
Probabilistic Place Recognition with Covisibility Maps

Elena Stumm1,2, Christopher Mei1 and Simon Lacroix1

Abstract— In order to diminish the influence of pose choice
during appearance-based mapping, a more natural repre-
sentation of location models is established using covisibility
graphs. As the robot moves through the environment, visual
landmarks are detected, and connected if seen as covisible.
The introduction of a novel generative model allows relevant
subgraphs of the covisibility map to be compared to a given
query without needing to normalize over all previously seen
locations. The use of probabilistic methods provides a unified
framework to incorporate sensor error, perceptual aliasing,
decision thresholds, and multiple location matches. The system
is evaluated and compared with other state-of-the-art methods.

I. INTRODUCTION

The desire for long-term, autonomous navigation in un-

mapped environments is becoming increasingly important for

a variety of mobile robotic platforms and applications [1],

[2]. In order to make this task feasible, the navigation

platform must be extremely robust to errors, even in un-

expected, dynamic, and possibly self-similar environments.

This paper focuses on visual place recognition for mobile

robots, building on the works of [3], [4] by establishing

generative location models using covisibility maps.

Ideas inspired from the text-document retrieval field

(see [5] for an overview) are used to find previously seen

locations which match a query observation. Locations are

represented by a bag-of-words model, with words provided

by quantized visual features and places used analogously

to documents, as is common in recent literature [4], [6],

[7], [8]. However, unlike typical pose-based implementations

which rely on single-image location models, relevant “virtual

locations” are retrieved as subgraphs from a covisibility

graph at query time, therefore dubbed a dynamic bag-of-

words approach [3]. This covisibility graph is constructed

as the robot explores the environment, by noting which

landmarks are observed together in a graph structure. The

basic mapping concept is depicted in Fig. 1. By working

with this covisibility graph, a more truthful, continuous rep-

resentation of the environment is used, rather than a discrete

selection of arbitrary poses from the robot’s trajectory. Places

are now defined using direct properties of the environment

(landmarks), and become less dependent on variations in

trajectory while eliminating the problem of pose selection.

Once the virtual locations are retrieved, a probabilistic

framework is used to identify any potential matches between

the query and previously seen locations. Development of

1E. Stumm, C. Mei & S. Lacroix are with the Robitics and Interac-
tions (RIS) group, LAAS-CNRS, Toulouse, France {stumm, cmei,

simon} at laas.fr
2E. Stumm is also with Université de Toulouse III - Paul Sabatier,
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Fig. 1. As the robot moves, it makes observations, detects landmarks, and
notes which ones were seen together in a graph structure. Here you can
see a simple example of two steps as a robot moves forward through the
environment, and the resulting covisibility graph.

a proper generative model is a key factor for providing

useful results, especially in challenging environments. In

the context of performing loop-closure during SLAM, an

incorrect match is capable of causing large mapping errors

[9], so therefore the described framework must have a very

low false positive rate. In this paper, a rigorous probabilistic

method allows for inherent confidence thresholds, and can

handle problematic situations such as self-similar locations

(perceptual aliasing) by understanding the likelihood of scene

elements. The method developed here can additionally cope

with erroneous maps which may contain more than one

instance of the same location (for example if previous place

recognition fails), due to the fact that it does not need to

normalize probabilities across all previously seen locations.

This method can take advantage of the covisibilty structure

to asses several reprsentations of the same scene in order

to find the best match and increase precision and recall

characteristics.

The next section discusses the relevant background re-

search, and current state-of-the-art work. Then the following

two sections provide details on the covisibility framework

and probabilistic approach. Finally, some test results and

comparisons with previous work will be introduced.

II. RELATED WORK

In recent years, appearance-based loop-closure and map-

ping has been brought to the forefront since the introduction

of visual bag-of-word techniques [6] and the popular FAB-

MAP (Fast Appearance-Based Mapping) implementations

[1], [4]. In these, an image is represented by a set (or bag)

of quantized local image descriptors (or words) belonging

to a predefined dictionary. This representation is easy to

work with and fairly robust in the presence of lighting

changes, view-point changes, and dynamic environments.

Relevant images can be retrieved quickly using an inverted

index system [6], and possibly matched to a query using

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4158



word-frequency scoring techniques such as TF-IDF (Term

Frequency - Inverse Document Frequency [6]) [3], [7], [8]

or probabilistic models [4], [10].

The formulation of a generative model for place recogni-

tion in FAB-MAP [4] is fundamental work on the topic. This

allows for a natural and intuitive way to incorporate dynamic

environments and perceptual aliasing, without needing to

tune extra parameters to reduce false positives. Additionally,

decision thresholds for matching locations become clear

probabilities. Discriminative models have also been shown

to produce good results without knowledge of hidden vari-

ables [10], however at the risk of unclear thresholds and

heavy reliance on training data.

Inclusion of such place recognition techniques has en-

abled significant improvements in long-term localization and

mapping, employed in datasets up to distances of 1000 km,

containing drastic lighting changes and many self-similar

locations which cause perceptual aliasing [1], [2].

Impressive as these systems are, there is still room for im-

provement in terms of how locations are modeled. Abstrac-

tion from single image location models has been addressed in

the work of [2], [3], [11], [12]. Location models built using

specific poses in the robot’s trajectory imply that the robot

must visit the same arbitrary pose in order to recognize any

relevant loop-closures. CAT-SLAM [2] moves towards a con-

tinuous representation, but requires local metric information.

In [11] and [12] comparisons are made with sequences based

on time, under the assumption that the speed remains fairly

consistent. The work of [3] dynamically queries location

models as cliques from a covisibility graph of landmarks

which are connected if seen together. These location models

are then based on the underlying environmental features,

rather than the discretization of the robot’s trajectory in the

form of individual images, or sequences of images in time.

This paper describes an appearance-based method in

which dynamic virtual locations are retrieved as cliques

from a covisibility graph of landmarks, and then a Bayesian

framework is used to asses place recognition.

III. THE COVISIBILITY FRAMEWORK

This section outlines how the environment is represented

as a graph of visual landmarks, where covisibility defines

connectivity. Subsequently, the notion of virtual locations is

presented, with a description of how they are retrieved from

the graph at query time. These concepts originate in the work

of [3], with an explanation given here for completeness.

Note that one significant difference in this work is that

overlapping virtual locations are now permissible, giving

even further abstraction from discrete location choice. Eval-

uation of overlapping virtual locations is feasible because

of the probabilistic framework which will be discussed in

section IV-B.

A. Creating a Covisibility Map

A covisibility map, Mt, is an undirected graph, with nodes

representing landmarks (distinct visual features), and edges

representing covisibility between each landmark.

Fig. 2. The covisibility map, Mt, is shown on the left, and the current
query observation, Zq on the right. The figure also depicts which word
(represented as A,B,C,D or E) is associated with each landmark, ℓi.

As each image is processed, a set of visual features, ℓi,

are detected and represented by a vectorial descriptor such

as SIFT [13] or SURF [14]. The landmark is furthermore

associated with a quantized visual word, which is taken by

the closest match in a pre-trained visual dictionary, V [6].

Thus, each image provides a set of words, which represent an

observation Zt, which is able to maintain some invariance to

view-point and lighting changes. Between subsequent image

frames, some features are tracked, and then represented as

the same landmark, ℓi. A simple example of a covisibility

map and query observation can be seen in Fig. 2.

The current map, Mt, is updated as information from

each new image is processed. The map is implemented as

a sparse clique matrix, Ct, with each column representing

an observation Zt, and each row representing a particular

landmark, ℓi. Therefore the value in row r, and column c

indicates whether or not landmark ℓr was seen in observation

Zc. An adjacency matrix, At, for the covisibililty graph can

simply be found by taking At = H(CtC
T
t ) (with H(·)

being the element-wise unit step function), but is not needed

explicitly in this work.

In addition to these matrices, an inverted index between

visual words and observations is maintained, for efficient

look-up during the creation of virtual locations [6].

In the simple example of Fig. 2, if at time k there are 4 ob-

servations (Z1 = {ℓ1, ℓ2, ℓ3},Z2 = {ℓ2, ℓ4},Z3 = {ℓ4, ℓ5},
and Z4 = {ℓ5, ℓ6}), then the clique matrix, adjacency matrix,

and inverted index are given by:

C4 =
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1 0 0 0
1 1 0 0
1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1
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
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


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1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 0 0 0
0 1 0 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

















A : {Z1}
B : {Z1,Z4}
C : {Z1,Z2}
D : {Z2,Z3}
E : {Z3,Z4}

B. Retrieving Relevant Virtual Locations

At query time, virtual locations similar to the query image

need to be retrieved from the covisibility graph, in order

to be compared as a potential match. The idea is to find

any clusters of landmarks in the map, which may have

generated the given query. Because new virtual locations

are drawn from the graph for each specific query, they are

more closely linked to the actual arrangement of landmarks

in the environment than individual images would be. This

provides a more adaptable solution to place recognition,

compared to methods which rely on pose-based location

models. Defining places using covisibility avoids the need

for time-based image groupings which rely on prior motion

knowledge [11] or more exhaustive key frame detection [15].
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Fig. 3. Given the query Zq = {C,D,E} and covisibility map Mt (both
shown in Fig. 2), will produce four virtual locations, L1, L2, L3 & L4.

The process of finding relevant virtual locations will now

be described, with the aid of Figures 2 and 3, and the simple

example introduced in section III-A:

• Using the inverted index, a list of observation cliques

(columns in Ct), containing words from the current

query observation, Zq , can be found. In the example,

Zq = {C,D,E}, and so the relevant observation

cliques are {Z1,Z2,Z3,Z4}.

• Then, these clusters are extended to strongly connected

cliques (sharing a certain percentage of covisible land-

marks). This covisibility parameter represents the proba-

bility of re-observing landmarks between images. Refer

to [3] for a discussion on the influence of this parameter.

This will extend clique Z2 to Z3, clique Z3 to Z2 &

Z4, clique Z4 to Z3 (which all co-observe 50% of their

landmarks), and Z1 with nothing (because it doesn’t

share enough landmarks with any other cliques).

• The result is sets of landmarks/words, which in

turn, provide models for a set of virtual locations,

{L1,L2, . . . ,LM}. Four virtual locations are produced

for the given example, and are shown in Fig. 3.

• Note that this set of virtual locations provides a direct

match to the query, despite the fact that those landmarks

were never directly covisible in any observation.

IV. THE PROBABILISTIC FRAMEWORK

Once found, each virtual location needs to be evaluated,

to determine if it matches the query or not. This is done

by calculating the posterior probability under a Bayesian

framework. Developing a probabilistic model is critical for

providing system reliability. Since any incorrect matches

can cause fundamental errors in the map [9], a certain

level of confidence is required when making decisions about

data associations. Obtaining the corresponding probabilities

through a generative model provides the means to do this,

while naturally incorporating aspects such as sensor error,

perceptual aliasing, and dynamic environments. Rather than

assuming a fixed number of independent and discrete loca-

tions in the world ([1], [2], [3], [7]), the model described

here allows overlapping and duplicate locations.

The posterior probability of a virtual location can be found

using Bayes’ rule:

P (Li|Zq) =
P (Zq|Li)P (Li)

P (Zq)
(1)

where Li is a particular virtual location, and Zq is the query

observation given by a set visual words {z1, z2, . . . , zN}.

�
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����

�

�

Fig. 4. Graph of the observation model, with observed variables shaded
in gray. A location consists of a set of visual elements en, which are then
observed by an imperfect sensor, giving measurements zn.

The result can be used to infer whether a location has

already been observed, thus determining if loop closure

has occurred. A loop closure event can be used to gather

semantic information and provide data association between

visual features.

For classification tasks, only the class which maximizes

the posterior is desired, meaning that normalization is not

required [5]. However, in our application, a normalized

probability is needed for making decisions with a high

degree of certainty. In addition, there may be more than

one virtual location which matches the query; for instance

if a previous loop closure was missed. Thus, simply finding

the maximizing argument is not enough, adding significant

complexity to the problem, as calculating the normalization

term is computationally expensive and requires care to ensure

samples are representative.

The following sections will now outline the calculation of

each probability in (1); section IV-A will cover the likelihood

term, section IV-B will cover the normalization term, and

section IV-C will cover the prior.

A. Calculating the Observation Likelihood, P (Zq|Li)

The query observation, Zq , is represented as a binary

word-existence-vector of length equal to the number of words

in the visual dictionary, V:

〈zq
1
, zq

2
, . . . , zq

|V|
〉

And the observation of a virtual location, ZL, is represented

analogously as:

〈zL

1
, zL

2
, . . . , zL

|V|
〉

Note that the negative information (lack of a word) is

explicitly considered; however frequency information (word

count) is removed from the observations. Ignoring word

frequencies is justified by the fact that features tend to appear

in bursts, where most of the information is provided by the

presence (or lack of presence) of the word, rather than the

number of occurrences of the word [16].

The observation likelihood is found under a Naive-Bayes

assumption, where the likelihood of each of the individual

visual words, zn, are assumed to be independent given the

virtual location, Li. This reduces the term to a product of

individual word likelihoods given in (2a).

The observation model includes an existence layer for

underlying scene elements, as is also done in [4] (see Fig. 4

for reference). In this case, en is introduced as a hidden

layer, which represents the true existence of scene elements

generated by Li. The observations zn represent (possibly

imperfect) measurements of these underlying scene elements.
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The observation likelihood can therefore be written using

the sum rule of probability as (2b), which simplifies to

(2c) under the assumption that detection is independent of

location: P (zn|en=α,Li) = P (zn|en=α) (see Fig. 4) [4].

P (Zq|Li) ≈

|V|
∏

n=1

P (zqn|Li) (2a)

=

|V|
∏

n=1

∑

α∈{0,1}

P (zqn|en=α,Li)P (en=α|Li) (2b)

=

|V|
∏

n=1

∑

α∈{0,1}

P (zqn|en=α)P (en=α|Li) (2c)

The term P (zn|en=α) represents the sensor detection

probabilities. For example, the false negative probability of

missing an element which exists, P (zn=0|en=1); and the

false positive probability of observing an element which

doesn’t exist, P (zn=1|en=0), can be empirically estimated

using extracted features from representative images.

Finally, the likelihood of a particular element existing in

the location, P (en=α|Li), is estimated from the observation

we have of the virtual location, ZLi
, the sensor model and

prior knowledge about how common the element is [17].

P (en=α|Li) = P (en=α|zL

n) (3a)

=
P (zL

n|en=α)P (en=α)

P (zL
n)

(3b)

=
P (zL

n|en=α)P (en=α)
∑

β∈{0,1}

P (zL

n|en=β)P (en=β)
(3c)

Although the complexity scales with the number of words

in the vocabulary, the sparse nature of observations can be

used to greatly reduce computation in most cases. Note

that the model could be further extended to remove the

conditional independence assumption between words, for

instance by using a Chow-Liu tree as done in [4]. Doing

so would improve results in the presence of slight scene

changes, but for simplicity has not been implemented here.

See [4] for a thorough analysis of such observation models.

B. Calculating the Normalization Term, P (Zq)

Calculation of the P (Zq) term is rarely done in practice,

as most applications only require maximizing the probability,

meaning that normalizing the probabilities is not required.

True probabilities, and therefore normalization, are necessary

for dealing with perceptual aliasing, and making reliable

decisions and data associations. The main difficulty in doing

this lies in the fact that a model is needed for unknown

locations, which we will approximate using location samples.

The approach to estimating this term is to calculate

P (Zq|L̄i) (the likelihood of Zq given any other location),

and then marginalize to find P (Zq):

P (Zq) = P (Zq|Li)P (Li) + P (Zq|L̄i)P (L̄i) (4)

P (Zq|L̄i) is calculated analogously to P (Zq|Li) but using

a set of sample locations from a previously recorded dataset

to estimate L̄i.

This approach is different from that used in other place

recognition frameworks such as FAB-MAP [4]. The differ-

ence is that in other works, probabilities are summed over

all locations in the map, plus an unknown location:

P (L1|Zq) + P (L2|Zq) + . . .+ P (Lu|Zq) = 1 (5)

whereas in this work,

P (Li|Zq) + P (L̄i|Zq) = 1 (6)

for each Li separately. Equation (5) is based on an underlying

assumption that each location is only represented once,

thereby assuming no loop closures will be missed, and that

the map is accurate. As previously mentioned, there may

in fact be more than one match to the query. This can

happen when a previous loop closure is missed – leaving

two or more representations of the location in the covisibility

map, or if there are overlapping virtual locations such as

described in section III-B. In addition, images immediately

surrounding the query do not need to be removed from

consideration as commonly done ([1], [7]), since these local

matches will not steal probability mass from others. Another

benefit of this technique is that probabilities no longer need

to be normalized over all locations in the map, leaving

room for efficiency improvements over other techniques. The

consequences of improper normalization are illustrated at the

end of section V.

C. Calculating the Location Prior, P (Li)

The location prior is estimated without the use of any

motion prediction models. This is in part due to the fact

that this work is meant to be kept robust to unpredictable

movements and kidnapped robot situations. In practice, the

effect of this prior is not especially strong, and it is therefore

not a critical parameter. This is evident when comparing the

order of magnitude of the observation likelihood (a product

of probabilities over thousands of visual words) to that of

a location prior. The weak influence of this term is also

documented in [4]. Therefore most of the prior probability

is assigned to unobserved locations, conservatively favoring

unobserved locations (to avoid false positives). In future

work, other cues could be used to more accurately estimate

the location prior; such as global visual features or additional

sensory information.

V. EXPERIMENTAL EVALUATION

In order to evaluate the performance of the proposed

framework, datasets of image streams tagged with the real

position information are used to investigate precision and

recall characteristics. As the image sequence progresses, the

current image can be extended to its covisible range (in the

same manner as virtual locations are extended) and used as a

query to search for matches within the covisibility map from

the same time step. This method of query expansion provides

more context and suppresses false positives. It is similar to
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Fig. 5. Example images from the Begbroke and City Centre sequences.

concepts used in text and image retrieval [18], but can take

advantage of covisibility to greatly simplify the expansion

process. The results of other approaches (namely [3] and [4])

are used as benchmarks, and therefore evaluation is done here

using datasets from these works.

The image sequence used in the work of [3] will be

referred to here as the Begbroke sequence. It consists of

1 km of outdoor trajectory from a forward facing camera,

with roughly 0.3 m image spacing (see Fig. 5 for example

images). The sequence consists of three loops, and therefore

provides many loop closures. This particular sequence is

relatively difficult for loop-closure-detection, due to a mini-

mal amount of distinguishing features (consisting mostly of

paved paths, grass, and trees).

Urban datasets from [4], referred to as the New College

and City Centre sequences, provide many challenging ex-

amples of dynamic elements and perceptual aliasing. These

two datasets cover approximately 2 km each, with left and

right facing images provided at 1.5 m intervals (see Fig. 5

for example images).

For this evaluation, loop closures are defined to be positive

if within a given radius of the query image (the spanned

distance of the query images for these tests). Precision and

recall are calculated by thresholding the posterior probability

given by (1) and comparing the poses of cliques in the

identified virtual locations with the ground truth. Any virtual

location which contains cliques within the given radius of

ground truth are considered as true positives.

When evaluating the Begbroke sequence, images from

City Centre dataset are used to provide sample locations to

the system. Similarly, during evaluation of the City Centre

sequence, images from the New College dataset are used.

In addition, the visual dictionary provided with the datasets

from [4] is used across all systems. This indicates that

collecting samples and training images that will work in a

variety environments is feasible.

Tests were made using three systems: the one described

in this paper (referred to here as COVISMAP), the Naive-

Bayes implementation of FAB-MAP 1.0 [4], and the dynamic

bag of words system presented in [3]. The precision-recall

results are shown in Fig. 6. In all tests, no data associations

were made between landmarks as a result of loop closures,

local matchings were allowed, and the same samples were

provided to each system. Parameters are kept the same across

different datasets, with the exception of the covisibility pa-

rameter, due to the change in image spacing and orientation

between the two datasets. An example of a query and a

(a) Precision-recall for the Begbroke sequence.

(b) Precision-recall for the City Centre sequence.

Fig. 6. Precision-recall results are shown for the system described in this
paper (COVISMAP), Naive-Bayes FAB-MAP [4], and the dynamic bag-of-
words approach with TF-IDF scoring [3].

Fig. 7. Examples of a query and a few resulting virtual locations from the
City Centre sequence, with posterior probabilities listed below.

couple of the resulting virtual locations from the City Centre

dataset are shown in Fig. 7, with the corresponding match

probabilities given by the framework of this paper shown

below.

To clarify, the performance presented here for FAB-

MAP on the City Centre dataset is different than that of

the original publication [4] for several reasons. Firstly, the

images used for sample locations are different, in order to

keep a consistent comparison between systems. Secondly, the

ground truth is determined by a radius from the query image,

rather than hand-labeled; often including images which are

close by, but not a visual match. Finally, in [4], the prior

probability of images immediately preceding the query image
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Fig. 8. Example of a location from the Begbroke sequence which is passed several times, and the matching scores resulting from a query generated during
the third pass. Scores are shown for the system described in this paper (COVISMAP), Naive-Bayes FAB-MAP [4], and the dynamic bag-of-words approach
with TF-IDF scoring [3]. Images which are part of the query are not given scores and indicated with dashes -- (including those added by query expansion).
Therefore only the FAB-MAP system provides a score for the image next the query position here, since each image represents a distinct location.

were artificially set to zero to eliminate competition between

local and further matches, but this was not done here.

Fig. 8 compares matching scores for a repeatedly ob-

served location for the different algorithms. The benefit of

probabilistic methods are especially clear when looking at

the thresholds used to determine matches; Fig. 8 shows

that the COVISMAP and FAB-MAP formulations provide

meaningful scores representing probabilities in the range

[0, 1], whereas the TF-IDF approach provides scores which

require unintuitive and possibly varying thresholds. Fur-

ther advantages are also evident from Fig. 8, where FAB-

MAP fails to give high scores when the same location is

passed several times. This is due to the fact that FAB-

MAP probabilities must be normalized across all locations,

meaning that the probability mass can be split across several

representations of the same location in the map.

VI. CONCLUSION

This article has proposed a framework for appearance-

based place recognition and loop closure. It uses a represen-

tation that builds a map using the covisibility of landmarks, in

order to reduce the influence of pose choice when modeling

locations. A dynamic bag-of-words scheme provides relevant

virtual locations to the query. The virtual locations pro-

vide representations of places, which can comprise multiple

images containing covisible elements, and may overlap,

allowing for a more continuous progression of locations.

Once retrieved, these virtual locations are evaluated using

Bayesian reasoning to asses which places may have already

been seen before. The system can model perceptual aliasing,

sensor error, and also redundant locations in the map due to

the derived normalization methods, thus providing the means

for increased reliability.

Testing of the framework has been done, in order to

evaluate performance and compare with other methods. The

results compare well with the state-of-the-art, but more work

needs to be done with a variety of datasets to confirm

reliability and provide a more thorough assessment.

Potential future work includes extending the probabilistic

model to remove assumptions such as the Naive-Bayes ap-

proximation, and incorporating other sources of information

into the model such as global image attributes. Another

interesting continuation is to investigate further uses of the

covisibility graph, such as learning how to use structural in-

formation in the graph to infer types of places and correlation

between places in the map.
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