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Abstract— To achieve a certain task, a skilligent robot should
be able to learn the skills embedded in that task. Furthermore,
the robot should be able to infer such skills to handle uncertain-
ties and perturbations, since most robot tasks are usually daily-
life tasks that include many unexpected situations. Therefore,
we propose a unified skill learning and inference framework.
The framework includes six processing modules: 1) a human
demonstration process, 2) an autonomous segmentation pro-
cess, 3) a dynamic movement primitive learning process, 4)
a Bayesian network learning process, 5) a motivation graph
construction process, and 6) a skill-inferring process. Based on
the framework, the robot learns and infers situation-adequate
and goal-oriented skills to handle uncertainties and human
perturbations. To show the validity of our framework, some
experimental results are illustrated using a robot arm that
performs a ‘tea service’ task.

I. INTRODUCTION

It is a challenge for robots to handle unexpected situations
using previously learned skills. Here, skills are defined as
motion primitives and their meanings (i.e., activation condi-
tions) embedded in tasks, since a task is usually characterized
by a sequential combination of motion primitives. Therefore,
a skilligent robot should learn and recombine such skills
under uncertainties and perturbations [1].

To learn and infer such skills in order to handle unexpected
situations, the robot should possess the following three
abilities: i) Learning motion primitives: The robot should
be able to learn motion primitives embedded in a task. Here,
motion primitives have to be formalized to guarantee goal
achievement under uncertainties and perturbations. ii) Learn-
ing the meanings of motion primitives: The robot should be
able to learn the relationships between task-relevant motion
primitives and task-relevant entities for activating the motion
primitives. iii) Recombining skills: The robot should be able
to sequentially infer skills in accordance with current and
goal situations in a dynamic environment.

In this paper, to acquire the three abilities, the robot first
obtains training data that include motion trajectories and
trajectories of task-relevant entities by human demonstra-
tions, as shown in Fig. 1(a). Next, an autonomous segmen-
tation process is used for learning the motion primitives
embedded in the continuous motion trajectories. To date,
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Fig. 1. Six processes for the three abilities of the skill learning and
inference framework: (a) human demonstration process, (b) autonomous
segmentation process, (c) motion primitive learning process, (d) probabilistic
affordance learning process, (e) motivation graph construction process, and
(f) motivation-based skill inference process.

many researchers have proposed autonomous segmentation
approaches [2]–[5]. Even though these approaches learn
unknown motion primitives, they still face certain constraints
that are predefined or tuned, such as fixed intervals, window
sizes, fixed times, and threshold values. It is not easy to
predefine and tune such constraints according to the types
of tasks and training data. It is, therefore, important to
autonomously learn the motion primitives embedded in such
tasks without predefining and/or tuning such parameters. To
do this, segmentation points are estimated from a Gaussian
Mixture Model (GMM) learned using motion trajectories, as
shown in Fig. 1(b). Here, the motion trajectories and the
trajectories of task-relevant entities are segmented by the
estimated segmentation points.

To represent the motion primitives, the segmented motion
trajectories are formalized as Dynamic Movement Primitives
(DMPs) proposed in [6], as shown in Fig. 1(c). The DMPs
guarantee the convergence of their goals under various un-
certainties and perturbations such as changes in the initial
and goal configurations as well as human intentions. To
handle these uncertainties, the probabilistic affordances are
formalized to learn meanings that can activate the motion
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primitives, as shown in Fig. 1(d). The probabilistic affor-
dances can be represented as Bayesian Networks (BNs) using
the configuration of task-relevant entities and the labels of
DMPs as in our earlier work [7].

In the decision phase, to achieve the assigned robot tasks,
the skills are combined as a sequence that satisfies the current
and goal configurations. For this, the probabilistic affor-
dances are arranged based on a task-dependent motivation
graph that presents a nominal sequence of the given task,
as shown in Fig. 1(e). Finally, the situation-adequate and
goal-oriented skills are sequentially inferred based on the
motivation values calculated from the motivation graph and
affordances as a behavior-based control approach. Based on
these motivation values, it is possible to infer fully connected
transitions between skills without designing or learning their
transition models.

To date, there has been a significant amount of research
into the inference of sequential combination of skills using
predefined reactive plans for achieving given tasks [8]–[10].
As one branch of this research, motivation has been used to
recommend skills based on current internal states of a robot.
Existing approaches have used motivation to implicitly infer
fully connected transitions of internal states by perceiving
a current stimulus. Thus, the approaches can infer various
sequential combinations of skills based on the transitions of
internal states according to the given situations. However, in
these approaches, it is difficult to infer goal-oriented skills
using the implicit transitions of internal states. Furthermore,
it is not easy to infer skills using motivation in the real
world, as the environment includes various sensors and action
noise in addition to limited perception. In Fig. 1(f), the
motivation-based skill inference process infers goal-oriented
and situation-adequate skills based on the motivation values.

The main contributions of this paper are (i) a unified skill
learning and inference framework to handle uncertainties
and perturbations, (ii) a probabilistic representation of skills
using BNs, (iii) a methodology of clustering motion primi-
tives based on effect equivalence, and (iv) an experimental
validation using a daily-life task performed by a robot arm.

The rest of this paper is organized as follows: Sec-
tion II-A revisits the autonomous segmentation process and
the learning process of DMPs. Section II-B presents the
details of learning probabilistic affordances and inferring
skills using affordances and a motivation graph. Section III
presents the experimental results for a robot arm performing
a “tea service” robot task. Section IV discusses the proposed
framework. Finally, Section V presents our conclusions and
plans for future research.

II. SKILL LEARNING AND INFERENCE FRAMEWORK

A. Learning Motion Primitives

1) Autonomous Segmentation Process: The continuous
motion trajectories of a robot arm, X ∈ R(D+1)×N , are first
extracted from human demonstrations. Here, (D+1) denotes
a D-dimensional spatial variable and a one-dimensional
temporal variable, and N is the length of the trajectories.
In the autonomous segmentation process, it is important to

divide the trajectories reasonably. In this context, all the
Gaussians of a GMM provide important information on
segmentation of the motion trajectories [11], because each
Gaussian distribution involved in a GMM encodes a portion
that indicates a quasi-linear segment in hyperspace. The non-
linear motion trajectories demonstrated by humans can be
characterized better when the GMM is modeled by as many
Gaussians as possible without overfitting. The Bayesian In-
formation Criterion (BIC) algorithm can estimate the number
of Gaussians while resolving the overfitting problem based
on the criterion of minimum description length. In the BIC
algorithm, however, the number of Gaussians depends on the
dimensionality of the motion trajectories. The GMM tends
to contain many Gaussians in the low-dimensional spaces
reduced by Principal Component Analysis (PCA) under the
assumption that essential motion trajectory information is not
eliminated. As a result, the non-linear motion trajectories
are represented better by the GMM estimated in the low-
dimensional space, as it uses more Gaussians than the
original space [12].

In this context, PCA transforms the motion trajectories,
except for the temporal variable, as the low-dimensional vari-
able, ΨΨΨ ∈ R(D′+1)×N . Here, D′ denotes the D′-dimensional
spatial variable transformed by PCA. The dimensionality
of the transformation matrix is adaptively determined in
the range 0.9−1.0 for the sum of the eigenvalues while
automatically estimating the number of Gaussians using the
BIC algorithm. This is because the GMM should be modeled
using as many Gaussians as possible within the range in
which the essential information of the motion trajectories is
not eliminated, as mentioned earlier.

The GMM is modeled using the motion trajectories ΨΨΨ ∈
R(D′+1)×N in the reduced dimensional space based on the
BIC and Expectation-Maximization algorithms. The GMM
is defined as

P(ΨΨΨ) =
K

∑
i=1

wi ·N(ΨΨΨ|µµµ i,ΣΣΣi), (1)

where wi, µµµ i, and ΣΣΣi refer to the priors, means, and covari-
ances, respectively, of the ith Gaussian. Here, the GMM is
initialized using the k-means clustering algorithm.

Based on the GMM, the segmentation points are estimated
in temporally overlapping points between two consecutive
Gaussians that are temporally adjacent in a GMM. Before
estimating these points, the means and covariances of the
GMM are divided into temporal and spatial components.
The mean and covariance matrices of the ith Gaussian are
represented as

µµµ i =
(
µi,t µµµ i,ΨΨΨ′

)
, (2)

ΣΣΣi =

(
Σi,t ΣΣΣi,tΨΨΨ′

ΣΣΣi,ΨΨΨ′t ΣΣΣi,ΨΨΨ′

)
, (3)

where t and ΨΨΨ
′ refer to the one-dimensional temporal

variable and D′-dimensional spatial variable in the (D′+1)-
dimensional variable ΨΨΨ. The temporally overlapping points
are extracted by estimating the weights of the Gaussians
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along the time component of the GMM. In other words, the
temporally overlapping points are detected by the intersec-
tions of the weights calculated by

hi(t) =
wiN(t; µi,t ,Σi,t)

∑
K
k=1 wkN(t; µk,t ,Σk,t)

, (4)

where i and K refer to the index and the total number of
Gaussians, respectively. As a result, K segmentation points
are estimated from the GMM.

2) Motion Primitive Learning Process: The set of seg-
mented motion trajectories is formalized as DMPs for guar-
anteeing their goal achievement, as mentioned earlier. A
DMP is represented by integrating the set of second-order
differential equations as

τ v̇ = K(g− x)−Dv−K(g− x0)s+K f (s), (5)
τ ẋ = v, (6)

where x, v, x0, and g denote the current position, current
velocity, initial position, and goal position, respectively.
Here, τ , K, and D are a temporal scaling constant, spring
constant, and damping constant, respectively. Finally, f (s) is
an external force term for controlling the motion trajectories
defined as a set of non-linear equations. The non-linear
equations are defined as

f (s) = s
∑i wiψi(s)
∑i ψi(s)

, (7)

where ψi(s) is the ith Gaussian basis function, and wi is a
learnable weight. Here, ψi(s) is also defined as

ψi(s) = e−hi(s−ci)
2
, (8)

where ci and hi are the center and the width of the ith Gaus-
sian basis function. Finally, s is a monotonically decreasing
function ranging from 1 to 0 during the execution of the
motion primitive as

τ ṡ =−αs, (9)

where α and τ are constants for adjusting the rate of
change. The external force is estimated by regulating the
weight wi of (7) in order to generate complex trajectories to
achieve the goal of the motion primitive. The weights are
estimated by locally weighted regression, as this is a well-
known regression problem. As a result, DMPs guarantee the
achievement of their goals against perturbations and changes
in a dynamic environment.

B. Skill Learning and Inference

The motion primitives are represented using only the
segmented motion trajectories. To achieve a task, the motion
primitives should be activated according to their current and
goal configurations. Therefore, a skilligent robot should be
able to infer situation-adequate and goal-oriented motion
primitives from their set to deal with the task in the current
situation. Such a motion primitive is one whose effect is the
closest to achieving the goal situations among all the motion
primitives that can be executed in the current situation.

To infer the motion primitives sequentially, the robot first
has to learn the relationships between task-relevant entities
and motion primitives, and it then has to infer the sequence of
the motion primitives with respect to situation-adequateness
and goal-orientedness under uncertainties and perturbations.

In this context, a probabilistic affordance is formulated as a
BN using the configurations of task-relevant entities acquired
by the segmentation process and DMPs. To learn the BN,
the configurations of the task-relevant entities need to be
clustered based on certain criteria of the motion primitives.
Affordances are then arranged based on a motivation graph
acquired from a nominal sequence disregarding any uncer-
tainties. In the skill inference process, the robot calculates
and propagates motivation values using the probabilistic
affordances and a motivation value propagation algorithm.
The task is finally achieved by sequentially inferring the
motion primitives based on the motivation values.

1) Effect-based Clustering: Affordance is a property that
indicates possibilities for a motion primitive, perceived in
a direct and immediate way without sensory processing.
Among many other definitions, Sahin et al. defined affor-
dance as an acquired relationship between a motion primitive
and a task-relevant entity in the environment, such that
the application of motion primitives to entities generates
a certain effect [13]. To learn probabilistic affordances,
there should be substantial training data. The training data
are acquired by multiple human demonstrations, and the
set of training data needs to be clustered according to its
characteristics. “Effect” can be used as an excellent criterion
for clustering the training data. Clustering is the grouping
of training data that generate the same effect by the motion
primitives (i.e., effect equivalence).

To cluster the training data based on effect, let us look
at the training data. The training data are defined as a set
of three-tuples segmented in the autonomous segmentation
process. A set of three-tuples is defined as T= {T1, ...,TN}.
Here, N indicates the number of training data. A three-tuple
is defined as

Ti =< Zi,Ai,Yi >, (10)

where Zi and Yi are sets of variables that represent the
configurations of task-relevant entities perceived in the seg-
mentation points before and after the motion primitives Ai
acquired by the ith segmentation point, and they are defined
as Zi = {z1

i , ...,zM
i } and Yi = {y1

i , ...,yM
i }. Here, M is the

number of variables that represent the configurations of task-
relevant entities, Ai is defined as ai, which is a variable, since
a robot can execute only a single motion primitive at a time.
The configurations of task-relevant entities associated with
the motion primitives that have the same effects are clustered
according to effect-based clustering. For this, the effect Ei
can be calculated by various strategies as

Ei := f (Yi,Zi), (11)

where f is a function for calculating the effect using Yi
and Zi. In this paper, the function f is defined as oper-
ator 	, which calculates the difference by subtracting Zi
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Fig. 2. Representations of an affordance: (a) causation of an affordance
and (b) Bayesian network representing a probabilistic affordance.

from Yi. Effect Ei is a set of effect values calculated as
Ei = {e1

i , ...,eM
i } = {y1

i − z1
i , ...,yM

i − zM
i }. In addition, the

effect values are substituted in the direction of the effect
values, because using directions can improve the generality
in comparing the similarities of effects over wider ranges.
For example, let us consider an example in which a robot
approaches an object from an initial position that is different
from the goal position. The robot may execute the other mo-
tion primitives for approaching the object, such as stretching
its arm by 20 or 30 cm. Although the motion primitives are
physically different, their effects are the same (i.e., closed)
when using the direction of effect values. In this case, the
direction of the effect is calculated as

e j
i =


1 if y j

i − z j
i > 0

−1 if y j
i − z j

i < 0
0 if y j

i − z j
i = 0

(12)

where z j
i and y j

i are the variables that represent the ith are
the variables that represent the jth training data. As a result,
the training data are finally clustered by exactly comparing
the set of directions.

2) Probabilistic Affordance Learning Process: Probabilis-
tic affordances are learned using a set of clustered training
data. To represent the affordances as BNs, a relationship
between precondition (Zi), motion primitive (ai), and post-
condition (Yi) is formulated. To facilitate this, the causation
between variables has to be determined, as shown in Fig. 2.
Hidden variables si are inserted in the representation of BN
since the hidden variables can include the sensitivity (or
uncertainties) of sensors for perceiving the information about
task-relevant entities. These are defined as Si = {s1

i , ...,sM
i }.

Here, the precondition and hidden variables are mutually
independent of variable ai, and the post-condition variables
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PA1 MVP  

Skill 
inference 
module 

PA2 MVP  

PA3 MVP  

(a*) 

(a*) 

(a*) 

(b*) 

(b*) 

(b*) 

(b*) 

(b*) 

x 

x 

x 

(d*) 

(d*) 

(d*) 

(c*) 

(c*) 

(c*) 

Fig. 3. Illustration of a motivation graph: (a) action probabilities of
probabilistic affordances, (b) motivation values, (c) labels of DMPs, and (d)
triggering signals for DMPs. Here, “PA” and “MVP” indicate probabilistic
affordances and motivation value propagation modules.

are dependent on the hidden and action variables. Finally,
the hidden variables are only dependent on the precondition
variables. That is, the BN assumes that z j

i , s j
i , and y j

i are
independent of all other zk

i , sk
i , and yk

i for j 6= k, and that y j
i

is only dependent on z j
i and ai as shown in Fig. 2(b). Finally,

s j
i is only dependent on z j

i . In this paper, all affordances are
represented using the same BN structure, as shown in Fig. 2.

In BN, the parameters are learned using the training data
that are clustered according to their effects. These consist of
P(Zi), P(ai), P(Si|Zi), and P(Yi|ai,Si) as per the structure of
Fig. 2. P(Zi) and P(ai) are learned as conditional probability
tables or probability distributions using the frequencies of Zi
and ai in the training data. In P(Yi|ai,Si), the variables Si
and Yican also be discrete (e.g., contact sensor) or continuous
(e.g., distance sensor). In addition, ai is a discrete variable
that has the labels of DMPs. The BN that includes both
discrete and continuous variables is referred to as a hybrid
BN. The most common choice to represent a hybrid BN is
the linear Gaussian distribution, in which the child has a
Gaussian distribution whose mean µ varies linearly with the
value of the parent, and whose standard deviation σ is fixed.
When s j

i and y j
i are continuous variables, the distribution of

P(y j
i |ai,s j

i ) can be expressed as

m̂ j
i = P(y j

i |ai = a,s j
i ) = N(a · s j

i +b,σ2)(y j
i )

=
1

σ
√

2π
e−

1
2 (

y j
i −(a·s

j
i +b)

σ
)2
,

(13)

where s j
i and y j

i are the jth hidden and post-condition variable
in the ith cluster, respectively, and ai is a discrete variable
that represents the labels of the DMPs in the ith cluster (or
affordance). P(y j

i |ai = a,s j
i ) can specify all motion primitives

a, because ai is a discrete variable that is handled by explicit
enumeration. The parameters of (13) are individually defined
as

a = 1,b =
∑

N
i=1(y

j
i − s j

i )

N
,σ =

∑
N
i=1((y

j
i − s j

i )−µ)2

N
, (14)

where N is the number of training data.
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Fig. 4. Visualization of motivation value propagation algorithm.

Finally, in P(Si|Zi), Si and Zi can also discrete or continu-
ous variables. When both z j

i and s j
i are continuous variables,

the distributions are assumed to be Gaussian distributions.
3) Inference Process based on Probabilistic Affordance

and Motivation Graph: The robot can infer motion prim-
itives in a given situation using the affordances as they
provide probability values for all the motion primitives.
However, the affordance is not suitable for accomplishing
a task that requires the motion primitives to be performed
in sequence. To achieve a task, the robot should be able to
infer situation-adequate and goal-oriented motion primitives.
For this, the affordances are arranged in a sequential structure
(i.e., motivation graph), as shown in Fig. 3. Motivation values
are calculated using the affordances and a motivation value
propagation algorithm based on the motivation graph.

The motivation graph can be extracted using two methods:
First, the affordances have relationships between precon-
ditions, motion primitives, and post-conditions. Hence, the
graph for achieving a given task can be extracted from
the similarities between the preconditions/post-conditions of
each affordance and the goal situation of the task. Next, the
motivation graph can be generated by extracting the most
frequent sequence of the motion primitives for achieving
the tasks in the sequence that is represented by the task. In
this paper, the motivation graph is acquired using the second
method for calculating the frequency of transitions between
the affordances in the training data.

A motivation value propagation algorithm for calculating
motivation values is shown in Fig. 4. Here, the ith affordance
outputs an action probability m̂i to the Motivation Value
Propagation (MVP) module. The MVP module propagates
the motivation values calculated by the action probabilities of
affordances. The motivation value of the ith MVP is defined
as

mi = wi · m̂i, (15)

where wi is the weighting value for regulating action
probability m̂i (here, m̂i = ∏

M
j=1 m̂ j

i ) according to goal-
orientedness. Note that mi is increased or decreased from
m̂i by the weight wi. Here, wi is defined as

wi = m̂i +w(i−1)i ·d ·w(i−1), (16)

where m̂i is an action probability of the ith affordance and
w(i−1)i is the weighting value that represents the relationship
between the (i− 1)th and the ith affordances, w(i−1) is the

(a) (b) 

Fig. 5. Illustrations of a robot arm and a motion capture system: (a) Katana
robot arm and four objects (i.e., cup, kettle, teabag, and human hand) and
(b) Experimental environment containing a robot arm and a motion capture
system.

weighting value of the (i−1)th affordance, and d is a decay
factor. This algorithm is similar to the spreading activa-
tion algorithm that propagates activation values of limited
source nodes to all associated nodes based on already-
learned weighting values. However, in the MVP algorithm,
the motivation values are all source nodes, and the weighting
values are calculated during runtime. The weight wi is
determined by the action probability and motivation value
of the upper affordances. Moreover, the algorithm satisfies
situation-adequateness as well as goal-orientedness [14].

This algorithm tends to increase the motivation values of
reliable motion primitives and leads to comparatively more
goal-oriented motion primitives in the current situation.

III. EXPERIMENTAL RESULTS

To validate the skill learning and inference framework, a
“tea service” task was performed using a robot arm. In the
task, a robot performs the task using a nominal sequence
as follows: the robot first places a teabag inside a cup after
picking it up. Next, it pours water into the cup using a kettle.
Finally, the cup of tea is delivered to a human.

The motion (i.e., joint and end-effector) trajectories of
Katana (developed by Neuronics) were recorded at 25 Hz.
Moreover, the trajectories of task-relevant entities were ac-
quired by using twelve V100:R2 motion capture cameras
developed by Optitrack, as shown in Fig. 5. The training
data were extracted from 50 demonstrations using a kines-
thetic teaching method. In detail, five demonstrations were
executed for ten different initial and goal configurations of
the robot and four objects (i.e., cup, teabag, kettle, and human
hand). The task-relevant entities were selected as follows: 1)
Weight: This information is measured as the weight taken
by the arm of the robot. 2) Contact: This information is
measured by whether the robot was in contact with an object.
3) Relative distance: This information is measured by the
motion-capture system to recognize the distance between the
robot and entities. These entities were defined as the variables
of BNs, as shown in Fig. 6. Of the three types of variables,
two were defined as discrete variables, with the distance
variables being continuous. Before learning the parameters of
the BNs, the training data acquired using 50 demonstrations
were first segmented by the autonomous segmentation pro-
cess, and each collection of training data was divided into
14 segments. As a result, 700 (=50 demonstrations × 14
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Fig. 6. Structure of the probabilistic affordances in executing the tea service
task. The structure of all affordances is the same. Here, left superscripts t,
c, k, and h indicate a teabag, a cup, a kettle, and a human hand,respectively,
and right superscripts d, c, and w indicate the relative distance, contact, and
weight, respectively. Finally, right subscripts i indicate the ith affordance.

segments) training data were acquired in the segmentation
process.

To learn motion primitives, 14 DMPs were formulated
using the 14 segmented motion trajectories obtained in a
representative training data as shown in Fig. 7. Next, the 700
pieces of training data were clustered using the effect-based
clustering method. Table I lists the results of clustering the
training data based on the effects. Although the training data
were clustered into 31 groups, there were no clusters with
meanings that are incompliant with each other. Even though
the training data of [ApproachingTeabag] were divided into
six groups, for example, they were not included in groups
that contain different meanings. These results are sufficient
for learning the probabilistic affordances. The meanings were
attached to identify the effects, but the robot did not need to
know the semantics to achieve the task.

The parameters of the affordances were learned based on
the network structure and the clustered training data. Here,
the number of training data was determined in the case that
the results of Bayesian inference between preconditions/post-
conditions of the affordances and the goal situations of
the task are greater than 85%. The robot computed and
propagated motivation values according to the motivation
graph as shown in Fig. 8 using (13) and (15). Ultimately, the
robot selected situation-adequate and goal-oriented motion
primitives. Fig. 7 shows the results of the experiments where
the task is executed based on the affordances, motivation
graph, and motivation value propagation algorithm according

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 

Fig. 7. Illustrations of fourteen DMPs: (a) initial configuration, and DMPs
(b) [ApproachingTeabag], (c) [GraspingTeabag], (d) [DeliveringTeabag], (e)
[ReleasingTeabag], (f) [ApproachingKettle], (g) [GraspingKettle], (h) [De-
liveringKettle], (i) [TiltingKettle], (j) [PlacingKettle], (k) [ReleasingKettle],
(l) [ApproachingCup], (m) [GraspingCup], (n) [DeliveringCup], and (o)
[ReleasingCup](i.e., goal configuration).

to the nominal sequence of the task. To achieve the tasks,
each affordance was finished after satisfying the goal of the
selected motion primitives, because the motion primitive is
formalized as a DMP.

Quantitative results for these affordances are presented
in Fig. 9(a), which shows the success rates according
to the number of training data. The affordances were
executed with success rates greater than 90%. About 10%
of failures occurred because the objects escape from the
workspace of the robot arm. Fig. 9(b) shows the success
rates of the task when using motivation graphs to arrange
affordances, which affects the feasibility of accomplishing
the task. In Fig. 9(b), the bars indicate the results of the
following motivation graphs. Type 1 (nominal graph):
b)→c)→d)→e)→f)→g)→h)→i)→j)→k)→l)→m)→n)→o),
Type 2 (abnormal): b)→c)→d)→e)→j)→k)→l)→m)→f)→g)
→h)→i)→o), Type 3 (abnormal): n)→b)→m)→c)→l)→d)
→k)→e)→j)→f)→i)→g)→h)→o), and Type 4 (abnormal):
o)→n)→m)→l)→k)→j)→i)→h)→g)→f)→e)→d)→c)→b)→
a) (see Fig. 7 to understand the meanings of a)−o)). Even
though the performances were significantly affected by the
arrangement of the affordances according to the motivation
graph, the task could be achieved the higher than the
averaged 75% when even using abnormal motivation
graphs.

Several experiments were conducted to verify the frame-
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TABLE I
RESULTS OF CLUSTERING TRAINING USING EFFECTS AND THE

MEANINGS OF 31 CLUSTERS

No. of 
clusters 

# of training data 
contained in the 

clusters 

Patterns of effects 
< ted, tew, tec, ced, cew, cec, ked, kew, kec, hed, hew, hec > 

Labels 

1 25 < -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0 ,0 > [ApproachingTeabag] 

2 50 < 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 > [GraspingTeabag] 

3 15 < 0, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0 > [DeliveringTeabag] 

4 50 < 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 > [ReleasingTeabag] 

5 45 < 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0 > [ApproachingKettle] 

6 5 < 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 > [GraspingKettle] 

7 40 < -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0 > [DeliveringKettle] 

8 50 < 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0 > [TiltingKettle] 

9 40 < 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0 > [PlacingKettle] 

10 50 < 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0 > [ReleasingKettle] 

11 5(teabag), 45(cup) < -1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0 > [ApproachingTeabag] 

12 50 < 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0 > [GraspingCup] 

13 20 < 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0 > [DeliveringCup] 

14 50 < 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0 > [ReleasingCup] 

15 10 < 0, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0 > [DeliveringTeabag] 

16 45 < 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0 > [GraspingKettle] 

17 15 < 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 0, 0 > [DeliveringCup] 

18 5 < -1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0 > [ApproachingTeabag] 

19 10 < 0, 0, 1, -1, 0, 0, 1, 0, 0, 1, 0, 0 > [DeliveringTeabag] 

20 10 < 0, 0, 1, -1, 0, 0, -1, 0, 0, -1, 0, 0 > [DeliveringTeabag] 

21 5 < -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 > [DeliveringKettle] 

22 5 < 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0 > [PlacingKettle] 

23 10 < 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0 > [DeliveringCup] 

24 5 < -1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0 > [ApproachingTeabag] 

25 5(teabag), 5(cup) < -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0 > [ApproachingTeabag] 

26 5 < 0, 0, 1, -1, 0, 0, 1, 0, 0, -1, 0, 0 > [DeliveringTeabag] 

27 5 < 1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0 > [ApproachingKettle] 

28 5 <-1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0 > [DeliveringKettle] 

29 5 < 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0 > [PlacingKettle] 

30 5 < 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0 > [DeliveringCup] 

31 5 < -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0 > [ApproachingTeabag] 

Here, the effects are calculated from the directions of differences by
subtracting Z from Y.

work for slightly different situations. This refers to situations
that are perceived by the robot as entities being located in
initial and goal configurations different from those during
learning, although the goal of the task is the same. In
particular, the experiments were performed to verify the
generation of various sequences of motion primitives in situ-
ations with various human disturbances and other exceptional
cases. Additional experiments were performed as follows: 1)
a human snatched the teabag from the robot arm while it
was approaching the cup, 2) a human moved directly toward
the cup of tea while the robot was preparing it, and 3) a
human inserted a teabag into the cup while the robot was
approaching the teabag.

The affordances recommended motion primitives using
Bayesian inferences under limited perception when some
sensors (particularly the touch and weight sensorsall in-
formation of the entities cannot be obtained in run-time)
could not be used in the additional experiments. The robot
successfully executed the tasks in all the situations by making
fully connected transitions between the affordances based
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Fig. 8. Motivation graph for executing tea service task. Here, fourteen
affordances are used for achieving the task.

on the motivation values generated by combining Bayesian
inference. Fig. 10 depicts these situations. These tasks were
executed with success rates of about 90% despite slightly
different conditions and several human interventions.

IV. DISCUSSION

Even though in the autonomous segmentation process in
this study, joint motion trajectories were used to estimate seg-
mentation points, motion trajectories of various types (e.g.,
end-effector, force, torque etc.) can be used in the process,
as validated in our previous work [11]. The segmentation
process can be also executed without any constraints on the
types of variables or tasks, since segmentation points are
estimated in the GMM domain. In addition, the segmentation
results were found to be similar (about 90%) to the results
of manual segmentation.

In motion primitive learning, the DMPs possess the fol-
lowing advantages: 1) The DMPs can achieve their goals
despite changes in goal positions, initial positions, or both. 2)
The motion trajectories can be temporally scaled by adjusting
a variable. In spite of these advantages, it is difficult to learn
an external force when the motion trajectories to be learned
are too long. Therefore, DMPs should certainly be learned
using the segmented motion trajectories.

Situation-adequate motion primitives were well estimated
although the affordances were formulated using naı̈ve BNs.
However, the structure of BN may be learned in case of
several tasks. Especially, BNs will have to learn their struc-
tures to represent tasks that have causal relations between
task-relevant entities.

Finally, some tasks may be achieved using situation-
adequate motion primitives. However, most tasks would not
be achievable, since some oscillation in inferring the motion
primitives usually occurs as a result of the actions being
selected without consideration of their goal-orientedness.
Therefore, goal-orientedness is an important property that a
robot uses to infer a suitable action to achieve a given task.

114



Fig. 9. Quantitative results of the affordances and motivation graphs in the
different initial and goal configurations: (a) success rates according to the
number of training data used in the affordance [ApproachingTeabag] for the
action approaching a teabag in the different configurations of task-relevant
entities, and (b) success rates according to the types of motivation graphs.
Here, 1, 2, 3, and 4 show the success rates of the different motivation graphs.

However, it is very difficult to design goal-orientedness in
cases that need rare or inexperienced sequences. Moreover,
it is not easy to achieve the given tasks under uncertain en-
vironmental conditions even using well-planned sequences.
In this study, using the skill inference process, the robot in-
ferred situation-adequate and goal-oriented motion primitives
to achieve a daily-life task under slightly different initial
positions of itself and the entities and human interventions,
without designing all sequences of skills. Additionally, the
robot could compute action probabilities using the Bayesian
inference algorithm, even under limited perception, and
quickly executed skills using the affordance-based motivation
values.

V. CONCLUSION

In this paper, we proposed a unified skill learning and
inference framework to handle uncertainties and perturba-
tions. Based on the framework, it is possible for a robot
to possess the following three abilities: i) learning motion
primitives, ii) learning the meanings of motion primitives,
and iii) recombining skills. The framework was designed
with autonomous segmentation, skill (i.e., motion primitive
and its meaning) learning, and skill inference. To validate
the framework, we provided experimental evaluations using a
daily-life task performed by a robot arm. In future works, we
intend to extract formal rules from BNs to create innovative
sequential combinations of skills for achieving novel tasks,
in a way similar to how humans create a number of unique
sentences using words and grammar rules.

(a) 

(b) 

(c) 

Current Configuration Human Perturbation 

Current Configuration Human Perturbation 

Current Configuration Human Perturbation 

Fig. 10. Illustrations of human perturbations in the additional experiments:
(a) a human directly moves to the cup while the robot is pouring water, (b)
a human places the teabag into the cup while the robot is approaching the
teabag to grasp it, and (c) a human snatches the teabag from the robot while
it is placing the teabag into the cup.
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