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Abstract— In this paper we investigate the use of optimal
control techniques to improve Functional Electrical Stimulation
(FES) for drop foot correction on hemiplegic patients. A model
of the foot and the tibialis anterior muscle, the contraction of
which is controlled by electrical stimulation has been estab-
lished and is used in the optimal control problem. The novelty
in this work is the use of the ankle accelerations and shank
orientations (so-called external states) in the model, which have
been measured on hemiplegic patients in a previous experiment
using Inertial Measurement Units (IMUs). The optimal control
problem minimizes the square of muscle excitations which
serves the overall goal of reducing energy consumption in the
muscle. In a first step, an offline optimal control problem
is solved for test purposes and shows the efficiency of the
FES optimal control for drop foot correction. In a second
step, a Nonlinear Model Predictive Control (NMPC) problem
- or online optimal control problem, is solved in a simulated
environment. While the ulitmate goal is to use NMPC on the
real system, i.e. directly on the patient, this test in simulation
was meant to show the feasibility of NMPC for online drop
foot correction. In the optimization problem, a set of fixed
constraints of foot orientation was applied. Then, an original
adaptive constraint taking into account the current ankle
height, was introduced and tested. Comparisons between results
under fixed and adaptive constraints highlight the advantage of
the adaptive constraints in terms of energy consumption, where
its quadratic sum of controls, obtained by NMPC, was three
times lower than with the fixed constraint.

This feasibility study was a first step in application of NMPC
on real hemiplegic patients for online FES-based drop foot
correction. The adaptive constraints method presents a new and
efficient approach in terms of muscular energy consumption
minimization.

I. INTRODUCTION

One of the major disabilities caused by hemiplegia, usually

due to a cerebro-vasucular accident (CVA), is the drop foot

syndrome. It consists on an inability of the foot to perform

a dorsiflexion (moving upward) during the swing phase of

walking gait. As a consequence, hemiplegic patients adapt

their walking gait to avoid dragging the toe on the ground.

Excessive hip and knee flexion as well as an extreme lifting

motion of the hip are applied for compensation, leading to

a non natural and highly inefficient gait.

The drop foot correction (DFC) gathers techniques and

solutions to overcome these problems. The most classical

one is the use of Ankle-Foot Orthosis (AFO), which ensures

a rigid fixation of the ankle at a given position permanently

[1]. This solution is simple and commonly used, however it

presents some issues related to the non-natural behavior of

*IWR, Heidelberg University, Germany. mourad.benoussaad,
katja.mombaur@iwr.uni-heidelberg.de

**Demar, INRIA/LIRMM, France. azevedo@lirmm.fr

the foot. A new generation and more complex powered AFO

has recently been developed [2] to overcome the passivity

problems of the previous version. Both solutions don’t offer

any therapeutic benefit to hemiplegics patients in terms of

dorsiflexion recovery and are cumbersome for them.

Functional Electrical Stimulation (FES) was used in sev-

eral application to restore the functional behavior in the

paralyzed limbs [3]. It was also applied for DFC by con-

tracting artificially the tibialis anterior (TA) muscle, which

is responsible of the dorsi-flexion of the ankle [4]. Afterward,

several FES-based systems for DFC were proposed and

applied, as reviewed in [5]. A hybrid system combining AFO

and an FES controller was also proposed [6].

A foot-switch it is usually used as a on/off sensor that

detects the heel-off, in order to start the stimulation and

activate the TA muscle. The applied stimulation patterns are

classically predefined as a trapezoid shape [4]. A system

which allows a dynamical adjustment of the stimulation

intensity was proposed in [7], where the clinician can specify

graphically the shape of the stimulation intensity envelope.

One drawback of FES applications is the induction of mus-

cular fatigue and these predefined stimulation shapes induce

more muscular fatigue due to their empirical aspect and the

fact that they don’t include any information about the ankle-

foot system behavior or patient specificities. In addition, the

application of predefined stimulation suffers from the lack

of adaptability to changes of the musculo-skeletal system

behavior (muscle fatigue) and of the environment (stairs,

slopes etc.).

The authors in [8] showed the inconsistency of the trape-

zoidal simulation shapes by comparing the FES-induced

EMG with the natural EMG profile. Healthy activation pat-

terns are characterized by two main phases of activity during

walking, which was applied by [9], [8] to produce more

natural stimulation in FES. However, this method requires

the use of cumbersome and bulky equipment and sensors,

which is not well accepted by patients. Therefore, an adaptive

control stimulation system for DFC is required. Then, a new

generation of sensor system is jointly used as an alternative

to a foot-switch sensor [10], [11], [12], [13]. These easy-

to-use sensors are the Inertial measurement Units (IMUs),

which mainly provide accelerations and gyroscopic data. A

neural network has been combined with the fuzzy feedback

controller [14] or with the PID feedback controller [15] to

adjust the optimal electrical stimulation.

Optimal control strategies, based on models of tibialis an-

terior muscle and ankle joint, have been proposed and tested

in [16], to calculate the optimal stimulation which satisfies
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Fm, induced by the electrical stimulation and defined by a

classical three component model [19], as below:

Fm = x1Fmax f f l(x
ext
3 − x2) f f v(x

ext
4 − x3) (2)

where, Fmax is the maximal isometric force of the TA muscle.

f f l(x
ext
3 − x2) = exp

(

−

[

lCE−lCE,opt

WlCE,opt

]2
)

is a non-linear rela-

tionship which links the generated force to the length of the

muscle and therefore to the ankle joint angle. lCE,opt is the

optimal length of the fiber at which the maximal force can be

generated and W is the shape parameter, which defines the

range of muscle displacement where a force still remains per-

ceptible. By assuming a constant tendon length lT , we obtain

the length of the muscle fibers as lCE = lMT − lT . lMT is the

length of the muscle-tendon complex for the TA that depends

linearly on the ankle joint angle: lMT = lMT,0 + d(xext
3 − x2)

where lMT,0 is the rest length of the muscle-tendon complex,

which is reached when the ankle joint is at a right angle

(i.e. xext
3 − x2 = 0). The derivation of the of muscle-tendon

length equation, allows to obtain the contraction speed of the

muscle vCE = d(xext
4 − x3). f f v is a non-linear force velocity

relationship that models the dependency of the muscle force

on the contraction speed of the muscle vCE . It is described by

two hyperbolic relationships, which ensure a continuous first

derivative at the connection point between them (i.e. when

vCE = 0):






















f f v(x
ext
4 − x3) =

1−
vCE
vmax

1+
vCE

vmax fv1

if vCE < 0 (contraction)

f f v(x
ext
4 − x3) =

1+av
vCE
fv2

1+
vCE
fv2

else (extension or isometric)

(3)

The maximal contraction speed vmax as well as the factors

fv1, fv2 and av are subject-specific and muscle-specific pa-

rameters. Names, values of the whole parameters involved

in the current model are gathered in Table II.

B. Experimental set-up for inertial data acquisition

The external states xext can not be computed or estimated

using the current model, but are required as an input for

this model and should be observed using the IMUs mea-

surements. For an implementation of a feedback control

scheme, these states should be measured online, in a real time

directly on the patient. In the current work, we investigated

the feasibility of the optimal control strategies (offline and

online) before the real application on the patients. In order

to simulate the treatment of this real time measurement for

the estimation of the external states data in the optimal con-

trol procedures, we used experimental IMUs data obtained

previously from walking measurements on three hemiplegic

patients, but fed it sequentially as if it were actually measured

at that time. It would not be possible to use data from

patients with drop foot syndrome and without stimulation

since the patients in this case adapt the motions of the rest

of the leg in order to avoid dragging the toes on the ground,

and such leg trajectories do not compare to leg motions

of healthy subjects or of stimulated patients. We therefore

use data from experiments with drop foot patients which

receive a classical stimulation (trapezoidal shape) during the

walking gait observe using a peroneal nerve stimulator, as

presented in Fig. 1-(b). We assumes that the variation in the

external states (uncontrolled limbs) between applying a non

optimal stimulation and optimal one is negligible, while a

stimulation-based DFC is applied.

These experiments have been performed in Grau-du-Roi

rehabilitation center (CHU Nimes- France) on hemiplegic pa-

tients, where an agreement from the local ethical committee

and a consent from the patients were obtained. The patients

were walking on a treadmill when the inertial measurements

are acquired through the IMUs sensors. The IMUs, placed

in the bottom of the shank and close to the ankle joint (Fig.

1), includes 3 axis Accelerometers, 3 axis Magnetometers

and 3 axis Gyroscopes. Due to the well known sensitivity

problems of Magnetometers [20], their data are not used.

Gyroscopes provided the absolute velocity orientation of the

shank α̇S. These data were filtered and integrated to get the

orientation of the shank αS. Then, the orientation information

were used to obtain the two accelerations ax,A and az,A in the

global frame, from the accelerations measured in the frame

of the accelerometer sensors and after removing the gravity

acceleration [20]. Data were filtered using 5th order moving

average filter [21]. It is well known that the integration of

the inertial data results in drift problems as shown in Fig. 2

for some cycles, however, since we used only the first swing

phase (from the Toe-Off (TO) to the Hell Strike (HS)), the

problem of drift is not as dominant.
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Fig. 2. Absolute shank orientation obtained by integration gyroscopic
measurements.

III. OPTIMAL CONTROL STRATEGIES

We use optimal control techniques to generate optimal

trajectories for the foot respecting the dynamics of the system

as well as other constraints. The goal of the optimization

problem is not to track a desired motion for the foot (i.e.

mimic the behavior of a healthy foot which may not be

desirable for a patient) but rather to optimize a criterion

linked the energy consumption or fatigue associated with

the walking motion. In this study, we have considered two

different types of optimal control problems, namely:

• Offline optimal control problems that determine the

whole solution over the whole duration (in this case the

swing phase time) based on the system model without

taking feedback of the environment into account
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• online optimal control problems - or better nonlinear

model predictive control problems - which consist of

repetitive re-optimizations of the system over a short

horizon based on the system model, but taking current

state estimations into account as new starting values.

A. Offline optimal control

The aim of this offline optimal control problem to deter-

mine the best possible motion for the musculo-skeletal model

of the lower leg, according to the criterion specified below.

The same approach was already used in [16], but as outlined

above, the model and the type of data used are different. We

study the result of optimal control trajectories for the shank

angle and the ankle position prescribed by external data,

leaving the the relative angle of the foot free for optimization.

Here we only optimized the the swing phase, but the same

approach could be used for the full step if the full multi-phase

model was considered. We minimize the integral over the

squares of the muscle excitation u1, i.e. min
∫ T

0 u2
1dt which

results in an optimal control problem of the following form:

min
x,u

∫ T

0
uTWudt (4)

s. t. ẋ(t) = f (t,x(t),u(t)) (5)

x(0) = x0, u(T ) = xe (6)

r(t,x(t),u(t))≥ 0 (7)

In these computations, the total time T of the swing phase

is fixed to the time set by the data (T = 0.36sec), but it

can also be left free, as we have shown in [16] . Constraint

(eq.(5)) takes into account the dynamic model of the foot,

and eq.(6) denotes the initial and final conditions for the

trajectory (foot position at the beginning and end of the swing

phase which in these computations are fixed to reference

values). Eq.(7) describes different types of inequality con-

straints on the motion, such as upper and lower bounds on

state and control variables as well as constraints guaranteeing

foot clearance which is one of the major objectives of FES

drop foot correction. For the solution of the optimal control

problem we use the powerful optimal control code MUSCOD

developed at Heidelberg University [22], [23] which uses

a direct method, discretizing the control variables based

on functions with local support, and a multiple shooting

parameterization for the state variables. The large but struc-

tured nonlinear programming problem resulting from these

two discretizations is solved using specially tailored SQP

(sequential quadratic programming) methods.

B. Nonlinear Model Predictive Control

The offline optimal control computations described above

serve as a preparation for the actual goal of this study which

is to optimize FES stimulation online. Nonlinear model

predictive control (NMPC) is a form of online optimization

taking into account real world information in form of state

estimations at a given sampling rate and uses a repeated

solution of off-lie optimal control problems. At each sam-

pling point, an optimal control problem is solved for the

model for a selected short horizon from the present state,

and the solution determines the next control action. This

control sequence is executed until a more recent optimal

control problem solution is available at the next sampling

point (see [24] for more details). The problem that we solve

in the online optimization context is similar to the one in the

previous section (4) -(7), except for the facts that the time

is adjusted to the prediction horizon (0.18sec), instead of

the full swing phase, that the start value is always equal

to the current estimated state, and the final constraint is

removed since it is not valid for the horizons ending before

touchdown. Instead a term punishing the deviation from this

end constraint is added as a least squares term to the objective

function with some smaller weight.

The NMPC problems arising in this study are solved

by the online version of the code MUSCOD mentioned

above which is based on the efficient real-time iteration

scheme [25]. It is based on the strategy of not finding exact,

but only approximate solutions of the individual open-loop

optimal control problems and efficiently splits the required

computations into those that can be done beforehand, and

those that must be done online based on the feedback. In

this study, we do not yet perform online optimization in the

loop on a real subject, but perform real-time optimization

based on previously collected data of external states in order

to demonstrate the feasibility of the concept.

IV. RESULTS AND DISCUSSIONS

In this work, optimal stimulations for drop foot correction

have been investigated through the most relevant criteria

and constraints of the optimization problem. In addition, the

feasibility of an online optimal control was tested. Thereafter,

some optimal control results are presented.

In the first test, we investigated the optimal control as

an offline optimization problem without using a predefined

trajectory of the foot orientation. Indeed, we minimized here

a quadratic criterion of the control u1 during the whole swing

phase under a the following set of constraints:






x1(T ) = 5◦ the final angle

x2(T ) = 0 the final velocity

x1(t)≥−15◦ angles each time

(8)

Results of the first test are presented in Fig. 3, where controls

(Fig. 3-(a)) and muscle activation levels (Fig. 3-(c)) highlight

two peaks of activity at the beginning and at at the end of the

swing phase and a medium activation somewhere else. These

two activity peaks of the muscle are comparable to the shape

of two activities established in [9], although the time of swing

phase is shorter here. The foot angle trajectory (Fig. 3-(b))

and velocity trajectory (Fig. 3-(d)) respects perfectly the fixed

constraints in the very short time of the swing phase and with

the imposed external states. This demonstrates the capability

of the optimal stimulation to correct the drop foot syndrome

using an efficiency-based objective function and avoiding a

foot angle trajectory tracking. This offline optimization can

be useful to provide a ready-to-use optimal stimulation for

a DFC, instead of the classical trapezoidal shape. However,

it must be expected that there is a - more or less drastic -
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Fig. 3. Offline optimization results with a fixed constraint of foot
orientation. (a) The muscle excitation (u1); (b) The foot orientation angle
(x2); (c) The dynamic activation of TA muscle (x1); (d) The foot orientation
velocity (x3).

mismatch between the model and the reality, since on the

one hand the model is quite simple and on the other hand

the external data used as input may be quite far off from

the real motion of the external states. If optimal control is

performed offline (i.e. the whole computation is done before

the motion or at least the step starts), the external states are

obviously not determined from current measurements but are

guessed based on older information or data that goes back

at least to the previous step. All this makes online optimal

control a necessary tool for this problem. In the next test case,

we therefore applied an NMPC method to control online

a simulator of the real ankle-TA system. The horizon of

prediction was chosen equal to 18 steps which correspond to

0.18sec. Results of the online NMPC method are presented

in Fig. 4-(a). It shows high and oscillating excitation levels

at the beginning of the swing phase. These controls applied

to the simulator highlights however a smooth foot angle

trajectory as presented in Fig. 4-(b). This excitation levels

oscillation is however acceptable since the ankle angle is

smoothed by to the natural filtering of the musculoskeletal

system. The foot angle trajectory (Fig. 4-(b)) shows that

the foot inclination inequality constraint is respected, except

before 0.05sec, where angles are under −15◦. In the real-

time iteration scheme, a lot of efficiency is gained by the

fact that no full convergence of the SQP method is achieved

in every open-loop optimal control solution, since it is only

used for the computation of the next control action. This

however implies that not all constraints are always satisfied,

since SQP methods only guarantee feasibility at convergence

and not for every iterate. However, these foot inclinations

still remain acceptable to avoid the drop foot problem, so no

other actions have to be taken to avoid infeasibility. Fig. 4-(b)

shows also that the final foot angle target was well reached,

but a bit quicker than actually required, which made the

optimal control results more energy consuming. This is due

to the combination of the control and the least square error

in the objective function. Further increasing of the control

weight may decrease the accuracy of the final foot inclination

target. Other formulations for the final ground contact will

be investigated in the future. The formulation of the swing
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Fig. 4. NMP control results with a fixed constraint of foot orientation. (a)
The muscle excitation (u1); (b) The foot orientation angle (x2).

foot clearance which is important for the drop foot syndrome

was not straightforward with the current model. Since only

accelerations of the ankle and no positions are measured

and used in the model, the height of the toes can not be

directly described for the constraints as it was done in [16].

Instead, a constraint based on the foot ankle is formulated

using some heuristics. In the first test, the foot inclination

constraint could not be bigger than −15 since it is the start

angle. On the other hand, the foot angle constraints is not

the same during the swing phase and depends on the height

of the foot. Thus, an adaptive inclination constraint is more

efficient and required. In the next test case, we have tested an

original adaptive inclination constraints based on the model

of the ankle-foot and using the online position of the ankle.

If the ankle position in Z axis xz,A (height) is known, the

minimum allowed foot orientation αF,min present an adaptive

constraint, which the model is illustrated by Fig. 5-(a).

To prove the feasibility and to test the relevance of our

adaptive foot orientation constraints method, an ankle height

trajectory (see Fig. 5-(b)), obtained on valid subject with

motion capture system, was for instance used. It has the same

swing phase duration. Based on the model of Fig. 5-(a), It

is easy to establish a function of the minimum allowed foot

orientation αF,min = −arcsin
(

xz,A−∆h

LFoot

)

. Where LFoot is the

foot length and ∆h is a safety distance. It should be chosen

carefully to avoid an excessive constraint which increase

the activation and then the muscular energy consumption.

From the real ankle trajectory (Fig. 5-(b)), the trajectory

of αF,min is calculated for
[

LFoot = 26cm, ∆h = 3cm
]

as

presented in Fig. 5-(c). Therefore, the adaptive constraint,

that we used in the next optimal control strategies, consist

on the condition αF ≥ αF,min. This adaptive constraint model

is realistic since it ensure a positive final constraint foot

orientation, which is appropriate for the heel strike. In this

last test, the new adaptive foot orientation constraint (Fig. 5-

(c)) was tested in the NMPC method, described in the second

test. Therefore, the fixed inequality foot orientation constraint

was replaced by the adaptive one. While the minimized

objective became a quadratic criterion of the control u1,

since the adaptive constraints ensure intrinsically a positive

final foot orientation from 0.225sec. Results of this adaptive
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Fig. 5. Model of foot orientation adaptive constraints (a), real data of ankle
heights (b) and the calculated adaptive minimal foot orientation αF,min (c).

constraint-NMPC method are resumed in figure 6. Optimal

controls, shown in Fig. 6-(a), exhibit clearly a lower muscle

excitation than in the results of the NMPC method with a

fixed constraint (Fig. 4-(a)). In addition, the foot orientation

constraints were perfectly respected, since foot angles (Fig.

6-(a)) are all the time above the minimum foot angles (Fig.

5-(c)).
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Fig. 6. NMP control results with an adaptive foot orientation constraint,
which depends on the position of the ankle (real data); (a) The muscle
excitation (u1); (b) The foot orientation angle (x2).

The quadratic sum of controls obtained for each method

are summarized in Table I. It highlights three times lower

quadratic sum of controls with adaptive constraints (0.04)

than with fixed constraints (0.12). This comparison shows

even lower level of quadratic controls with the first method

(0.027). This is due to the fact that this offline optimization

considers the global movement, unlike the NMPC method

which optimizes online, and thus is more suitable for DFC

application.

TABLE I

QUADRATIC SUM OF CONTROLS OBTAINED IN EACH METHOD

Methods
Quadratic sum of

controls

Offline optimization with fixed constraints
(Fig. 3)

0.027

NMPC with fixed constraints (Fig. 4) 0.120

NMPC with adaptive constraints (Fig. 6) 0.040

When the patients have different tones of drop foot symp-

toms, this method still remain applicable since the model is

close enough to each patient behavior. For that, a parameters

identification procedure is required and planned in future

works. Application of NMPC-based drop foot correction on a

real patients requires to solve following critical points, which

are planned in the future works. From muscle excitations u1

of each results, the pulse width or intensity of stimulation

pulses can be directly obtained through the recruitment

function [26]. Real foot orientation measurements will be

acquired online using an additional IMUs placed on the

foot. Thereafter, ankle heights should be obtained online

using a double integration of the IMUs accelerations az,A.

However, due to the well known drift problems, this method

requires specific powerful filtering techniques [20], which

will be investigated. In addition, in NMPC application on a

real patient, the external states can not be measured on the

future horizon but only at the current time. Thus, prediction

of these external states based on previous steps or other

previous information will be investigated. The start of the

stimulation control should be done automatically. Therefore,

an automatic gait phase detection based on the Inertial data

[13] is planned as well.

V. CONCLUSIONS

In the current work we have investigated the optimal

control of ankle joint for the drop foot correction (DFC) in

hemiplegic patients through Functional Electrical Stimula-

tion (FES) applied on the tibialis anterior muscle. To satisfy

the goal of a energy consumption minimization, no trajectory

of the foot orientation was predefined or tracked. Instead,

several constraints (fixed and adaptive) of the foot orientation

have been investigated, where the objective criteria were

mainly a quadratic criterion of controls. Firstly, the optimal

control problem has been investigated in the offline mode.

Then, Nonlinear Model predictive control (NMPC) was

tested online using a simulator of the real ankle joint-tibialis

anterior system. This feasibility study allowed the prepara-

tion of NMPC application for a real drop foot correction. Test

results highlight the efficiency of our approaches for the drop

foot correction. Energetic comparisons of results show that

the adaptive constraints method is more appropriate than the

fixed constraints method, even if both reach the objectives

of the drop foot correction.

The NMPC-based application for drop foot correction on

a real hemiplegic patients is planned in future works. It

requires to solve several critical issues mainly related to

online measurements, their availability in the horizon of

prediction and their post processing online and in real time.
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TABLE II

MODEL PARAMETERS AND THEIR VALUES, WHOSE SOME ARE

ESTIMATED FOR AN AVERAGE SUBJECT (75kg−1.75m)

Parameters Signification Values [unit]

Tact Activation constant time 0.01 [sec]
Tdeact Relaxation constant time 0.04 [sec]

J Inertia of the foot around ankle 0.0197 [kg.m2]
d Moment arm of TA w.r.t the ankle 3.7 [cm]
B Viscosity parameters 0.82

cF COM location w.r.t the ankle 11.45 [cm]
mF Mass of the foot 1.0275 [Kg]
av First force-velocity parameter 1.33

fv1 Second force-velocity parameter 0.18

fv2 Third force-velocity parameter 0.023

vmax Maximal contraction speed (shortening) −0.9 [m/sec]
Fmax Maximal isometric force 600 [N]
W Shape parameter of f f l 0.56

lT Constant tendon length 22.3 [cm]
lMT,0 Muscle-tendon length at rest 32.1 [cm]











a1

a2

a3

a4

a5











Parameters of elastic torque TEla











2.10
−0.08
−7.97

0.19
−1.79











thank Fabien Jammes (INRIA Rhône-Alpes) for providing

the experimental IMUs data and for several explanations.
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