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Abstract— Studies have shown that the lateral line found
in most fish and some other aquatic organisms is capable of
providing hydrodynamic information of the surrounding fluid,
which may facilitate many behavioral decisions. Previous work
by the group introduced a lateral line inspired feedforward de-
sign for underwater vehicle control. The system utilizes pressure
sensor arrays to estimate the hydrodynamic force acting on the
vehicle such that the additional information will simplify the
modeling process and improve the maneuvering accuracy for
the control tasks in underwater exploration and environmental
monitoring. In this paper, the feedforward control design is
presented and tested in simulation for trajectory tracking and
path following after expressing the force estimation algorithm
in the three-dimensional domain. Pressure measurements at
multiple locations on the vehicle surface form a least squares
approximation of the pressure distribution. Hydrodynamic
forces acting on the vehicle are then estimated and passed to the
controller for improved performance. Preliminary experimental
tests are conducted to vindicate the proposed algorithm.

I. INTRODUCTION

The lateral line is common to most fish as well as some

other aquatic organisms [1], [2]. Studies have shown that

it serves an important role in various behaviors including

rheotaxis [3], schooling [4], prey detection and capture [5]–

[7], and social communication [8]. The neuromasts are the

functional units of the lateral line. Specifically, as illustrated

in Fig. 1, superficial neuromasts located on the body surface

and protruding into the external fluid respond to direct-

current and low-frequency components in proportion to the

net velocity. Canal neuromasts situated in subdermal canals

along the lateral lines respond to high-frequency components,

and react proportionally to the net acceleration [7], [9], [10].

Essentially, by detecting water motions and pressure gradi-

ents in the surrounding environment, the lateral line system

provides hydrodynamic information that may facilitate many

behavioral decisions.

To date, several research groups have devoted their efforts

to replicating the sensing capabilities of the lateral line.

For example, in [11] and [12], designs of micro-fabricated

artificial lateral line sensors are tested in dipole flow fields;

in [13], pressure sensor arrays are used to identify the flow

signature from static and moving cylinders with different

cross sections; in [14], parallel arrays of pressure sensors

are deployed in the von Kármán vortex street to characterize
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the hydrodynamic signals for swimming control applications;

and in [15], hydrodynamic pressure signals are collected and

analyzed on a fusiform-shape craft with forward-backward

motions to study the self-motion effects of a fish-like body. In

[16] and [17], a biomimetic design of the lateral line system

is proposed, which utilizes commercially available pressure

sensors to improve the maneuvering accuracy of autonomous

underwater vehicles (AUVs) for potential position holding,

target tracking, docking, and other control tasks involved in

underwater exploration and environmental monitoring.

Traditional control development for underwater vehicles

generally considers the dynamics in static flow conditions

with perturbation about some nominal traveling speed [18].

Hydrodynamic forces acting on the vehicle are segregated

into added mass terms, viscous damping terms, and dis-

turbance terms from the non-static background flow. Based

upon the assumption that the vehicle’s nominal state of

operation remains dominant, the dynamic model can be lin-

earized so that simple online computation may render an ef-

fective propulsion command for basic maneuvers. However,

advances in high-maneuverability AUVs bring the need for

transition among different operation states and performing

complex tasks with no dominant state, which requires a better

model of the hydrodynamic forces.

Under the heuristic notion that additional knowledge of

the dynamics will improve the control performance, sen-

sory information on the background flow may be helpful

to achieve the above objectives. In the proposed control

structure as illustrated in Fig. 2, a feedforward pathway is

introduced to the standard feedback structure, sending signals

from the pressure sensors to the controller. Based on the

readings, an approximation of the pressure distribution can

be obtained. This gives an estimate of the total pressure

force acting on the vehicle, which provides information on

the added mass, velocity-based damping, and background

flow disturbances. Therefore, modeling for the added mass

and hydrodynamic damping terms will be unnecessary, and

information on the background disturbances is now available

so that better control performance may be expected.

The feedforward control design is based on the prototype

CephaloBot developed by the group; see [19]. As shown

in Figs. 3 and 4, the vehicle is equipped with cephalopod

inspired vortex ring thrusters (VRTs) that can provide quan-

tized propulsive force by creating arrays of high-momentum

vortex rings with successive ingestion and expulsion of water

[20], [21]. This device allows the vehicle to perform accurate

maneuvers at low speeds without sacrificing its low-drag

streamline profile for efficient high-speed traveling [22]–[24].
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Fig. 1. Schematics of the lateral line system in a fish.
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Fig. 2. Block diagram of vehicle control with pressure feedforward.

It is worth mentioning that the feedforward control design

described in this paper generally applies to all vehicles,

yet it especially suits the need for improving maneuvering

accuracy on this particular type of underwater vehicle.

In the following sections, the feedforward dynamic model

is given and the force estimation algorithm is expressed

in three-dimensional space. Nonlinear controllers with the

feedforward are tested in simulation for control accuracy

in potential small scale maneuvers as well as long distance

cruising. Experimental tests are performed to vindicate the

force estimation algorithm.

II. HYDRODYNAMIC FEEDFORWARD

A. Dynamic Model

A coordinate system in the body-fixed reference frame is

defined as shown in Fig. 4. For motion in the horizontal

plane, there are three degrees of freedom, namely, transla-

tional motions along x- and y-directions (surge and sway),

and rotational motion about z-axis (yaw). At a time instant t,
the vehicle’s velocity is designated as vector ν(t) ∈ R

3. The

earth-fixed reference frame is considered to be inertial, in

which the earth-fixed coordinate system is defined. Position

and orientation of the vehicle can be described in the earth-

fixed frame as vector η(t) ∈ R
3. The velocity of the vehicle

in the earth-fixed reference frame can be obtained by the

following transformation:

η̇ = J(η)ν , (1)

where J(η) ∈ R
3×3 represents the transformation matrix.

The dynamic equation for the vehicle can be written in

the body-fixed frame as [18]

τ = M ν̇ +C(ν)ν + fD + fN , (2)

Vortex ring thrusters

Radio frequency

CameraPropeller

Acoustic transmitter/receiver module

Wet-mate plugantenna plug

Fig. 3. CephaloBot prototype with cephalopod inspired VRTs.
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(b) Side view

Fig. 4. Schematics of the propulsion system onboard CephaloBot.

where τ (t) ∈ R
3 denotes the vector of control forces

and moments from the actuators; matrices M ∈ R
3×3 and

C(ν) ∈ R
3×3 denote the inertial terms and the Coriolis and

centripetal terms, respectively; fD(t) ∈ R
3 represents the

vector of hydrodynamic damping forces and moments; and

fN (t) ∈ R
3 represents the unmodeled forces and moments.

B. Feedforward Model

According to the feedforward design, the propulsive force

τ (t) combines the feedforward element f̂D(t) ∈ R
3 with a

feedback signal τB(t) ∈ R
3 from any control design

τ = τB + f̂D . (3)

Defining f̃D(t) ∈ R
3 to be the mismatch between the

vector fD(t) and its estimation f̂D(t)

f̃D = fD − f̂D (4)

the equation of motion becomes

τB = M ν̇ +C(ν)ν + f̃D + fN , (5)

which presumably reduces the scale of uncertainties in the

system as compared with that in (2).

III. FORCE ESTIMATION

In the body-fixed coordinate system, a biparametric sur-

face describes the boundary of the vehicle. The hydrody-

namic damping forces and moments acting on the surface

come from the linear and angular velocities and accelerations

of the vehicle relative to the background fluid.

Using surface fitting techniques, the pressure readings

from sensors at multiple locations can be used to reconstruct

the pressure distribution over the entire body. Thus, the total

damping force and moment exerted on the vehicle can be

estimated by integrating the pressure distribution over the

vehicle profile (excluding the locations of the actuators). The

resultant force estimation will take the form of linear, fixed

weight combinations of the pressure measurements.
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Fig. 5. Geometric model for describing the convex vehicle surface.

A. Vehicle Profile

As illustrated in Fig. 5, the profile of the vehicle is defined

in the body-fixed coordinate system. For a point on the

vehicle’s surface, the position vector r ∈ E
3 and the normal

vector n ∈ E
3 can be written as

r = (rx, ry, rz) , n = (nx, ny, nz) , (6)

where rx, ry , and rz are components in r along the x-, y-,

and z-axes, respectively; similarly for nx, ny, and nz .

In general, the boundary of the vehicle can be represented

with a biparametric surface, and thus, any position on the

surface is uniquely defined by specifying a pair of param-

eters. In this paper, all extruding parts on the vehicle are

ignored for simplicity. This gives a convex vehicle surface

on which positions are conveniently determined by angles

θ ∈ [−π, π) ⊆ R and φ ∈ [−π/2, π/2) ⊆ R, as illustrated

in Fig. 5. As a result of the parameterization, vectors r and

n are expressed as functions in θ and φ.

B. Pressure Surface Fitting

Suppose a number of p = pθ pφ ∈ N sensors are located on

the surface of the vehicle (pθ and pφ in each corresponding

direction). Each sensor takes measurement of the normal

pressure Ps ∈ R at position θs, φs ∈ R (s = 1, 2, . . . , p).

Surface fitting over the pressure measurements will give an

estimate of the pressure distribution P̂ (θ, φ) ∈ R.

A B-spline surface is used to model the pressure distribu-

tion due to its flexibility in the spline degree and smoothness,

and its linear property that will become helpful for online

computation. For C k−2 and C l−2 continuity in the θ- and

φ-directions respectively, a closed periodic B-spline surface

(see [25], [26]) is used as the approximation function. The

estimated distribution P̂ (θ, φ) can be written as

P̂ (θ, φ) = K⊤
MN (θ, φ) vec(B) , (7)

where KMN (θ, φ) ∈ R
mn is the Kronecker product [27] of

the vectors of basis functions M(φ) ∈ R
m and N(θ) ∈ R

n

KMN (θ, φ) = M(φ) ⊗ N(θ) , (8)

the entries in B ∈ R
n×m denote the control vertices of the B-

spline surface, and vec(·) denotes vectorization of a matrix.

Further details can be found in [17].

Per surface fitting, the control vertices are approximated

in the least squares sense, i.e., for a given set of measuring

points, θs, φs, and Ps (s = 1, 2, . . . , p), the following cost

function is minimized:
p∑

s=1

(
P̂ (θs, φs)− Ps

)2

. (9)

Substituting (7) into (9) and applying standard linear least

squares approximation techniques (refer to [28], [29]) yields

m-by-n equations, which in turn can be used to solve

for the control vertices vec(B). Subsequently, the pressure

estimation can be expressed as

P̂ (θ, φ) = K⊤
MN (θ, φ)KP P , (10)

in which the matrix KP ∈ R
mn×p is defined in [17].

C. Estimation Model

Based on the fitting result, the damping force F ∈ E
3 and

moment MO ∈ E
3 relative to the origin O acting on the

vehicle is estimated by F̂, M̂O ∈ E
3, which can be written

as double integrals over the two-dimensional domain T =
[−π, π)× [−π/2, π/2) ⊆ R

2

F̂ =

∫∫

T

−n P̂ (θ, φ) r2 dθ dφ , (11a)

M̂O =

∫∫

T

−r × n P̂ (θ, φ) r2 dθ dφ , (11b)

where r = ‖r‖ ∈ R is the Euclidean norm of the position

vector r, and the minus sign comes from the fact that the

pressure is considered positive towards the vehicle interior.

For planar motions, the vector of estimated damping forces

and moments f̂D ∈ R
3 consists of the forces along x- and

y-directions, and the moment about z-axis. Combined with

(10) and (11), the force estimate f̂D can be expressed as

f̂D =

∫∫

T

b K⊤
MN (θ, φ) r2 dθ dφKP P , (12)

where b ∈ R
3 is defined as

b = −
[
nx ny rx ny − ry nx

]⊤
. (13)

Using (12), the damping forces and moments are estimated

as the pressure signal vector P premultiplied by a constant

matrix, once the locations for the sensors are fixed. Since

only matrix multiplication is required for online calculation,

the force estimation can be rendered rapidly by the onboard

embedded system.

IV. CONTROL SIMULATION

Control simulations are carried out to examine the perfor-

mance of the hydrodynamic feedforward design. Trajectory

tracking under various localization errors is investigated for

maneuver accuracy, and path following under constant back-

ground flow is tested for control performance in potential

long distance traveling. The desired trajectory in the former

test includes orientations and the controller is to utilize all

available actuators to minimize the tracking error, whereas

in the latter test the controller will be focusing on orientating

the vehicle towards the desired positions and mainly relying

on the rear propeller for locomotion.
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TABLE I

COMPARISON OF CONTROL PERFORMANCE FROM 20 TO 60 S

Units
Without pressure With pressure

feedforward feedforward
Mean Maximum Mean Maximum

Absolute m 1.403 3.692 1.171 2.084
position m 1.832 4.026 0.929 1.815

error rad 0.408 1.464 0.298 0.606

Absolute m/s 4.654 12.582 2.806 5.758
velocity m/s 1.902 6.914 1.411 3.584

error rad/s 1.139 6.132 0.843 2.006

Absolute N 152.909 300.000∗ 40.441 217.375
control N 100.584 300.000∗ 20.292 134.517
input N·m 15.953 86.813 5.926 28.032

∗ The control input reaches the saturation level.

A. Hydrodynamic Model

In this simulation, a two-dimensional hydrodynamic model

is developed using the potential flow theory and is then ex-

tended to the three-dimensional space to provide a reference

pressure distribution over the vehicle surface.

To simplify the hydrodynamic calculation, an elliptic body

is used to represent the vehicle on the horizontal plane,

around which the flow is estimated by the potential flow

theory, assuming the flow to be irrotational, incompressible,

and inviscid. The Kutta condition is applied at the rear end of

the ellipse to account for the sharp corner where the vehicle’s

propeller is located.

For positions on the horizontal plane, the pressure values

come directly from the hydrodynamic calculation on an

ellipse that represent the vehicle. The pressure value at

a location off the plane is assumed to be the projection

length of the normal pressure vector. Examples of similar

techniques can be found in [30], [31].. It should be noted that

even though the hydrodynamic calculation may be inaccurate

in terms of representing the realistic background fluid, the

simulation tests are still valid for investigating the idea of

using hydrodynamic force estimation to improve control

performance.

B. Trajectory Tracking

In this simulation, the inertia matrix M is expressed as

M =



p1 0 0

0 p1 p2

0 p2 p3


 , (14)

with parameters p1, p2, p3 ∈ R defined to be

p1 = 20 kg , p2 = 2 kg · m , p3 = 4 kg · m2 . (15)

The desired trajectory ηd(t) ∈ R
3 is designated as

ηd(t) =




5 sin(0.15 t) m

5− 5 cos(0.15 t) m

0.15 t+ 0.06 rad


 , (16)

which represents a horizontal circular orbit with a radius of

5 m, and a time period of about 42 s.

Assume the hydrodynamic estimation mismatch and un-

modeled terms to be C2 continuous and upper bounded by

known constants. The control design is based on the ‘robust

integral of the sign of the error’ (RISE) technique (see

[32]–[34]) to accommodate the unknown disturbances, in

conjunction with backstepping (refer to [35]) to bridge the

control design between the reference frames.

During the simulation, the localization error is accounted

for with a combination of dead band zones and sinusoidal

noise in the position and velocity measurements. The control

performance between the time interval from 20 to 60 s in one

of test is summarized in Table I. Due to the measurement

noise, the controller is unable to acquire the actual tracking

error. The tracking error is confined within some intervals

governed by the magnitudes of the noise and the control

gains. However, since the system with the feedforward is

able to counteract the hydrodynamic forces, better control

performance may be achieved, as it agrees with the simula-

tion result. It is also worth noticing that less control effort

may be needed with the feedforward for the same task.

C. Path Following

The same dynamic model is used for this test. Unlike the

desired trajectory in (16), the desired path is defined as a

vector η̄d(t) ∈ R
2 of positions inside the horizontal plane

η̄d(t) =

[
10 cos(π t/60) m

5 sin(π t/30) m

]
, (17)

which traces a figure of eight with a time period of 120 s.

In the body-fixed frame, each component in the control

input τ (t) = [τx(t), τy(t), τoz(t)]
⊤ is designed separately.

The control force τx is defined to minimize the position

error along x-direction, the torque τoz is defined to align

the vehicle to the desired orientation in order to reduce

the tracking error, and the force τy is to compensate the

sideslip motion caused by τoz (due to the nonzero parameter

p2). In effect, the control strategy resembles that of the

underactuated vehicles where the propeller controls the speed

and the rest of the actuators are responsible for the steering.

Since the front of the vehicle tends to face the incoming

flow rather than the side of the vehicle moving against

the fluid, the path following method is potentially more

energy efficient compared to that in the previous test for

long distance traveling.

Shown in Fig. 6(a) is the trajectory of the vehicle following

the path under static background environment starting from

the initial state η(0) =
[
8 m 0 m 0 rad

]⊤
. The tracking

error with and without hydrodynamic feedforward in con-

stant flow (at a speed of 0.35 m/s along y-direction in the

earth-fixed frame) is shown in Fig. 6(b) and (c), respectively.

Due to the lack of sway actuation, the path following

error cannot be eliminated especially with the unsteady

background flow. However, the feedforward controller is able

to reduce the path tracking error by adjusting the vehicle

orientation according to the estimated hydrodynamic forces.

V. EXPERIMENTAL TESTS

The force estimation algorithm is tested in experiment.

In the setup shown in Fig. 7, an upright cylinder is rigidly
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Fig. 6. Path following trajectory and position error with and without pressure feedforward.
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Fig. 7. Schematics and picture of the experiment setup.

fixed under a vertical beam along the z-axis, which is in

turn pivoted about an axle in y-direction that translates

along a horizontal track in x-direction. The cylinder is fully

submerged under water with pressure sensors on the surface.

At the other end of the beam, a spring structure and a linear

potentiometer is installed to measure force. Scaled by the

moment arm ratio, the force is compared to the pressure-

based estimation.

Five ME755 160 kPa gauge sensors are arranged horizon-

tally with equal intervals in the test. An MB1030 range sonar

is used to register the position of the cylinder. In each run,

the system starts from rest and accelerates to a constant speed

before it decelerates back to a stop. The pressure distribution

is assumed to be uniform along the vertical direction. Filtered

and calibrated signals together with the force estimation

are shown in Figs. 8 and 9. The estimated force generally

captures the variations in the measurement, which verifies

the algorithm. Note the mismatch between the signals may

be due to the non-zero acceleration of the cylinder.

VI. CONCLUSION

In this paper, a lateral line inspired hydrodynamic force

estimation for underwater vehicle control is expressed in

three dimensional space and tested in simulation. A simple

vehicle dynamic model may be resolved without considering

the added mass and viscous damping terms. The feedforward

element also contains hydrodynamic information about the

surrounding background flow that is traditionally catego-

rized as an unknown disturbance. Therefore, the pressure

feedforward design may serve as an important guidance for

control maneuvers especially in the presence of localization

uncertainties and limited degrees of actuation. In agreement

with this heuristic understanding, simulation results suggest

an improvement in control performance. The force estimation

algorithm is further verified with experimental tests.

Future work will be focusing on implementation of the

pressure feedforward design in field tests. Moreover, the

pressure distribution on the vehicle may also be influenced by

propulsion, even though pressure measurements are excluded

at locations of the actuators. As a result, information on

the operation states of the actuators may be embedded in

the signals, which potentially can be used as propulsion

feedback.
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Fig. 8. Filtered signals and force estimation in experimental test 1.
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