
Systematic Floor Coverage of Unknown Environments

Using Rectangular Regions and Localization Certainty

Dhiraj Goel James P. Case Daniele Tamino Jens-Steffen Gutmann
Mario E. Munich Mike Dooley Paolo Pirjanian

Abstract— We address the problem of systematically covering
all accessible floor space in an unknown environment by a
mobile robot. Our approach uses rectangular regions that are
swept across the environment. In the first stage, the robot
covers each region using the classic boustrophedon pattern
and planning paths to uncovered areas within the region while
keeping track of its position uncertainty. The region is then
moved sideways to cover the next part of the environment until
all accessible space has been visited. In the second stage, the
robot revisits the perimeter around the obstacles. We compare
our method in terms of total trajectory length to 5 off-line
methods including the distance transformation by Zelinsky et

al. [1] in a standard test environment as well as in multi-room
homes. The presented method has been employed in our Mint
cleaning robot [2] for autonomously sweeping and mopping the
floors.

I. INTRODUCTION

In this paper we address one of the classic problems in
mobile robot navigation: the coverage of all accessible floor
space in an unknown environment by a mobile robot. Floor
coverage is important, for example, when comparing the
performance of autonomous robotic floor cleaners [3], [4],
[5].

The main question that arises is how to navigate to achieve
complete coverage? For example, the robot can follow a
random walk pattern like the motion of a Roomba vacuum
cleaner. A different approach is to follow the perimeter of
an area first and fill in the inner area afterwards. This has
been proposed by Ulrich et al. [6] and is employed in Neato
Robotics’ robotic vacuum cleaner.

In general, complete coverage is related to the traveling
salesman problem and finding an optimal solution is NP
complete [7], even if the environment is known in advance.
Since the environment is unknown, though, the problem is
also related to robot mapping and exploration [8], [9], [10].

An overview of earlier methods for coverage can be found
in the article by Choset [11]. One of the first algorithms is the
distance transformation by Zelinsky et al. [1]. A wave front
is initiated from a goal to a start pose. The robot then follows
the steepest ascent of the wave which brings it furthest away
and slowly towards the goal. We use this approach as one of
the off-line methods in our experiments.

Other classic approaches are Choset’s work on the boustro-
phedon cellular decomposition [12], [13]. It divides an envi-
ronment into cells using an exact decomposition. Each cell is
covered using back and forth motions, i.e. the boustrophedon
path. The method then moves to the next cell or backtracks
until all cells are covered. Choset also suggested to follow
the perimeter of obstacles a second time after completing the

The authors are with iRobot Corp., 1055 E. Colorado Blvd., Suite 340,
Pasadena, CA 91106, USA.

main coverage in order to fill in gaps between obstacles and
the boustrophedon path.

Choset’s approach has been extended in various ways.
Huang pointed out that turning takes more time than moving
straight and formulated the exact cell decomposition with
different sweep directions that allow for coverage paths with
less turns [14]. Acar and Choset refined the boustrophedon
decomposition using Morse functions and provided methods
more robust to sensor noise [15], [16], which were also
used and further enhanced by Garcia and Gonzalez [17].
Our method makes use of some of these concepts when the
robot senses obstacles and needs to decide whether to turn
around or follow along the obstacle.

Wong and MacDonald proposed a topological coverage
algorithm using natural landmarks extracted from the envi-
ronment and an exact cell decomposition approach [18].

Kang et al. proposed a cell decomposition on a known
occupancy map of the environment and allow rotations of the
map before performing the regular line sweeping operation
for finding critical points [19]. They use a set of pre-defined
template paths for covering the cells. In a later work they
divide the known occupancy map into regions by detecting
small openings using the Voronoi graph and covering each
region separately before moving to the next one [20].

Recently Viet et al. combined the boustrophedon cell
decomposition with an A* path planner for finding shortest
paths to the next target location [21].

There is also work on finding optimal solutions to the
coverage task. Gabriely and Rimon assume an occupancy
grid representation of the environment with each cell divided
into four equally sized sub cells. They compute a spanning
tree over the grid and circumnavigate the tree which visits
each sub cell exactly once [22]. They later also formulated
a spiral motion path for covering an environment [23].

Mannadiar and Rekleitis compute a Reeb graph from the
boustrophedon cellular decomposition of a known environ-
ment and find the optimal path that guarantees complete
coverage as an Euler tour by splitting some of the cells into
two components [24]. Xu et al. extended this method for
non-holonomic robots by minimizing the distance traveled
over previously covered regions [25].

Most of the previous work assume the robot is localized
at all times. A notable exception is the method by Das et
al. [26] who formulated coverage with position uncertainty.
We make explicit use of the position uncertainty of the robot
and control the coverage method accordingly.

Our approach uses an occupancy grid to represent the
environment which is learned as the robot covers the space. A
localization system provides pose estimates of the robot and
is typically a SLAM method that can employ active beacons
[27], [28] or a vision system [29]. We assume that the robot

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1

has good relative pose estimation, e.g. from odometry and
a gyro, and a global uncertainty about its pose with respect
to a fixed reference frame. The relative pose estimates allow
the robot to locally cover an area without leaving gaps or
covering the same area multiple times, while the global
uncertainty tells the robot how far to continue when moving
into areas where localization becomes less certain.

We place a rectangular region over the occupancy grid
and let the robot cover as much accessible space as possible
within the region. The region is successively swept over
the occupancy grid until the complete environment has been
covered or further exploration is prevented by uncertainty in
robot position.

By limiting the robot’s coverage within a region we avoid
moving back and forth between distant locations. To a
human observer this behavior looks intelligent and makes
the navigation of the robot more predictable. We believe this
is an important aspect for a consumer product that has not
received much attention in previous coverage approaches.

After completing all regions, the robot revisits the bound-
aries of obstacles and covers their perimeter a second time.
This is important since the areas in proximity of the obstacles
are much harder to navigate as compared to open space,
and therefore gaps in coverage are more likely to occur.
Furthermore, for a cleaning robot, revisiting the obstacle
perimeter is advantageous as dust and dirt often accumulate
there.

We evaluate our coverage method on the Mint cleaning
robot [2] in a standard test environment and in several homes
with floor sizes up to 125m2, and compare it to 5 off-line
methods that assume a given map, have exact localization
and achieve full coverage. The results show that our method
performs competitively in terms of coverage and trajectory
length.

The rest of this paper is organized as follows. In the next
section we describe our coverage algorithm using rectangular
regions and perimeter following. In Section III we perform
extensive experiments for evaluating our approach and com-
pare it to other methods. We conclude in Section IV.

II. COVERAGE USING RECTANGULAR REGIONS

Our coverage approach uses two stages. In the first stage
open area is covered by placing rectangular regions over
the environment and mapping the space. In the second
stage the perimeter of obstacles is visited one more time.
In the following sections we describe the occupancy grid
representation, the region parametrization, region coverage,
region placement and and the perimeter following strategy.
We also present refinements to the overall strategy for a
practical system.

A. Occupancy Grid

We place a regular occupancy grid over the environment.
Each cell in the grid can take one of the values unknown,
covered, or obstacle. Initially all cells are set to unknown
since the environment is not known a priori.

For covered cells we also store a number representing the
certainty in the robot position estimate obtained from local-
ization. This can be obtained from the position covariance.
Note that this value depends on the trajectory of the robot
and we keep the maximum certainty number at each covered

cell. In general though, cells in areas with poor localization
tend to have low certainty number.

For obstacle cells we also distinguish between different
types of obstacles depending on how they are sensed. For
example, impassable obstacles (detected by bumper or wheel
motor stall), cliffs (detected by drop sensors) and hazards
(detected by robot being physically wedged or stuck).

The initial position of the robot is at the origin of the oc-
cupancy grid. The cells traversed by the robot (center of the
wheelbase) are set to covered with associated instantaneous
position certainty. When detecting an obstacle the cell closest
to the obstacle is marked accordingly. When the robot gets
closer to one of the dimensions of the occupancy grid, the
map is re-centered to fully utilize the map. This operation is
also done opportunistically.

B. Rectangular Region

We place a rectangular region over the occupancy grid.
Fig. 1(a) shows our setup and names several parameters.

The rectangular region is parameterized by its location,
width wb and length lb. The robot moves back and forth
within this region using the classic boustrophedon pattern.
We call each longitudinal segment of the boustrophedon path
a rank. A rank has a start pose, a rank length lr and a progress
direction (either left or right). The robot moves along a rank
and after reaching the endpoint, it turns onto the next rank.
The distance between neighboring ranks is defined as rank
width wr.

The rank width wr should be less than or equal to the
width of the robot’s cleaning head wt in order to leave no
area uncovered between the ranks. Preferably, wr should be
smaller than wt so that the ranks overlap, allowing for small
errors in control and localization [26]. For example, wr =

0.7× wt.
The rank length lr can vary but is limited to a maximum

rank length l̂r. This ensures that the robot does not move
arbitrarily far away from where it started the boustrophedon
pattern. It also limits the amount of position error the robot
accumulates from its relative motion estimates. Ideally both

rank width wr and maximum rank length l̂r should be chosen
such that the chance of leaving uncovered area between ranks
is minimal, the overlap of ranks is small, and the rank length
is large.

When placing a rectangular region, its width wb is fixed

but the length lb can vary up to a maximum l̂b by extending
the region at the top or the bottom. This allows the region
to adapt to the physical dimensions of the environment.
Limiting the maximum length ensures that the robot only
navigates in a local area defined by the region even in a large

environment. We allow l̂b to be larger than the maximum

rank length l̂r.
The ideal cell size of the occupancy grid is the rank width

wr. This corresponds to each new rank filling in exactly
one column in the occupancy map. Alternatively, the cell
size could be chosen such that each rank fills in an integral
number of columns.

C. Basic Region Coverage

The initial rectangular region is placed such that the robot
is in the bottom left corner as shown in Fig. 1(a). The robot
moves forward on the first rank and places new ranks to

2

Box region

l
b

w
b

R
a

n
k

w
r

l
r

w
t

(a) Rectangular region over occupancy grid

Option 1

Option 2

d
f

l
f

(b) Robot encounters an obstacle

N
e

x
t

ta
rg

e
t

(c) Robot reaches end of boustrophedon path

Fig. 1. Floor coverage using rectangular regions. Blue areas indicate covered space. Robot trajectory is drawn in white with intended future path as
dashed line.

the right. As the robot moves along a rank, the region is

expanded until it reaches the maximum length l̂b.
When following a rank, if the robot reaches the maximum

rank length l̂r or the end of the region, it stops and turns
onto the next rank. On the other hand, if it encounters an
obstacle, it backs up and evaluates two options in order to
continue. Fig. 1(b) illustrates the scenario.

One option is to back up from the obstacle and just turn
onto the next rank. Another option is to follow the obstacle
over covered cells, towards the previous rank, and attempt
to merge back onto the current rank behind the obstacle.
The second option is only possible if there are unknown
cells, next to the covered cells, behind the obstacle. We
call the boundary between unknown and covered cells an
open frontier (magenta line in Fig. 1(b)). Only covered cells
with a position certainty larger than a threshold qualify for
becoming an open frontier. This discards areas with low
position certainty. The criteria for deciding between the two
options are the distance df from the current robot pose to
the frontier, and the ratio of frontier length lf and current
rank length lr. If the frontier is close and if lf is larger than
lr then option 2 is preferred.

D. Finding Next Target Rank

At some point the robot is not able to continue its
boustrophedon path because it is at the end of the region,
or it’s position certainty is too low, or there are obstacle
cells blocking the next rank (example in Fig. 1(c)).

At this point, the robot searches for open frontiers in the
rectangular region and chooses the next target rank and start
location. In many cases (e.g. the one in Fig. 1(c)) both ends
of a frontier are considered as candidates. In order to decide
which one to go to, a path is planned to each candidate
location. For path planning we use a wave front method that
computes the distance of each cell to the robot position in
grid coordinates similar to the brush-fire algorithm [30]. A
wave is started from the cell of the robot position. Covered
cells that are next to a wave cell are added to the wave such
that the grid is searched breadth-first until all candidate cells
are found or all wave cells have been examined. The robot
then chooses the candidate with the minimum path distance.
When following a path, we find collision-free shortcuts along
the path cells such that the robot travels on straight lines

T
a
rg

e
t
1

T
a
rg

e
t
2

T
a
rg

e
t
3

Fig. 2. Robot reaches end of rectangular region and has multiple candidate
locations as the next target. Note that the middle ranks reached the maximum
rank length (which caused the robot to turn around) and thus, the top frontier
spans multiple grid columns.

at arbitrary orientations. The robot never plans a path over
unknown cells as there may be obstacles causing additional
maneuvers or re-planning.

In general, there can be multiple open frontiers in the
rectangular region that the robot can choose from. Addi-
tionally, frontiers can span more than one column in the
occupancy map. Fig. 2 shows a more complex scenario with
two frontiers.

We split frontiers into multiple components by fitting
straight line segments aligned to the coordinate axes of the
region, and discarding the ones with very small projected
length along the main coverage direction. In the scenario of
Fig. 2 the top frontier is split into three components but only
the left and right components are kept as targets. For each
target, both the two endpoints are considered as potential
start locations for a new rank. The robot chooses the one
with the shortest path distance. For example, in Fig. 2, the
robot selects the lower endpoint of Target 3 because it’s
path distance (5 cells) is smaller than the lower endpoint
of target 2 (6 cells) and the upper endpoint of Target 1 (7
cells). Note that at the end of each rank at Target 3, the robot

3

start:
move forward

loop
if obstacle in front then

if frontier behind and small df and lf > lr then
follow around obstacle on previous rank
next loop

end

else if in rectangular region and lr < l̂r then
move forward
next loop

end
if position certain and in rectangular region and no
obstacle on next rank then

turn onto next rank
next loop

end
find open frontiers in rectangular region
if found then

follow path to closest target rank
next loop

end
stop // done with rectangular region

Algorithm 1: Covering a rectangular region

will progress to the left to start the new rank. This progress
direction is determined by the side on which unknown cells
are located with respect to the target rank.

The process of basic region coverage using boustrophedon
paths and finding next target ranks is iterated until no further
targets are found. Algorithm 1 summarizes this approach.

E. Region Placement

After a region is completed, it is moved by wb − wr to
one side for covering the next area of the environment while
keeping the same dimensions lb and wb. The overlap of at
least one rank width between consecutive regions ensures
that no frontier is missed while switching regions.

In the beginning the rectangular region is moved towards
the right until a maximum distance from the initial start
position is reached or no more open frontiers are found (robot
is at the boundary of the environment). The rectangular
region is then placed to the left of the first region and
successively further left for covering the other side of the
environment.

After rectangular regions have been placed on both sides,
the whole occupancy grid is examined for further open
frontiers and new regions are placed accordingly. In this case
we also allow regions to be oriented horizontally, i.e. the
robot can move along a horizontal boustrophedon path.

F. Perimeter Follow

Once no more open frontiers are found, the robot enters the
second stage where it visits the perimeter of obstacles a sec-
ond time. This stage serves two purposes as far as coverage
is concerned. First, to cover areas next to the obstacles that
might have been missed by the boustrophedon path. Second,
to tightly follow narrow passages or small openings that can
lead to previously unexplored areas that were not uncovered

start:
place rectangular regions to the right
place rectangular regions to the left
find open frontiers in full map

repeat
while open frontier not completed do

place rectangular region at closest target
end
find perimeter frontiers
while perimeter frontier not completed do

follow perimeter of closest target
end
find open frontiers in full map

until no open frontier left
follow path to start pose

Algorithm 2: Overall coverage method

in the open area phase by the boustrophedon path due to it’s
discrete pattern.

Covered cells in the occupancy grid that are next to
obstacle cells and whose localization certainty is above a
certain threshold are marked as a perimeter frontier. We
exclude cells that have low localization certainty since the
chance of successfully navigating there is low.

After finding all perimeter frontiers we use a similar
strategy as for open frontiers. The endpoints of all frontiers
are evaluated according to their path distance from the
current robot position and the closest one is chosen as the
next target. For following the perimeter, the robot may use
dedicated wall sensors and a wall-follow behavior that keeps
the robot close to walls and furniture.

During wall following the robot may explore uncovered
areas. Therefore, after completing all perimeter frontiers, we
return to the first stage where open frontiers in the occupancy
grid are searched for. If open frontiers are found, additional
rectangular regions are placed and covered by the robot.

The process of open area coverage and perimeter follow
is iterated until no further open or perimeter frontiers are left
to cover. At this time the floor coverage is completed and
the robot returns to its start location (see Algorithm 2).

G. Refinements for Practical Application

The coverage algorithm outlined above systematically cov-
ers an environment. For practical reasons, we made several
refinements that make the robot more predictable to an
observer and reduce the amount of time spent in driving
back and forth between distant places.

1) Minimum frontier length: Frontiers that do not meet a
minimum length are discarded. This speeds up progress in
coverage by ignoring small details at the cost of possibly
not fully covering an area. Often, small frontiers are covered
later when following the perimeter of obstacles.

2) Defer coverage of distant frontiers: If the path distance
to an open frontier in the rectangular region becomes too
large, we defer its coverage and continue with the next
region. This happens for example when an obstacle crosses
the entire rectangular region and disconnects areas. Often,
it is more efficient to first cover the connected areas. The
deferred, uncovered areas are visited later when examining
the full occupancy map.

4

3) Active localization: As the robot covers the environ-
ment it keeps track of its position uncertainty. In the event
that the robot becomes too uncertain, it pauses the coverage
planning and returns back to a location where its sensors
obtained good information for localization. After improving
it’s position certainty, the robot then continues with the floor
coverage. This strategy allows the robot to explore deeper
into areas of the environment that have poor localization.

4) Overlapping rectangular regions: When placing the
first rectangular region to the left side, we overlap it with the
very first region such that several columns in the occupancy
grid are covered a second time. The intend is to allow
for some localization error when the robot comes back for
covering the left part of the environment, and to let the
robot traverse areas where it can obtain good information
for localization.

5) Credit for wall follow: Whenever the robot is following
a wall over a longer distance during open area coverage in
the first stage, we give credit and don’t consider that obstacle
segment for perimeter follow in the second stage. Note that
quite often the robot in stage 2 still has to travel close to the
wall again when visiting other perimeter frontiers connected
to the wall.

6) Interleave open area coverage and perimeter follow:
We can perform perimeter follow before completing all open
areas by also bounding the search on perimeter frontiers to
a rectangular region. We found that performing perimeter
follow after completing each side of the environment to be
quite effective since the robot is still in the area it has just
covered.

III. RESULTS

We evaluate our approach to floor coverage using rectan-
gular regions on the Mint robot. Mint is an autonomous and
systematic floor cleaner that sweeps and mops floors [2]. It
uses the Northstar system [31] for measuring directions to
IR spots projected onto the ceiling by Northstar cubes. By
learning the spatial distribution of the IR signals, Mint can
localize itself around a beacon [27]. The localization area
can be expanded by using multiple projector cubes [28].

We ran Mint in two different categories of environments.
One is a standard test room that is under discussion at the
International Electrotechnical Commission (IEC) for evaluat-
ing the navigation performance of robotic vacuum cleaners.
The other one is a set of multi-room home environments.

For evaluation two metrics are employed that were previ-
ously proposed by others [4]: effectiveness as percentage of
area covered, and efficiency as the total distance traveled.

We also compare our coverage strategy to five other
methods that use an a priori map of the environment, assume
perfect sensing and localization, and simulate the coverage
path.

The first four methods are greedy strategies. Algorithm 3
shows the strategy forward which borrows its name from the
fact that the method always tries to move forward first. Turn
left and turn right motions make the robot rotate 90 degrees
and move forward to the next cell. For finding unknown
cells we use the same wave front method as described in
Section II and take obstacle-free shortcuts in the found path.
Algorithm 4 shows a variant which we term U-turn as it tries
to turn twice when turning in one direction. This resembles

if cell in front is unknown then
move forward

else if cell on the left is unknown then
turn left

else if cell on the right is unknown then
turn right

else
find closest unknown cell
if found then

follow path to found cell
else

stop
end

end

Algorithm 3: Greedy strategy forward

if last-turn was left and cell on the left is unknown then
turn left and clear last-turn

else if last-turn ws right and cell right is unknown then
turn right and clear last-turn

else
use Algorithm 3 and remember turn as last-turn

end

Algorithm 4: Greedy strategy U-turn

if orientation is horizontal then
use Algorithm 3

else if cell on the left is unknown then
turn left

else if cell on the right is unknown then
turn right

else
use Algorithm 3

end

Algorithm 5: Greedy strategy horizontal

the pattern of the boustrophedon path. Strategy horizontal
in Algorithm 5 makes the robot follow a horizontal boustro-
phedon path while strategy vertical (analogous to Algorithm
5) moves the robot vertically. It is worth noting that all four
methods make use of the known map only for sensing cells
and can, principally, be also run without an a priori map and
on-board the robot.

As a fifth method we implemented the distance transfor-
mation from Zelinsky et al. [1]. A wave front initiated at
the start location computes the path distance to all cells in
the grid map. The robot then follows the steepest ascent and
covers the cells most distant from the start location first.

All 5 methods first cover the entire environment and then
follow the perimeter of obstacles a second time like in our
coverage method using rectangular regions. This is achieved
by setting all cells next to obstacles back to unknown and
running the coverage method another time. At the end each
method also navigates the robot back to its start position.

Note that the comparison of the five off-line methods to
our coverage method using rectangular regions is not an
apples-to-apples comparison. Our on-line method runs on
the robot and makes use of the refinements in Section II-

5

0 1 2 3 4 5
0

1

2

3

4

X position (meter)

Y
 p

o
s
it
io

n
 (

m
e

te
r)

1

2 3

4

5

67

8

9

10

Lamp

Table

Table

Sofa

TV stand

Chair

Chair

Table

Fig. 3. IEC room with 10 different start positions and orientations.

G while the off-line ones follow the strict rules described
above. Some of the refinements, i.e. minimum frontier length,
credit for wall-follow and interleaving perimeter follow with
open area coverage, create an advantage for the on-line
method while others, i.e. active localization and overlapping
regions, as well as the fact that the robot does not have
access to an a priori map and has to deal with sensor and
localization uncertainties, do not. We believe that, in general,
the comparison to the off-line methods still provides a good
indication of how well our coverage method performs.

For computing the distance traveled by the robot we use
the following cost functions for the five off-line methods.
For moving into the next cell the robot has to traverse a
cell width. For Mint this is wr = 18 cm. When turning, the
robot with wheelbase b = 17 cm can turn in place (cost 1

4
bπ)

or pivot on one wheel (cost 1

8
bπ). We use the average of

the two, thus 3

16
bπ. For the first four off-line methods we

also consider an obstacle cost. When trying to move forward
and the cell in front is an obstacle, the robot has to move
forward for sensing the obstacle and backup afterwards for
allowing to turn. We approximate this by a cost of 10 cm.
The distance traveled by the actual robot is computed by
accumulating the encoder ticks of both wheels, taking the
average, and multiplying it by a fixed scale factor which has
been determined off-line.

A. IEC Room

Fig. 3 shows an occupancy map of an earlier version
of the IEC room for measuring the coverage of a cleaning
robot. Obstacles are drawn from the perspective of the robot,
e.g. for tables and chairs only the legs are visible. There
are 10 start poses. We placed a Northstar beacon in the
room center such that localization is certain over the whole
environment. We also installed a ground truth system using
motion capture cameras that tracks the robot as it moves.

Fig. 4 shows the coverage over time when running Mint
from all 10 start positions. The cleaning time ranges from
21 min to 31 min and the total area covered is between 92 %
and 98 % of the accessible space. The robot trajectory when
started from position 10 is displayed in Fig. 6(a) as observed
by the ground truth system.

When running the five off-line methods on the occupancy
map of the IEC room from position 10, the trajectories in

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time [min]

C
o
v
e
ra

g
e
 (

%
)

Run−01 (96 %, 31 min)

Run−02 (95 %, 29 min)

Run−03 (92 %, 21 min)

Run−04 (93 %, 27 min)

Run−05 (92 %, 23 min)

Run−06 (98 %, 24 min)

Run−07 (95 %, 24 min)

Run−08 (93 %, 21 min)

Run−09 (97 %, 25 min)

Run−10 (97 %, 27 min)

Fig. 4. Coverage over time when running Mint from all 10 start poses.
Final percentage and cleaning time are in parentheses.

Fig. 6(b) to Fig. 6(f) are obtained. Note that for illustration
we added small Gaussian noise onto the trajectory positions
in order to improve visibility of overlapping path segments.

The forward strategy makes the robot move in a spiral
pattern. The U-turn strategy places the boustrophedon pat-
tern horizontally and vertically while the other two greedy
methods cover the space mostly horizontally and vertically.
The distance transformation approach sends the robot out
to the farthest place and then tracks back in waves towards
the start. Note that some of the strategies, e.g. U-turn and
the distance transformation result in trajectories that may not
look predictable to an observer.

Fig. 5 compares the distance traveled of Mint and the
five off-line methods over all 10 start positions. The forward
strategy has the least variable travel distance with a mean of
about 195 meters. The distance transformation varies more
but has a similar average. Note that the distance transfor-
mation does not include the obstacle cost defined earlier
since the method computes a complete path on the a priori
occupancy map. We use the performance of the distance
transformation as a baseline and show the travel distances
of the other methods as factors in parentheses. Our coverage
method using rectangular regions compares relatively well
and uses only about 9% longer travel distances. Note that the
outlier at start position 8 is due to the robot only covering
93 % of the IEC room.

B. Multi-Bedroom Home Environments

We also ran Mint in several multi-room home environ-
ments with up to four Northstar cubes that extend localization
to the larger space of up to 125m2. Fig. 8 shows the
final occupancy map obtained by Mint in one of the home
environments.

A total of 12 runs were carried out in this and other homes.
Using the final map obtained by Mint, we ran our five off-line
methods for comparison. We performed some minor editing
on the maps to ensure that all accessible areas are connected
so that all cells are covered by the off-line methods. For
perimeter follow, the off-line methods only considered the
obstacles discovered in the map during open area coverage.

Fig. 7 shows the performance of all methods. Again we
use the distance transformation as a baseline and compute the
average distance of all coverage methods as a factor. The

6

7

1 2 3 4 5 6 7 8 9 10
170

180

190

200

210

220

230

240

250

Start position

D
is

ta
n

c
e

 t
ra

v
e

lle
d

 (
m

e
te

r)

Forward (1.00)

U−turn (1.04)

Horizontal (1.04)

Vertical (1.01)

Dist transform (1.00)

Mint (1.09)

Fig. 5. Travel distance over all 10 start poses in IEC room for Mint and
the 5 off-line methods. Normalized path lengths in parentheses.

1 2 3 4 5 6 7 8 9 10 11 12
400

600

800

1000

1200

1400

1600

Mint run

D
is

ta
n

c
e

 t
ra

v
e

lle
d

 (
m

e
te

r)

Forward (1.07)

U−turn (1.07)

Horizontal (1.05)

Vertical (1.04)

Dist transform (1.00)

Mint (1.09)

Fig. 7. Travel distance over all 12 Mint runs with factor in parentheses.

trajectories that are only about 9 % longer than the distance
transformation from Zelinsky et al. [1]. Although this com-
parison is not apples-to-apples it provides a good indication
of the performance of our method.

As a future work, we would like to address the problem of
coverage when the underlying occupancy grid is not a global
map but composed of multiple sub-maps anchored to pose
nodes of a graph in a SLAM system.

ACKNOWLEDGMENT

The authors would like to thank Mike Stout, Gabe Brisson,
and Jacob Madden for implementing an earlier version of the
proposed method for systematic floor coverage.

REFERENCES

[1] A. Zelinsky, R. Jarvis, J. Byrne, and S. Yuta, “Planning paths of
complete coverage of an unstructured environment by a mobile robot,”
Int. Conference on Advanced Robotics (ICAR), pp. 533–538, 1993.

[2] J.-S. Gutmann, K. Culp, M. Munich, and P. Pirjanian, “The social
impact of a systematic floor cleaner,” in Workshop on Advanced
Robotics and its Social Impacts (ARSO), Munich, Germany, May 2012.

[3] T. Palleja, M. Tresanchez, M. Teixido, and J. Palacin, “Modeling floor-
cleaning coverage performances of some domestic mobile robots in a
reduced scenario,” Robotics and Autonomous Systems, vol. 58, no. 1,
pp. 37–45, 2010.

[4] S. C. Wong, L. Middleton, B. A. MacDonald, and N. Auckland,
“Performance metrics for robot coverage tasks,” in Australasian Con-
ference on Robotics and Automation, 2002.

[5] Vacuum cleaners for household use, International Electrotechnical
Commission Part 3: Cleaning robots for household use – Dry cleaning
– Methods of measuring performance 60 312-3, 2013, to appear.

[6] I. Ulrich, F. Mondada, and J.-D. Nicoud, “Autonomous vacuum
cleaner,” Robotics and Autonomous Systems, vol. 19, no. 3, 1997.

[7] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation al-
gorithms for lawn mowing and milling,” Computational Geometry,
vol. 17, no. 1, pp. 25–50, 2000.

[8] B. Yamauchi, A. Schultz, and W. Adams, “Mobile robot exploration
and map-building with continuous localization,” in Int. Conference on
Robotics and Automation (ICRA), 1998, pp. 3715–3720.

[9] C. Stachniss, Robotic mapping and exploration, ser. Springer Tracts
in Advanced Robotics. Springer, 2009, vol. 55.

[10] I. Rekleitis, “Simultaneous localization and uncertainty reduction
on maps (SLURM): Ear based exploration,” in Int. Conference on
Robotics and Biomimetics (ROBIO), 2012, pp. 501–507.

[11] H. Choset, “Coverage for robotics–a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1, 2001.

[12] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Int. Conference on Field and Service
Robotics, 1997.

[13] H. Choset, “Coverage of known spaces: the boustrophedon cellular
decomposition,” Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.

[14] W. H. Huang, “Optimal line-sweep-based decompositions for coverage
algorithms,” in Int. Conf. on Robotics and Automation (ICRA), 2001.

[15] E. U. Acar and H. Choset, “Robust sensor-based coverage of unstruc-
tured environments,” in Int. Conference on Robotics and Intelligent
Systems (IROS), 2001, pp. 61–68.

[16] E. U. Acar, H. Choset, and J. Y. Lee, “Sensor-based coverage with
extended range detectors,” Transactions on Robotics, vol. 22, no. 1,
pp. 189–198, 2006.

[17] E. Garcia and P. Gonzalez de Santos, “Mobile-robot navigation with
complete coverage of unstructured environments,” Robotics and Au-
tonomous Systems, vol. 46, no. 4, pp. 195–204, 2004.

[18] S. C. Wong and B. A. MacDonald, “A topological coverage algorithm
for mobile robots,” in Int. Conference on Robotics and Intelligent
Systems (IROS), 2003, pp. 1685–1690.

[19] J. W. Kang, S. J. Kim, M. J. Chung, H. Myung, J. H. Park, and S. W.
Bang, “Path planning for complete and efficient coverage operation of
mobile robots,” in Int. Conference on Mechatronics and Automation
(ICMA), 2007, pp. 2126–2131.

[20] H. Myung, H.-m. Jeon, W.-Y. Jeong, and S.-W. Bang, “Virtual door-
based coverage path planning for mobile robot,” Advances in Robotics,
pp. 197–207, 2009.

[21] H. H. Viet, V.-H. Dang, M. N. U. Laskar, and T. Chung, “BA*:
an online complete coverage algorithm for cleaning robots,” Applied
Intelligence, pp. 1–19, 2012.

[22] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of contin-
uous areas by a mobile robot,” in Int. Conference on Robotics and
Automation (ICRA), 2001, pp. 1927–1933.

[23] ——, “Spiral-STC: An on-line coverage algorithm of grid envi-
ronments by a mobile robot,” in Int. Conference on Robotics and
Automation (ICRA), 2002, pp. 954–960.

[24] R. Mannadiar and I. Rekleitis, “Optimal coverage of a known arbitrary
environment,” in Int. Conference on Robotics and Automation (ICRA),
2010, pp. 5525–5530.

[25] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Optimal complete terrain
coverage using an unmanned aerial vehicle,” in Int. Conference on
Robotics and Automation (ICRA), 2011, pp. 2513–2519.

[26] C. Das, A. Becker, and T. Bretl, “Probably approximately correct
coverage for robots with uncertainty,” in Int. Conference on Robotics
and Intelligent Systems (IROS), 2011, pp. 1160–1166.

[27] J.-S. Gutmann, E. Eade, P. Fong, and M. Munich, “Vector field SLAM
– localization by learning the spatial variation of continuous signals,”
Transactions on Robotics, vol. 28, no. 3, pp. 650–667, 2012.

[28] J.-S. Gutmann, D. Goel, and M. Munich, “Scaling vector field SLAM
to large environments,” Intelligent Autonomous System (IAS), vol. 12,
pp. 89–100, 2013.

[29] E. Eade, P. Fong, and M. E. Munich, “Monocular graph SLAM with
complexity reduction,” in Int. Conference on Robotics and Intelligent
Systems (IROS), Taipei, Taiwan, October 2010, pp. 3017–3024.

[30] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of robot motion: theory, algorithms,
and implementations. MIT press, 2005.

[31] J.-S. Gutmann, P. Fong, L. Chiu, and M. Munich, “Challenges of
designing a low-cost indoor localization system using active beacons,”
in Int. Conference on Technologies for Practical Robot Applications
(TePRA), 2013.

8

