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Abstract— Recent developments in learning sophisticated,
hierarchical image representations have led to remarkable
progress in the context of visual recognition. While these
methods are becoming standard in modern computer vision
systems, they are rarely adopted in robotics. The question arises
of whether solutions, which have been primarily developed
for image retrieval, can perform well in more dynamic and
unstructured scenarios. In this paper we tackle this question
performing an extensive evaluation of state of the art methods
for visual recognition on a iCub robot. We consider the problem
of classifying 15 different objects shown by a human demon-
strator in a challenging Human-Robot Interaction scenario. The
classification performance of hierarchical learning approaches
are shown to outperform benchmark solutions based on local
descriptors and template matching. Our results show that
hierarchical learning systems are computationally efficient and
can be used for real-time training and recognition of objects.

I. INTRODUCTION

The problem of learning and designing effective visual
representations has been recently subject of intense study
both in computer vision and machine learning. In these
contexts, hierarchical representations coupled with state of
art supervised learning algorithms, have achieved remarkable
performances in complex visual recognition tasks (see for
example [26], [37]). Despite, the good results the application
of these approaches in robotics is still limited. The goal of
this paper is to assess the impact of learning hierarchical
representations for visual recognition in robotics, since we
believe that the community could benefit from a thorough
evaluation of these methods.

Recently, there has been an increasing interest in robotics
toward visual recognition problems as confirmed by the orga-
nization of several open challenges [40], [41], [42]. However,
these problems have been typically considered as preliminary
steps to more articulated tasks, e.g. navigation, manipulation,
or other kinds of interaction [18], [3], [10]. As a consequence
visual recognition solutions are part of complex systems that
include many other components (e.g. pose estimation). Such
systems require accurate, hence costly, supervision in the
training phase (e.g. uncluttered views of the object [25] or
meta-data about its position and orientation with respect to
the camera [7]). Indeed, this has led to datasets acquired
in highly controlled scenarios (see [40], [41], [42] and also
[25]).
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Fig. 1. The Human Robot Interaction setting for the data acquisition.
Independent motion detection provides a good estimation for the object
position in the image.

In this paper we focus on visual recognition in a Human-
Robot Interaction scenario. While many data-sets (and
benchmarks) are available in computer vision, they are often
strongly biased [33] and the good results of hierarchical
learning systems are not ensured to carry on to our setting.
For these reasons we opted for acquiring a novel dataset
reflecting the natural and dynamic setting of human-robot
interaction. We considered a scenario where a human super-
visor shows 15 different objects in front of the robot. The
robot employs motion detection to actively track the objects
with its gaze, observe them from multiple viewpoints and
extract a subwindow to better localize them in the whole
image. Hierarchical representations are then extracted for
each image and a multi-class classifier is trained to recognize
newly acquired images.

The main contributions of this work are three. First, we
provide a rigorous evaluation of hierarchical image repre-
sentations in a real robotics context, showing that these
techniques consistently outperform local descriptors. Sec-
ond, we observe that advanced supervised learning methods
generalize better than template matching: this is a further
advantage of compact image representations with respect to
unordered sets of local features that cannot be fed directly
to a classifier. Finally, we show that all these methods
are computationally efficient and can be used for real-time
training and recognition of objects. Byproducts of this work
are 1) a dataset that we acquired for the experiments and
made available for the community (see Sec. IV-A.1), and 2)
a practical HRI scheme for low-effort visual data acquisition.

II. STATE OF THE ART

A first clear distinction between visual recognition meth-
ods can be made based on the application domain: in
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computer vision the common task is image retrieval from
Internet [33], whereas in robotics the variety of applications
is incomparably larger and is harder to compare state of the
art methods.

Currently, the most popular approach in recognition for
robotics is to exploit 3D information to obtain invariant
models of the observed scene. Most proposed methods build
global topological representations of the objects that encode
local geometric relations [11] or perform clustering to di-
rectly derive tridimensional templates from point clouds [1].
Systems that perform recognition based only on visual cues
are typically employed to solve pose estimation problems [8],
[32], [10], [21]. They often share the following core strategy:
local features (e.g. SIFT [27]) are first extracted from raw
images and then matched with a learned object template via
robust outliers rejection schemes (RANSAC) [19].

In computer vision, the community has focused on de-
signing or learning descriptive representations for the vi-
sual signal. This perspective finds its root in the Bag of
Words (BOW) paradigm [20], whose principle is to capture
statistically relevant properties of the image content. These
methods, combined with the Spatial Pyramid Representation
(SPR) [26], achieved good results on standard datasets (e.g.
Caltech-101 [16], Pascal VOC [12]) and they were further
extended by replacing vector quantization with a sparse
coding step [39]. It has been observed that sparsity of the data
representation improves the overall classification accuracy —
see [22], [9] and references therein. Therefore, in the attempt
to extend the successful framework in [39], many recent
works have focused on finding novel dictionary learning
algorithms [24], [15], designing mid-level features [4] or
improving the pooling process [5], [23].

We are aware of very few works in Robotics in which
authors fully exploited these newest algorithms and methods
for hierarchical image representation techniques [18], [3].

III. METHODS FOR IMAGE REPRESENTATION AND
LEARNING

In this Section we describe the typical pipeline, reporeted
in Fig. 2, adopted to obtain hierarchical representations of
an image. Most of these methods (Fig. 2(Top)) share a
common low-level stage with typical robotics approaches
(Fig. 2(Bottom)), namely the extraction of local features,
while substantial differences arise in the subsequent phases.
Indeed, hierarchical representation methods aim to capture
the statistically relevant properties of the scene while tem-
plate matching techniques organize the local keypoints in
a robust geometrical model of the object of interest. In
the end however, both approaches aim to obtain a visual
representation which is invariant with respect to projective
transformations. A training set of these invariant representa-
tions is then provided to a learning system that is in charge
of identifying the correct object instance within test samples.

A. Image Representation

Hierarchical representations consist in a cascade of so-
called coding and pooling stages. Coding performs signal

reconstruction of the local image contents to enforce specific
structures on the representation (e.g. sparsity [39], [15]);
pooling combines neighboring codes into a single vector,
acquiring robustness to small spatial deformations. Within
this framework we can make a clear separation between
matching techniques, which perform only the first local ex-
traction to build the object model, and hierarchical methods,
which arrange multiple coding/pooling layers subsequently.

1) Low-Level Descriptors: The low-level feature extrac-
tion process performs a local analysis of image patches.
The outcome is a sequence of descriptors x1,...,X, € R"”
encoding local responses to a predefined (or in some cases
learned from data) set of filters. Common filters are image
patches [17] of SIFT-like filters [27]. Often, descriptors are
extracted from a dense regular grid on the image, following
the study in [17]. However, when the spatial position is
crucial for subsequent tasks (e.g. pose estimation), low-
level features are extracted on geometrically characteristic
locations - the so-called keypoints. These keypoints are used
to build a robust 2D or 3D object model (e.g. [27], [8]).

2) Hierarchical Image Representation: Higher level rep-
resentations are build on top of local descriptors. They
usually require an initial unsupervised learning step that
adapts the representation to the data. An overcomplete basis
is learned from training descriptors and is organized in a
Dictionary matrix D € R"*X (n feature size, K dictionary
size). Given D, a coding operator g(D,x) = u, maps an
input feature x € R™ into a new feature space u € RX
(with K > n). Typically, coding operators share the goal of
minimizing the reconstruction error between the input feature
x and the signal reconstruction Du

9(D,x) = min [x — Dul% + AR(u)
st. C(u)=0

where ||- || is the Frobenius norm. Coding methods differ
in the regularization term R(u) and the constraints C(u).
Examples are Vector Quantization (VQ) [26], Sparse Coding
(SC) [39] and Locality-constrained Linear Coding (LLC)
[37]. Popular methods for learning the dictionaries are K-
Means [20], or Dictionary Learning techniques [39].

The output of the coding stage is a set of local coded
descriptors uy,...,u;. A pooling map allows to combine
these separate information and take into account higher-level
statistics of the image. This operator takes the codes located
at .S overlapping regions (e.g. cells of a spatial pyramid), and
obtains a single succinct representation. The final descriptor
7z € RENe of the image, consists in the concatenation of
the descriptors obtained from each of these regions. The N,
regions are usually obtained by partitioning images in 2! x 2!
patches with scales [ = 0, 1, 2. The most known hierarchical
learning method, Bag of Words (BOW) [20], consists in the
combination of VQ and average pooling, on top of a first
layer of dense SIFT descriptors. On the other hand, it has
been empirically observed that Sparse Coding (SC) favors
max pooling over average pooling [4].

A different perspective is given by the HMAX framework,
which is an algorithmic model of the recognition process

(D
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Fig. 2. General outline of object recognition approaches.(Top) Standard computer vision pipeline for hierarchical image representations extraction, (bottom)

template matching and pose estimation.

in humans. HMAX retraces the human’s ventral stream
structure of simple and complex cells forming a hierarchy
of alternating layers (see [30] for more details) that can be
interpreted as a sequence of coding and pooling stages. First,
a set of muti-scale Gabor filters with different orientations
and bandwidths are convolved with the image,followed by a
max-pooling step on multiple scales.

The second layer computes the similarity measure between
responses of the first pooling layer and a dictionary of filter
prototypes previously learned from data. Finally, the output
of a spatial pooling operator over the entire image and over
all scales is returned. In the end, the number of components
of the feature vector is equal to the number of previously
learned (or predefined) prototypes.

In this work we evaluated the performance of the Bag
of Words, Sparse Coding (both using Spatial Pyramid Rep-
resentations) and HMAX since we believe that they are
representative of the current principal trends in computer
vision.

B. Classification

After the representation stage, images are described by
either a single hierarchical vector z € RXNe or a set of
local features x1,...,x; (X; € R™). Two possible strategies
are commonly used in order to classify images: template
matching or learning approaches. Machine learning methods
tend to be more robust to intra-class variations, since they
obtain the model from different instances of the same object;
matching methods are more versatile since they do not
require a batch training procedure. From the point of view
of data representation, the first class of methods usually uses
a single feature vector per image, whereas matching-based
can work with both representations, although they are usually
combined with local features.

1) Template Matching: Matching methods treat all the
local descriptors extracted from different views of the object
as belonging to one single object model [27], [8]. When a
new test image is provided the best match among all the
object databases and the current image represents the clas-

sification response. When additional information is provided
(e.g object pose during the training phase, 3D model etc.)
robust outlier rejection schemes (e.g. RANSAC) improve the
recognition rate. More specifically in this work we build
a SIFT database for each object, then all descriptors in a
new image were tested with the database. Following the
indications in [27], [8] the matches computation is carried
out with an approximation of K-NN algorithm, called Best-
Bin-First (BBF) [2] checking the first 200 nearest-neighbor
candidates. We discard matches when the second closest
neighbor is coming from a different object then the first and
the ratio of the two distances is greater than 80%.

2) Learning Methods: hierarchical representations are
usually combined with more sophisticated learning ap-
proaches: the single descriptor is fed to a supervised clas-
sifier. Codes obtained through vector quantization usually
require ad-hoc kernels to obtain good performances, instead,
sparse coding approaches have shown to be effective if
combined with linear classifiers, also ensuring real-time
performances [39]. In our experiments we used only linear
kernels since non-linear approaches are slower and less
suited for real-time applications . In our analysis we tested
both SVM [35] and RLS. The first one is nowadays a
consolidate approach in both robotics and computer vision
communities and often it is used as baseline for new learning
methods. RLS-based techniques, instead, are among the
simplest algorithms for many learning tasks and yet they
have been reported to consistently achieve state of the art
performances in many contexts[29].

1V. EXPERIMENTS
A. Setting

We designed a challenging scenario for image acquisition
and training. The result is a dynamical Human Robot Inter-
action (HRI) schema that imposes strong limits on human
supervision, similarly to [14]. In our setting, the robot has
to learn the visual appearance of different objects presented
by a human demonstrator (see Fig. 1) for a very short time
interval. At the beginning of each session, the human stands
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Fig. 3.

approximately 1.5 meters from the iCub humanoid robot
[34], and pronounces the name of the object in his own hand,
showing it to the robot from multiple points of view.

After this initial training phase, which lasts approximately
10 seconds per class, the demonstrator shows again one of
the presented objects asking the system to identify it. In order
to actively track the object during demonstration, the system
relies on an independent motion detector [6] that provides
also a rough bounding box around the object of interest. For
speech recognition, we used Microsoft Speech Recognition
libraries.

1) Dataset: following the procedure described above, we
acquired a dataset comprising the 15 objects depicted in
Fig. 3. For each instance, a training and test sets were
acquired directly from the iCub cameras during respec-
tively 10 and 15 seconds of demonstration. We chose a
sampling frequency of 15Hz for images of 640 x 480
pixels, obtaining a dataset of 2250 images (150 per ob-
ject) for training and 3000 (200 per object) for test. The
crop effected by the motion detector reduced the origi-
nal images to windows of 160 x 160 pixels. The dataset
was made publicly available for the community at the
link http://eris.liralab.it/download/iCub/
datasets/iCubWorld_SingleInstance.zip.

2) Implementation Details: we employed an open GPU
version of SIFT extraction (see [38]) to compute low-level
descriptors and implemented the further steps of Bag of
Words (BOW) and Sparse Coding (SC) in C++ (publicly
available on th iCub repository [34]). The MATLAB (+ GPU)
implementation of the system described in [28] was used to
obtain the HMAX codes. To perform k-Nearest Neighbors
we chose the kd-Trees implementation in the VLFeat library
[36], for SVM we used LIBLINEAR [13] while for RLS we
relied on the GURLS library [31].

3) System Parameters: for template matching tests, a set
of sparse SIFT was extracted at a 16 x 16 scale with the
keypoints detector described in [27]. On the other hand,
for BOW and SC we used an initial layer of SIFT features
extracted from a dense grid on the image. Points were located
every 8 pixels, SIFT descriptor scales were set to 16 x 16
pixels. In both cases (dense and sparse) we tried multiple
scales, but we did not find any benefit during recognition.
The dictionary size was fixed to 1024 and the pyramid levels
is set to 3 for BOW and SC while for HMAX that does

Sample images of the 15 objects collected following the procedure described in Sec. IV-A
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Fig. 4. Recognition performance of the methods considered with respect
to increasing number of training examples. Hierarchical descriptors need
only few examples per class to outperform local approaches. Statistical
learning methods (solid lines) exhibit consistently higher results compared
to template matching techniques (dashed lines).

not employ pyramidal pooling a dictionary of 4096 features
was employed. Larger dictionary sizes did not led to higher
results.

B. Benchmark

The first set of experiments we performed were aimed
at comparing the classification performance of both local
and hierarchical image representation approaches. The re-
sults confirm that object recognition pipelines described in
Section III may improve the visual recognition performance
of robots. In Tab. I we report the results obtained with the
methods described in Section III using all the 2250 (150 per
class) training images.

The use of the same learning method, namely the Nearest
Neighbor, on the top of a hierarchical representation leads
to better classification performance with respect to raw SIFT
matching. This evidence clearly supports the use of hier-
archical representations, which encode more global image
information than local descriptors.

We can also observe that machine learning methods
present remarkable benefits over template matching. Al-
though not surprising, it has to be pointed out that in the
case of local features, such methods cannot be employed
directly to a classifier. This represent a further advantage of
having a compact representations of the whole image in a
single vectors.
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k-NN (%) RLS (%) SVM (%)
v SIFT 39.9 - -
O BOW 60.6 84.7 83.6
<& SC 68.2 87.7 86.6
O HMAX 80.7 86.5 89.1
TABLE I

CLASSIFICATION ACCURACY AVERAGED OVER 15 CLASSES. 150
TRAINING EXAMPLES PER CLASS.
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Fig. 5. Classification accuracy (red solid line) with respect to training sets
of identical size (10 examples per class) collected with sampling frequencies
varying between 15 Hz and 1 Hz. The generalization capabilities of the
system increase dramatically when the redundancy (green dashed line) of
the training data decreases. Feature: HMAX, Training method: SVM

One crucial aspect of supervised settings is the number
of training examples necessary to build a robust visual
model of the objects. In Fig. 4 we report the accuracy
of the methods showed in Table I trained with increasing
number of examples (from 10 to 150 images per class). For
each representation we plotted the learning method with the
highest classification performance.

Local descriptors better generalize when few examples are
provided, however, hierarchical representations and learning
methods outperform the competitors after 25 — 30 examples
per class (i.e. just 2 seconds of training). This suggests that
high level features are able to capture large statistics of the
visual world, but less efficient when only few observations
are provided.

C. Accuracy-Redundancy Tradoff Analysis

In an ideal setting, learning methods require training and
test data to be sampled i.i.d. from the same distribution. This
assumption is clearly broken by the inherent heteroscedas-
ticity of physical processes that often cause these two sets to
result different. This fact is crucial in the setting described
in Section IV-A, since training data are collected in a short
interval (10 seconds) at a relatively high frequency (15
images per second). As a consequence the scene captured in
training images does not change much from frame to frame
leading to a redundant training set.

To better appreciate the impact of training set redundancy
we compared the classification performance the system
trained using sets of same size (10 image per class = 150
samples), but sampled at different frequencies from the

HMAX

Coding Method

SIFT

a 10 20 30 40 50 60 70
Frame Per Second (FPS)

Fig. 6. Frames per second (FPS) of the evaluated coding methods.

original training set of 150 images per class. Following
elementary statistical learning principles, we measured the
redundancy of each training set with the condition number
of the similarity matrix of the training points (which corre-
sponds to the linear kernel matrix used by SVM and RLS).
In Fig. 5 is reported (solid red) the classification accuracy
with respect to this rough measure of training set redundancy
(dashed green). Remarkably, when redundancy decreases
enough the system achieves performances comparable to
those obtained using the whole 150 examples. This analysis
highlights strong connections with regularization theory:
slower sampling frequencies improve the system generaliza-
tion performance when training samples are lacking.

This experiment can be interpreted as a tradeoff analysis
between the accuracy of a system trained on a given set
of examples and the effort in collecting such data points.
Clearly, sets acquired in less controlled settings are likely
to be redundant. Therefore what is saved in acquisition
effort is payed in accuracy or time required to achieve same
classification performance. High accuracy can be achieved
with few training samples, at the cost of much effort from
the supervisor side (e.g. manually selecting the training set).
The graph in Fig. 5 suggests that the training set acquisition
strategy adopted should depend on the specific application
considered.

D. Computational Efficiency

We compared the computational performances of the
evaluated methods on a 2.4Ghz Core 2 Duo Processor and
reported them in Fig. 6. The figure shows the clear tradeoff
between accuracy and speed: the combination of SIFT and
matching algorithm is, as expected, the fastest one even when
the training set is large, but as observed it leads to limited
learning performance. BOW is probably the best choice
when computational efficiency is a priority while SC and
HMAX, being relatively slower, are suited for applications
that have strong accuracy requirements but are less restrictive
on system efficiency.

V. DISCUSSION

Our study was motivated by the observation that: 1) de-
spite the progress in machine learning and computer vision,
visual recognition solutions are often limited to simple local
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descriptors together with template matching classifiers; 2)
since visual recognition problems are often considered in the
context of more complex tasks, there is a lack of benchmark
results for object recognition in plausible robotics scenarios.
Given the above premises in this paper we have extensively
evaluated hierarchical learning approaches to object recog-
nition within a challenging human-robot interaction setting.
In particular,

o We shown an exhaustive evaluation of state-of-the-art
methods for visual recognition tasks, showing their
benefits and accuracy.

« We proved that these methods are also suitable for real-
time tasks and they do not need expensive training
phases.

o We selected a dynamic HRI scenario, where we con-
ducted all the experiments. This scenario can be used
as general scheme do acquire data for visual recognition
purposes. A byproduct of this study is a dataset which
is publicly available for the community.

The presented analysis offers empirical evidence of the
benefits that hierarchical learning representations can pro-
vide. We restricted our evaluation to the purely visual tasks,
the next steps will require to investigate possible uses of
these approaches in more articulated task such as grasp or
manipulation.
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