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Abstract— There has been considerable interest in producing
grasping platforms using non-invasive, low bandwidth brain
computer interfaces(BCIs). Most of this work focuses on low
level control of simple hands. Using complex hands improves
the versatility of a grasping platform at the cost of increasing
its complexity. In order to control more complex hands with
these low bandwidth signals, we need to use higher level
abstractions. Here, we present a user interface which allows the
user to combine the speed and convenience of offline preplanned
grasps with the versatility of an online planner. This system
incorporates a database of pre-planned grasps with the ability
to refine these grasps using an online planner designed for
arbitrarily complex hands. Only four commands are necessary
to control the entire grasping pipeline, allowing us to use a
low cost, noninvasive commercial BCI device to produce robust
grasps that reflect user intent. We demonstrate the efficacy of
this system with results from five subjects and present results
using this system to grasp unknown objects.

I. BACKGROUND AND RELATED WORK

In this work, our goal is to build a shared-control system

for assistive robotic grasping for complex hands that is

designed to work with a brain computer interface (BCI).

Grasping objects is an important component of many ac-

tivities of daily living that are problematic for individuals

with upper limb mobility impairments. By creating a robust

system for shared control of a robotic assistant, we can

enable impaired individuals to improve their quality of life.

Control of a robot using BCI signals is a difficult problem

spanning many modalities and domains. Here we provide

a brief overview of some of the work done in controlling

manipulators and grippers using electrophysiological signals

and BCI devices. For a more complete review see [1].

In Vogel et al. [2], the authors demonstrated online trajec-

tory control of a robotic manipulator using the BrainGate

cortically implanted electrode in an immobilized subject.

While this was an impressive achievement, it required an

invasive device capable of recording a large number of high

quality signals.

Other work has established control over manipulators

using less invasive, more commonly available interfaces.

One such interface is electromyography (EMG) signals from

forearm muscles. Shenoy et al. [3] used forearm EMG to

perform basic pick and place tasks. Other authors [4], [5], [6],

[7], [8] have used forearm EMG signals to switch a robotic

hand between discrete shapes for grasping and manipulating.

Forearm EMG signals are only available to patients who

retain control over their arms, which is not the case for

many patients with impaired mobility. A larger population
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Fig. 1. A user of our BCI interface controlling the system. The subject
wears an Emotiv Epoc EEG headset which is used to detect facial gestures
that control the system. A point cloud is obtained by a Microsoft Kinect and
used to detect the identity and position of the target object. Then the user
uses the EEG headset to guide a grasp planning interface to find a good
grasp for the object, and the grasp is sent to our robotic grasping platform
for execution.

of patients maintain control over facial and head muscles,

therefore various authors have proposed control schemes

using face and head EMG signals to control robotic arms

and grippers [9], [10], [11]. Eye gaze direction is also usually

preserved and has been used to control 2D arm position and

gripper opening and closing [12].

Some work has focused on a higher level, goal oriented

paradigm which reduces the burden of controlling the robot

on the user [13]. In [14], electroencephelography (EEG)

signals were used to select targets for a small humanoid

grasping platform. Similarly, Waytowich et al. [15] used EEG

signals to grasp and place objects using 4-DOF Stäubli robot.

Bryan et al. [16] presented preliminary work extending this

approach to a grasping pipeline on the PR2 robot. Ciocarlie et

al. [17] introduced a human-in-the-loop interface for grasping

with the PR2.

In order to be useful, a BCI interface to grasping and

manipulation needs to be placed in a greater context for

controlling the high level goals of the robot. Such high level

paradigms are beginning to emerge [18], [19].

However, in spite of this broad interest in developing

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3216



Fig. 2. The user interface for the semi-autonomous grasp planning in the
Online Planner phase. The user interface is comprised of three windows:
The main window containing three labeled robot hands and the target object
with the aligned point cloud, the pipeline guide window containing hints
for the user to guide their interaction with each phase of the planner, and
the grasp view window containing rendering of the ten best grasps found
by the planner thus far. The object shown in this figure is a novel object
that the planner does not have a model of (see Fig. 5(b)). The point cloud
allows the user to visualize the fit of the model and act accordingly.

BCI interfaces for grasping and manipulation, most work

has focused on simple grippers. In previous work [1], we

demonstrated the first end-to-end shared autonomy grasping

system for complex hands. This prototype system allowed a

user to perform the basic interactions necessary for grasping

an object. In this paper we extend our prior work in a number

of ways:

• Introducing a more flexible interface that reduces the

effort required by the user

• Presenting user studies of our system to measure the

efficacy and ease of use of the interface

• Integrating the planner with a database of preplanned

grasps from a fully automated grasp planner

• Adding the ability to add semantically relevant grasps

based on object functionality even though they may not

be geometrically stable

• Allowing the use of both the pre-planned grasp database

and the online grasp planner depending on which best

reflects the users intent.

II. GRASPING PIPELINE

In assistive robotics, only low dimensional, noisy signals

are available from most patient populations with significant

impairments. Therefore, assistive robotics systems typically

use only simple grippers and exercise simple control algo-

rithms over them. In order to control a high dimensional

robotic manipulator using a low dimensional, noisy signal

you need a robust, high level interface. Using more complex

and higher DOF robotic hands increases the versatility of the

system but at the cost of higher complexity for control.

A. User Interface

A user of our interface can be seen in Fig. 1. The subject

is wearing an Emotiv Epoc EEG headset which is used to

control the system through facial gestures. A kinect mounted

behind the computer monitor obtains a point cloud that is

used to identify and localize the target object. The user

interacts with a simulation environment to plan grasps for

the object, which are then carried out by our robotic grasping

platform.

The interface for grasping is shown in Fig. 2. This in-

terface is composed of the simulation window, the pipeline

guide window, and the grasp view window. In the main

window, the user is able to interface with a simulated world

where they visualize and control the grasp planner. Below it,

the pipeline guide window shows the user what stage of the

grasping process they are in and what the commands do in

the current stage. On the bottom, the grasp view window

contains smaller visualizations of the ten best grasps the

planner is aware of. We have found that ten is the maximum

number that we can effectively fit on screen and provides a

reasonable number of choices.

The main window contains three renderings of the robot

hand and a rendering of the target object. Each of the robot

hand renderings are distinguished by their level of opacity.

The current grasp hand is completely opaque, the input

hand has an opacity of 80%, and the final grasp planner

indicator hand has an opacity of only 50%. The purpose of

the input hand is to allow the user to visualize and control

the desired approach direction that is used as part of the

grasp planning process. The current grasp hand allows the

user to visualize a particular grasp for the object and shows

the user their current choice. The grasp planning indicator

exists only while the planner is running and intermittently

shows the user what grasps the grasp planner is currently

considering. This shows the user how their input is effecting

the planner in real time. The main window also contains the

x and z axis guides which show the user how their input will

affect the approach direction of the input hand as well as

a decimated point cloud that allows the user to understand

how well the aligned object used by the planner represents

the data in the real world. In the example in Fig. 2, a known

object is aligned to a novel object, and this user interface

allows the user to grasp the object even in the absence of an

exact model. These objects can be seen in Fig. 5(b)

One of our observations in our previous work was that

although the grasp planner sometimes produced grasps which

were unreliable, the user was able to distinguish reliable from

unreliable grasps very accurately and achieve a 100% success

rate in grasping objects in our preliminary tests. Using this

insight, we have integrated a database of grasps with our
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Fig. 3. This handle grasp for the all bottle is not a force closure grasp,
but when chosen by the subjects in our experiments it succeeded 100% of
the time. Adding a grasp database allows such semantically relevant grasps
to be used in our system.

previous work in a way that allows the user to quickly

select among them and further refine them to stable grasps

as necessary. Some of the grasps in this database are from an

automated planner, while some grasps have been hand tuned

to have a semantic meaning, such as grasping a container by

its handle such as that in Fig. 3. These grasps may not be

stable in the force closure sense but may reflect higher level

knowledge about affordances for the object. The grasps in

the database are ranked such that grasps with a semantic

meaning come first while grasps with a high stability as

measured by their ability to resist force perturbations follow.

This approach melds the approaches taken in our previous

work in [20] and [21].

B. Pipeline Details

The grasping pipeline, illustrated in Fig. 4, is divided

up into seven stages: object identification and alignment,

database planning, planner initialization, online planning,

grasp review, confirmation, and grasp execution, which are

described below. This pipeline is controlled using only four

facial gestures. The use of these gestures in each stage of

the pipeline is explained in Table I. In general, gesture 1

serves as a ”no” and in stages is used to indicate that the

current grasp is not suitable and proceed to the next grasp.

Gesture 2 indicates a ”yes” and is used to allow the user to

proceed to the next stage. False positive readings of these two

gestures have strong consequences, and are best associated

with a concise and strong facial gesture such as closing

one eye or clenching the jaw. Gestures 3 and 4 always

control the approach direction of the input hand relative

to the object. These gestures can be maintained to generate

continuous motion of the hand over two degrees of freedom

and therefore are best associated with gestures that can be

contracted for several seconds without too much twitching

or fatigue.

1) Object Recognition: For a complete description of the

vision system used in this paper, see [22]. Briefly, this system

Phase Gesture 1 Gesture 2

Object Recognition Rerun Recognition Database Planning

Database Planning Next Grasp Planner Initialization

Planner Initialization Confirm Grasp Online Planning

Online Planning Next Grasp Review Grasps

Review Grasps Next Grasp Confirm Grasp

Confirm Grasp Restart Planner Execute Grasp

Execute Grasp Review Grasps N/A

TABLE I

A DESCRIPTION OF THE USER INTERFACE AS THE USER PROGRESSES

THROUGH PHASES OF THE PIPELINE.

uses RANSAC on features derived from oriented pairs of

points to find potential correspondences in a hash table from

points in the scene to points in a known set of objects.

Fig. 5(a) shows a correctly chosen model aligned with the

range scan taken with a Microsoft Kinect. This method is

robust and fast enough to demonstrate the efficacy of our

BCI-grasping pipeline. Even when no exact model is in the

database, a reasonable model can be well aligned to the

object, as seen on the right side of Fig. 5(a).

2) Database Planning: Once the object is identified, the

planner loads a set of pre-planned grasps from a database.

These grasps are presented to the user in the grasp view

window. Gesture 1 allows the user to browse through the list

of grasps and visualize them in the larger main window. The

user is able to chose the grasp that best reflects their intent,

and then signal acceptance of this grasp with Gesture 2.

3) Planner Initialization: Having selected a grasp from

the initial set of pre-planned grasps, the user can chose to

either execute this grasp using Gesture 1, shortcutting the

grasp planning phase and proceeding to the grasp Confirm

Grasp phase, or they can run an automated grasp planner

using the selected grasp as a guide using Gesture 2. By

choosing one of the grasps from the database and skipping

straight to the confirmation phase, the user can significantly

reduce the amount of effort required to grasp an object. To

choose grasp n, only n+4 inputs are required.

4) Online Planning: If the user needs to refine their

chosen grasp, they can elect to start the online planner.

The planner generates a starting pre-grasp pose by moving

the input hand of the main window to mirror the desired

grasp after the hand has been opened and withdrawn several

centimeters along a pre-set approach direction. The planner

then runs, replacing the grasps in the grasp view window

as new solutions are found that more closely adhere to the

desired approach direction demonstrated by the input hand.

The user is able to control the desired approach direction by

moving the hand along the circular guides demonstrated by

Fig. 2 using Gesture 3 to rotate around the z axis of the object

and Gesture 4 to rotate around the x-axis of the object. As

in the Initial Grasp Review phase, Gesture 1 allows the user

to browse through the current list of grasps, while Gesture

2 signals acceptance of a particular grasp.

For a detailed discussion of the Online Eigengrasp Grasp

Planner used in this work, see [21]. Briefly, the planner uses
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Fig. 4. The phases of our grasping pipeline. The purple diamonds reflect decision points in the pipeline that require input from the user. If the user
chooses grasp n from the database, n+4 user inputs are required. If none of the grasps are suitable, the online planner can be invoked with a few simple
inputs to refine one of the grasps further.

a two stage process to find a set of grasps for a particular

object. In the first stage, simulated annealing to optimize a

cost function based on the distance from pre-planned contact

points on the fingers to the target object and the normal

between the projection of those points to the object. The

optimization process is constrained to remain roughly in the

neighborhood of an example pose, where for each dimension

of the example pose a confidence variable controls how far

the planner is allowed to deviate from the example pose. The

example pose is set by the input hand in the main window. As

the user moves the input hand, the planner produces solutions

that track its motion.

In order to make this approach computationally tractable,

a lower dimensional linear subspace for the joint postures

of the hand is explored by the first stage of the optimiza-

tion process. This dimensionality reduction is motivated by

computational motor control experiments that show that 80%

of the motion of the human hand in the pre-shaping phase

of grasping can be explained by only two dimensions [23],

[24]. In the second phase of planning, promising grasps from

the simulated annealing phase are refined by approaching the

object and closing the fingers along a prespecified trajectory

until each finger makes contact, potentially leaving the

postural subspace explored during the simulated annealing

phase to conform to the object.

5) Review Grasps: With the planner stopped and the list

of grasps stable, the user is able to continue browsing through

the list using Gesture 1, or continue to the final confirmation

phase using Gesture 2.

6) Confirm Grasp: Having viewed the possible grasps and

selected the best possible option, the user may use Gesture

1 to restart the planner if they reject all of the grasps or use

Gesture 2 to execute the selected grasp.

7) Execute Grasp: In this phase, the planner attempts to

find a path to the planned grasp. If the planner is unable

to find a path due to kinematic constraints of the arm or

collisions with the environment, the main window interface

flashes black briefly to signal the user that the planner has

failed. The user is then able to return to the Review Phase

using Gesture 1. Once in the Review Phase the user will be

able to select a different grasp or restart the planning process

from the Online Planning phase.

III. EXPERIMENTS

A. Task

In order to test the efficacy of our system, we asked five

subjects to grasp and lift three objects using an Emotiv Epoc,

a low cost, noninvasive commercially available EEG headset,

as input. Two of the objects, a flashlight and a detergent

bottle, were in the database and used for the vision system

and one object, a small juice bottle, was novel. Each subject

was asked to perform two grasps, one from the top of the

object and one from the side of the object. Each grasp was

repeated three times. For the novel object, subjects were

simply asked to grasp the object five times, irrespective of

direction.

B. Training

The Emotiv Epoc EEG headset uses 14 electrodes sam-

pled at 128 hz with 16 bits of resolution. The signals are

communicated over Bluetooth to the Cognitiv and Expressiv

classifier suites from Emotiv. In this work, we use four

gestures. Gesture 1 is the jaw clench classified by the

Expressiv classifier. We have trained the Cognitiv suite on

three signals, right eye winking as gesture 2, left side jaw

clenching as gesture 3, and eyebrow raising as gesture 4.
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(a) Point clouds with RGB texture from the vision system. On the left is a
flashlight along with its aligned point cloud in white. On the right is the point
cloud of a juice bottle along with the best model from the vision system’s
object database, a shampoo bottle, in white.

(b) The juice bottle on the left is used as a novel object in this
experiment. In Fig. 2 and Fig. 5(a), we show the model of the
shampoo bottle aligned with the point cloud data from the juice
bottle. Although the objects are relatively different in size and
shape, the alignment found by the vision system is sufficient to
run the grasp planner on the bottle.

Fig. 5.

Subjects were trained to use the Emotiv Epoc in four fifteen

minute sessions. In the first two sessions, the classifier built

into the Cognitiv Suite of the Emotiv Epoc software was

trained on the three facial expressions used in the experiment.

In the second two sessions, the subject was asked to perform

the task in the virtual environment without executing the final

grasp on the actual arm.

C. Grasping Platform

Our grasping platform is composed of a 280 model Bar-

rettHand, a Stäubli TX60L 6-DOF robotic arm, and a Kinect

sensor. We use the OpenWAM driver for realtime control of

our BarrettHand and the OpenRave CBiRRT planner [25] for

arm motion planning.

D. Results

The results of the experiments are reported in Table II.

For each subject, we report the mean time to completion

and fraction of successful attempts for each grasp. Time

to completion is measured from the end of the object

identification phase to the beginning of the execution

phase, as this represents the time taken to plan the

grasp. Overall, the average planning time was 104

seconds on the known objects and 86 seconds on the

unknown object. The average success rate was 80%,

demonstrating that this system is efficacious in allowing

the user to plan and execute a reasonable grasp for these

objects. A video of the grasping process can be found at

http://robotics.cs.columbia.edu/jweisz/bciGraspingIROS2013.

After the experiment, subjects were asked to describe their

discomfort during the experiment and their level of control.

Subjects reported little discomfort, but were frustrated with

the difficulty of getting the Epoc to recognize their intended

actions, especially with false negatives making it difficult

to continue to the next stage of the pipeline at will. In

spite of this frustration, subjects were able to complete the

task. This demonstrates that the subjects tolerated the system

reasonably well and felt that it gave them enough control to

perform the task.

These results show that we have developed an effective

shared control grasp planning system for complex hands. It is

notable that grasps from the side demonstrated significantly

more robustness and lower planning times than grasps from

above. The grasp database only contained one grasp from

above for each of these objects, and this grasp was a fingertip

grasp which may be sensitive to pose estimation error, which

resulted in longer planning times while the subjects searched

for a better grasp. In general, grasping roughly cylindrical

objects such as the top of the detergent bottle from above

is somewhat problematic for the BarrettHand due to its

configuration and the low friction of its fingertips. In contrast,

subjects were able to find a reasonable grasp from the side

of the object among the grasps pulled directly from the

database. The difference in planning times reflects the benefit

of integrating the off-line planning phase.

IV. DISCUSSION

In this work, we demonstrated our improved interface

for planning grasps for complex hands in a simulator. We

integrated this interface with a grasp database that allows

both semantically relevant and geometrically stable grasps

to be used. This produced a working system that our user

study showed enabled users to reliably achieve good grasps

in a reasonable amount of time.

By integrating a preplanned and online human-in-the-loop

approach, we have produced a system that is flexible and
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Grasp Subject Successes Mean time (s)

Flashlight Side

1 3/3 125
2 3/3 53
3 2/3 103
4 3/3 95
5 3/3 82

Flashlight Top

1 2/3 132
2 2/3 75
3 2/3 96
4 3/3 93
5 2/3 125

Detergent Bottle Side

1 3/3 75
2 3/3 57
3 3/3 106
4 2/3 82
5 3/3 75

Detergent Bottle Top

1 1/3 151
2 2/3 114
3 2/3 142
4 2/3 161
5 3/3 145

Novel Bottle

1 3/5 132
2 4/5 63
3 4/5 95
4 4/5 91
5 4/5 50

TABLE II

RESULTS FROM EXPERIMENTS

usable. Although we used the Emotiv Epoc as our input to

the system, the system itself is agnostic as to the input device

used and the binding of each gesture, as long as four input

signals can be derived from it. We have begun integrating

the single electrode BCI device described in [26] as a less

invasive, even lower cost alternative to the Epoc.

The role of this system is to add flexibility to a more

general assistive robotics environment such as that proposed

in [18]. In future work we will integrate with such a system

to produce a full assistive robotics environment for use on

a mobile manipulator. A full system will also integrate the

ability to add grasps to the database online and tag them with

semantic meanings as applicable. A flexible grasp planning

system such as the one we have demonstrated is a key step

towards building a flexible assistive robotic manipulator.
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