions were

drawn from the dataset in chronological order, terminating

when unavailable data was requested. Since the number of

transmissions at each location is limited by the total mission

time of the touring survey conducted in the field, fewer

observations are generated for greedier algorithms sampling

at one location more often.

Fig. 5 shows the cumulative performance level by obser-

vations for the algorithms considered, where the one on the

y-axis corresponds to 100% cumulative packet success rate.

The estimated final and average success rates were computed

2Practically, the choice of initialization represents an acceptable per-
formance threshold. Unexplored sites may never be chosen if a previous
site maintains performance above or equal to the threshold. Here we have
prioritized exploration of all possible locations.

3Computed with Matlab R2012b on Windows 7 (64bit), Intel i5-3450,
16GB of RAM

from the entire data set. From the final estimated means of

Fig. 2, we note that the highest performing Site 8 performed

significantly better than the next nearest competitor. Thus,

the canonical MAB formulation experienced decreased cu-

mulative performance in the beginning from learning about

lower performing sites and returns a cumulative packet

success rate close to the estimated average. In comparison,

MABSC improves the cumulative performance and is closely

competitive with tuned ǫ-greedy and ǫ-decreasing algorithms.

Although their performances are comparable on a per

observation basis, we demonstrate the impact of switching

(travel) times on the cumulative performance for each algo-

rithm (Fig. 5). Transit times were determined by assuming

the vehicle was traveling at 1.5 m/s and the time to relay was

taken as fifteen seconds. This model closely matches what

we observed during field tests. ǫ-greedy with the greatest

value of ǫ demonstrates slow overall rate of transmission as

expected, while decreasing values of ǫ demonstrate higher

rates. The MAB formulation is shown to be competitive in

real time and its performance is significantly improved by

the adaptation to switching costs. The MAB algorithm was

found to switch for 12% of decisions, while the MABSC

algorithm switched for 8.8%.

Further, the information gained by each algorithm is

also of use for practical planning purposes, and we expect

the multi-armed bandit to perform efficient exploration,

weighted towards characterizing high-performing sites with

confidence. We consider the value of information obtained

by each algorithm by calculating the total sum of squared

differences for each packet success rate estimation from the

mean estimated using the whole dataset (Fig. 6).

The MAB steadily improves the estimate at each site,

while ǫ-greedy and ǫ-decreasing algorithms improve their

estimate only with small probability. While the MABSC does

not gain the same amount of information as the canonical

bandit, it is able to systematically improve the error while

reaping the benefit of improved performance in real-time.

The MAB and MABSC’s ability to gain significantly more

3372



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (mins)

T
S

S
 f

o
r 

E
rr

o
r 

in
 E

s
ti
m

a
te

d
 P

a
c
k
e

t 
S

u
c
c
e

s
s
 R

a
te

 

 

ε = 0.010

ε = 0.100

ε=0.05,τ=0.25

ε=0.10,τ=0.25

MAB

MABSC

Touring Survey

Fig. 6. Total sum of squared differences for each estimated packet success
rate, as compared to the success rate estimated with the entire dataset.

information in the same time, number of observations and

without compromising overall cumulative data transmission

makes these algorithms more practically desirable, so that

short missions may have the maximum impact possible.

V. CONCLUSION

Adaptive relay positioning using mobile acoustic nodes

addresses the relationship between the performance of the

acoustic channel and the node’s physical location, a rela-

tionship that is in practice difficult to model and predict.

The multi-armed bandit formulation well-describes the ex-

ploration vs. exploitation problem defined by maximizing

cumulative performance in an unknown environment, and the

Gittins index policy for Bernoulli reward processes provides

an optimal, elegant solution without the need for costly

parameter tuning. However, in the presence of switching

costs, the Gittins indices solution is suboptimal, and data

transmission rates are slower as the vehicle spends more time

in transit between waypoints. We have described an adaption

for switching costs that uses Gittins indices as continuation

indices and a limited horizon lookahead policy enumeration

to calculate decision indices, with asymptotically efficient

performance. The use of separate continuation and decision

indices allow us to leverage a proven property of the optimal

policy (A&T Thm. 2.1) to reduce computation costs and

increase the lookahead horizon.

Algorithm comparison with field data shows that MABSC

consistently improves on the performance of MAB and

provides comparable real time performance to myopic greedy

policies with tuned heuristic parameters. Further, the MAB

and MABSC also show significantly improved error esti-

mates compared with greedy algorithms. These algorithmic

properties imply that there is little reason to rely on sim-

ple surveys or greedy strategies for either throughput or

information-gathering goals.
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