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Abstract— This article presents a novel algorithm for multiple
odor source localization by a multi-robot system based on
a virtual cancelation plume approach. The proposed method
is based on rendering a previously declared odor source
invisible to the robots so that the declared source and the
odor plume it generates do not interfere with the effects of
other existing plumes, allowing the localization of the remaining
sources. Exploration and plume tracking by the robots is
achieved using a decentralized asynchronous particle swarm
optimization algorithm. The divergence operator is used to
declare the odor sources. A set of simulations and real world
experiments are performed on two different scenarios on a
controlled environment using a swarm of 5 robots to validate
the proposed methodology. Results show that the virtual plume
cancelation algorithm can be successfully used to find multiple
odor sources, even when two plumes overlap. It can also extend
the operation of many odor source localization algorithms
developed for single source localization.

I. INTRODUCTION

Robotic odor-sensing technology or simply robotic ol-
faction has attracted substantial interest by the research
community in recent years [1]–[7]. This interest is driven
by the developments in the robotics and sensing technologies
along with the vast number of areas and applications of robot
olfactory systems including safety, security, and environmen-
tal inspection to name a few. Robots equipped with chemical
sensors can be used instead of humans in areas with odor
contamination for purposes such as inspection, detection
of leakages leading to the contamination source, providing
continuous monitoring of the contaminated environment,
for specific characterization of the odor, for building the
chemical concentration map of the environment and others.

It is now well established that the process of odor source
localization can be divided in three stages: (i) odor search
and plume detection, (ii) odor plume tracking and (iii) odor
source localization. In the past years, several algorithms have
been proposed to address one or several of these stages, either
using single or multi-robot systems, but in most cases, these
algorithms assumed environments containing a single odor
source. This observation is confirmed by a recent survey
about robot algorithms for localization of multiple emission
sources [8]. This survey addresses all types of sources, but
gives particular focus to odor sources. A common procedure
to localize multiple odor sources consists on generating an
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odor map of the environment and later processing that map in
order to identify areas with local concentration maxima [9].
There is also a wide range of work related to multiple
odor source mapping without explicit source declaration [10].
Stochastic searching strategies, like Biased Random Walks
(BRW) [5], Evolutionary Strategies (ES) [11], and Particle
Swarm Optimization (PSO) [12], are more effective than
mapping methods to localize a dominant source inside the
search space, but tend to have problems dealing with other
existing sources. Some strategies, e.g. Glowworm Swarm
Optimization (GSO) [13], deal with multiple sources using
a large number of searching elements that are separate
into subgroups that move toward the nearest peak rather
than toward a global maximum, on the other hand these
methods have only been tested with smooth gradients, not
with chemical plumes. In [11] and [12], the influence of
localized sources was managed by collecting them, so their
effect would disappear, however this mechanism might not
always be possible or desirable. This work proposes a novel
methodology, virtual cancellation plume, so each time an
odor source is localized, its effect downwind is estimated
and published to the searching robots, so they can take into
account the expected effect of the known plume across the
search space and proceed with the search process, eventually
finding other existing plumes and sources.

II. VIRTUAL CANCELLATION PLUME

Resorting to chemical cues while searching for an odor
source is almost unavoidable. When looking for multiple
odor sources it is likely that the plume generated by one
source will get in the way of finding other sources. The
idea behind the virtual cancelation plume algorithm is quite
simple and naive, to cancel the effects of a declared odor
source on the robot’s gas sensor readings. In a nutshell, the
goal is to make an odor source invisible to the robots.

In order to achieve this goal we propose that once an odor
source is found a model of the plume being created by that
source is generated. In order to do this the robot or robots
must be able to estimate the necessary parameters. This
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Fig. 1. Diagram representing the concept behind virtual plume cancelation.
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model will then be used to affect the readings of the gas sen-
sors equipped on the robots. This concept is represented in
Figure 1. In this work virtual plume cancelation is achieved
using a Gaussian plume model. The Gaussian model is
probably one of the simplest plume models commonly used,
allowing to prove the concept of virtual cancelation plume
without introducing a high degree of complexity into the
problem. Let c̄ be the mean chemical concentration at any
given x and y given by equation (1) where Q is the emission
rate of the source, ū is the mean transport velocity (the x

axis is aligned with ū) and �

y

(x) and �

z

(x) are the Gaussian
plume dispersion parameters that for non-buoyant releases
can be approximated by power laws in x as defined by
equations (2) and (3) [14]. The three main requirements for a
Gaussian plume model to hold are a continuous odor source,
uniform wind flow and homogeneous turbulence. Notice that
since the robots’ gas sensors are located at a fixed height we
assume that z = 0 throughout this work, simplifying the
Gaussian plume model to a 2D model without the last term
of equation (1).
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exp

✓
� y

2

2�

2
y

(x)

◆
exp

✓
� z

2

2�

2
z

(x)

◆

(1)

�

y

(x) = ax

p (2)

�

z

(x) = bx

q (3)

As mentioned previously the robot or robots will have to
estimate both the odor source position and the plume model
parameters in order to properly cancel it. These parameters
will depend on the type of model being used to generate
the virtual cancelation plume, in this case the parameters of
the Gaussian plume model. More complex plume models
might require more information (e.g. a representation of
the obstacles present in the environment). The odor source
position is estimated by the divergence operator [15] used
during the odor source declaration stage. The release rate
Q is estimated using the principle of the integral mass-
conservation condition in equation (4). The robots are also
able to gather data regarding ū using anemometers. A non-
linear least squares estimator using the gas readings sampled
by the robots is used to estimate the remaining parameters.
Non-linear least squares was chosen due to the fact that it
is a cheap method from a computational point of view, this
choice is related to the swarm approach in which the virtual
cancelation plume algorithm was tested as we will see later
in the article.
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i

, y, z)ū dy dz = Q (4)

Since the idea is to envelope the plume generated by a
declared source, the model used for cancelation should take
into account the following factors (i) plume intermittency,
(ii) the error in the estimation of the odor source position

du
dw

dl

Fig. 2. The virtual cancelation plume should completely envelope the
plume being canceled.

and (iii) the error in the estimation of the Gaussian plume
model parameters.

Plume intermittency is one of the phenomena that can
be observed in odor propagation. Practically speaking, if
an observer is inside a stable plume at a certain position
sampling the chemical concentration at a fixed rate, although
the average of the sampled values will tend to a fixed value
over time, certain readings will display values considerably
higher or lower than the average. This might result in odor
peaks being displayed inside the canceled plume which
should present gas readings close to those of clean air.

Cancelation values generated by the virtual cancelation
plume should be able to deal with the intermittency of the
plume being cancelled. The cancelation plume will generate
mean values of chemical readings whereas the plume be-
ing cancelled will provide instantaneous values. A simple
solution to the problem would be to set every gas reading
sampled inside the cancelling plume to a clean air value. This
would however also cancel possible unfound sources located
inside the cancelled plume. For this reason we propose that
the cancelled gas readings are calculated using equation (5)
where c is the cancelled gas reading, c

s

is the gas sensor
reading, c̄

vcp

is the mean cancelation gas reading generated
by the virtual cancelation plume and c

a

is the value for clean
air sampled by the gas sensors. The value of ↵ can change
over time and is calculated by the robot marking the odor
source in order to ensure that the virtual cancelation plume
can cope with the intermittency of the cancelled plume and
the error in the estimation of the odor source release rate and
flow rate.
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The error in the estimation of the odor source position
will depend on the technique used during the odor source
declaration stage. This will obviously have a major impact
on the quality of the cancelation, as a wrong estimation
of the position of the source might result in part of the
plume not being cancelled. The error in the estimation of
the Gaussian plume model parameters will in this case also
depend on the odor source declaration algorithm, as the
divergence is not only used to estimate the odor source
position, but also its release rate. The estimation of ū will
depend on the error of the anemometers used and the error
of the remaining parameters will depend on the non-linear
least squares method. To cope with these uncertainties we
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(a) The elements of swarm-based
virtual cancelation plume.

(b) Step 1: The swarm con-
verges around an odor source using
DAPSO.

(c) Step 2: A robot runs the diver-
gence, marks the source and can-
cels it.

(d) Step 3: The remaining robots
go back to exploration.

Fig. 3. Diagram representing the steps of the swarm-based virtual odor source cancelation algorithm.

propose to cancel the desired odor source using a plume
whose source is placed slightly upwind and is slightly wider
and longer. The diagram in Figure 2 illustrates this idea. The
error in the estimation of the parameters needed to setup the
virtual cancelation plume are reflected in the values of d

u

,
d

w

and d

l

.
In order to inflate the plume width and length we must

first present the definition of these plume characteristics
according to the Gaussian model. We are looking for the
values of x and y where the chemical concentration is equal
to the minimum quantity measurable by the gas sensors
equipped on the robots, i.e. the plume threshold, c

th

. The
plume width and length will thus vary with Q and ū.
Higher release rates will generate wider and longer plumes
whereas higher wind flows will result in shorter and thinner
plumes. The chemical concentration along the centerline can
be represented by equation (6). Solving for c̄(x, 0, 0) = c

th

we get the plume length l in equation (7). The length of the
virtual cancelation plume is equal to l+d

u

+d

l

. In this work
these values were chosen experimentally and are equal to the
mean absolute error of the odor source position error.
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The average chemical concentration at a crosswind dis-
tance y from the plume axis can be calculated using equa-
tion (8). Solving for c̄(x, y, 0) = c

th

we get the plume width
w(x) in equation (9). The width of the virtual cancelation
plume is equal to w + 2d

w

.
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The results in equations (9) and (7) are integrated into the
Gaussian expression in (1) (for z = 0) to provide the model
for the virtual cancelation plume found in equation (10). This
is the virtual cancelation plume model that we propose to be
used to cancel plumes that can be represented by a Gaussian
model. From a sensitivity analysis, we conclude that the main

Algorithm 1: The pseudocode for the virtual odor source
cancellation algorithm.

while true do
// Step 1: Run the DAPSO algorithm
initialization;
repeat

runDAPSO()
until end conditions are met or new odor source is found;
if end conditions are met then

// Step 2: Declare the odor source
source x source y  divergence(samples);
// Step 3: Mark the source
moveTo(source x, source y);
// Step 4: Generate the VCP
plume  gaussian(); // Equation (10)
broadcastVCP(plume);

else
subscribe to VCP;

end
end

parameters influencing the plume shape are a and Q, so we
generate a virtual cancelation plume, larger than the real one,
using the following a

vcp

and Q

vcp

as given by equations (11)
and (12). Notice that by changing the plume width the value
of Q

vcp

will also be influenced.
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A. Swarm-based Virtual Cancellation Plume

The proposed algorithm can be applied to different odor
source localization algorithms after the stage of odor source
declaration. These algorithms can be single robot, multi-
robot or swarm based. In this work a swarm-based ap-
proach is used since our previous work consisted on swarm-
based odor mapping. The algorithms tested proved to be
appropriate for the proposed task, however odor source
declaration was performed by the user by interpreting the
odor maps. Furthermore the algorithms used are not prepared
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(a) Scenario 1 - Diagram of the setup for the first scenario containing
two separated odor plumes.
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(b) Scenario 2 - Diagram of the setup for the second scenario
containing two plumes propagating on the same axis.

Fig. 4. The two scenarios used in this work.

to work with multiple sources, hence the need for the virtual
cancelation plume algorithm.

We use the Decentralized Asynchronous Particle Swarm
Optimization (DAPSO) algorithm developed earlier as a
high-level exploration and plume tracking algorithm [7],
[16], [17]. Furthermore we employ the divergence operator
for odor source declaration [15] taking advantage of the
behavior of the DAPSO algorithm as the robots usually
aggregate around a maximum of the chemical concentration
or basically in the vicinity of an odor source. The estimation
of the odor source position along with the estimation of
the Gaussian plume parameters are used by the robot who
performed the divergence to generate and broadcast the
virtual cancelation plume. Each robot keeps a buffer of odor
readings that are used for calculating the divergence that will
provide an estimation of the odor source position and also for
estimating the Gaussian plume parameters using non-linear
least squares. Algorithm 1 shows the pseudocode of the pro-
posed algorithm for multiple odor source declaration using
the swarm-based virtual cancelation plume. The algorithm is
also schematically illustrated in Figure 3.

III. EXPERIMENTAL SETUP

The experiments described next were performed inside a
controlled environment, an arena designed specifically for
odor experiments represented by the schematics in Figure 4

(a) The miniQs.

(b) The test arena.

Fig. 5. The miniQ robots used in the experiments and the test environment.

and shown in Figure 5(b). The 3m ⇥ 4m ⇥ 0.5m arena is
an enclosed environment delimited by four walls where two
extremities are made of honeycomb-like plastic, allowing
for the air to circulate. It includes an array of controllable
fans thus making it possible to control the airflow inside
the arena. The top is covered by a large transparent acrylic
cover. This setup allows to generate laminar and constant
wind-flow. As a result the requirements for the Gaussian
plume to be applicable are met. This arena was used for
both simulations with its virtual representation and for the
real world experiments. As illustrated by Figures 4(a) and
4(b) two different scenarios were used for the experiments.
In the first scenario two odor sources were placed so that their
plumes would propagate parallel to each other. The second
scenario consisted in two odor sources placed on the same
downwind axis. In this scenario the plume generated by the
source placed further downwind is completely covered by
the plume of the source placed upwind. Notice that the odor
sources were named A1 and B1 for scenario 1 (Figure 4(a))
and A2 and B2 for scenario 2 (Figure 4(b)), this convention
will be used throughout the results and discussion sections.

A set of simulations was performed on the virtual repre-
sentation of the experimental arena in Figure 4. The proposed
algorithm was tested on a swarm of 5 robots, the goal was
to verify the virtual odor source cancellation algorithm. A
set of 10 simulations was performed on each scenario on a
total of 20 simulations. A Gaussian Puff model was used
for simulating the plumes in both scenarios. The reason for
this is twofold. First, given a perfect odor source declaration
the odor source cancelation would be perfect if the exact

5555



(a) The estimations for the odor distribution
around the possible sources.

(b) The divergences for the possible sources. (c) The virtual cancelation for odor source B1
which was the first source to be found.

Fig. 6. Example of a simulation performed on scenario 1. The plumes in red are the plumes generated by A1 and B1, the plume in blue is the virtual
cancelation plume. The blue spheres indicate the sources localized by the robots.

(a) The estimations for the odor distribution
around the possible sources.

(b) The divergences for the possible sources. (c) The virtual cancelation for odor source B2
which was the first source to be found.

Fig. 7. Example of a simulation performed on scenario 2. The plumes in red are the plumes generated by A2 and B2, the plume in blue is the virtual
cancelation plume. The blue spheres indicate the sources localized by the robots.
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(a) The MAE (mean absolute er-
ror) of the odor sources position
for scenario 1.
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(b) The average time that took each
source to be found on scenario 1 since
the start of the simulation.
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(c) The MAE of the odor sources
position for scenario 2.
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(d) The average time that took each
source to be found on scenario 2 since
the start of the simulation.

Fig. 8. Results for the simulations performed on scenarios 1 and 2.

same model was used for both the environment and the
cancelation plumes, something that is impossible in the
real world, thus rendering the simulations useless. Second
this allows to simulate the effects of intermittency on the
virtual cancelation algorithm as the Gaussian Puff model
provides instantaneous concentrations in contrast to the mean
concentrations provided by the Gaussian model. For a given
source let c denote the instantaneous chemical concentration,
Q

0 the mass of the source and �

0
x

and �

0
y

the puff-diffusion
coefficients (note that these have different meanings from
the �

y

and �

z

of the Gaussian model). Then one can use the
Gaussian expression in (13) to generate a concentration of the

effect of that source at time t and position (x, y). All simula-
tions were implemented under the ROS [18] framework using
Stage for simulating the robots and PlumeSim [19] for the
plumes using the models in (13) for the simulated plumes and
in (10) for the virtual cancelation plumes. The parameters of
the Gaussian Puff plumes used during the simulations were
extracted experimentally to mimic the real odor plumes that
they simulate (Q0

= 100, �0
x

= 0.1 and �

0
y

= 0.0005).

c(x, y, t) =

Q

0

4⇡

p
�

0
x

�
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t

exp

✓
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4t

✓
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�

0
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0
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◆◆
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On the second phase of the work real world experiments
were performed in order to validate the proposed method-
ology with real odor sources. Experiments were performed
using a swarm of 5 miniQ robots (shown in Figure 5(a)).
The miniQs are small and cheap robots based on the popular
Arduino platform. They were modified to achieve olfactory
swarming mainly due to the e2v MiSC5524 gas sensors that
they carry. Moreover, two LEDs (one red and one blue)
were also integrated to the robots for usage with an Arecont
MegaVideo IP camera for correcting the odometry of the
robots and to provide global localization. Odometry correc-
tion and global localization is achieved using SwisTrack, a
software designed for tracking robots. Once again ROS was
the framework used. A set of 2 experiments were performed
on each environment, on a total of 4 experiments. All
experiments were performed under an average wind speed
of 0.1 m/s with a chemical release rate of approximately
1mg/s at a height of approximately 0.07m (about 0.04m
above the height at which the gas sensors are located).

For simulations the values of d

u

, d

w

and d

l

were set
to 0.1 m which is the MAE (mean absolute error) of the
estimation of an odor source using the divergence. For
real world experiments these values were set to 0.2 m.
These errors were determined experimentally. A simulation
or experiment was considered finished once two odor sources
were declared.

IV. EXPERIMENTAL RESULTS

The screenshots in Figures 6 and 7 show examples of
the results for the virtual cancelation plume running on
scenarios 1 and 2 respectively. The visualization software
is rviz. Examples of the simulations were chosen instead of
the real experiments since in the simulations it is possible to
visualize the plumes generates by the sources A1, B1, A2
and B2. All the screenshots were taken after the simulations
were finished.

Figure 6(a) shows the estimations of the odor distributions
used to calculate the divergences in Figure 6(b). In Fig-
ure 6(c) it is possible to see the virtual cancelation plume for
cancelling B1 represented by the blue particles. The plumes
generated by A1 and B1 are represented by the red particles.
The odor sources declared by the robots are represented by
the blue spheres in all three Figures. Figure 7 contains the
same information regarding scenario 2.

The graphics in Figure 8 contain the results for the
simulations. Figure 8(a) shows the MAE of the estimation
of the position of A1 and B1. The same can be found on
Figure 8(c) for A2 and B2. The graphics in Figures 8(b)
and 8(d) contain information regarding the average time each
source took to be found since the start of the simulation for
both possible outcomes, when found first and when found
last (e.g. for scenario 1 source A1 can be found first or
second as there are 2 sources, A1 and B1). For both scenarios
both sources were found first during half of the simulations
(each source was found first 5 times out of 10 simulations
for each scenario).

Source A x Source A y Time Source B x Source B y Time Real A x Real A y Real B x Real B y
Real

Error

Error (Distance)

Average
Standard Deviation

For both sources
Average

Standard Deviation

Average Time First
Average Time 
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(a) The sources estimated by the robots for 2 experiments.
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(b) The sources estimated by the robots for 2 experiments.

Fig. 9. Results for the real world experiments performed on scenarios 1
and 2.

Figures 9(a) and 9(b) contain the results for the real world
experiments. These plots present the position of the declared
sources for scenarios 1 and 2 respectively where the circles
mark the sources A1, B1, A2 and B2 and the crosses mark
the declared sources.

This article is accompanied by a video attachment showing
the virtual cancelation plume algorithm running during one
of the simulations performed during this work.

V. DISCUSSION

Although the errors in graphics 8(a) and 8(c) result from
the divergence operator they are also a product of the virtual
cancelation plume algorithm in the sense that after a source
was found the second source was always found without an
increase in the error of the estimation of the odor source
position, independently of the source that was found first.
The graphics in Figures 8(b) and 8(d) reinforce the idea
that after a source is found the virtual cancelation plume
algorithm performs its task as intended. The time it takes
to find the second source after the first source is found is
identical to the time it takes to find the first source. This
data indicates that finding the second source is a task that the
robots undertake without the interference of the previously
declared source and its plume. The fact that in scenario 2
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the two plumes are overlapping does not seem to influence
the outcome of the experiment. This is probably one of the
most important results.

The results for the real world experiments are consistent
with those of the simulations. The robots were able to find
both odor sources in both scenarios. The main difference is
that the errors in the estimation of an odor source position
during real world experiments are over 4 times greater than
during a simulation. This can however be explained by the
height at which the sources were positioned in the arena
which might have resulted in the odor only being detected
a certain distance downwind of the actual source. Although
the sources were placed only 3 cm above the odor sensors
this can account for the fact that the biggest component
of the error is along the x axis, downwind of the source.
Furthermore in the real world experiments the robots take
over twice as much time to find a source. This was also
expected as the real robots take more time to reach a goal
due to the uncertainties in their localization.

VI. CONCLUSIONS

The results of this work prove that the virtual cancelation
plume algorithm is suitable for multiple odor source local-
ization. This is also true for situations where two plumes
overlap. Furthermore it might be able to provide multiple
odor source capabilities to a wide range of existing odor
source localization algorithms that only work with a single
odor source.

Although the Gaussian plume model was used in this
work to avoid introducing a high degree of complexity into
the problem this implementation is not far from real world
applications. The Gaussian plume model is commonly used
in the meteorological sciences for studying the propagation
of pollutants in the atmosphere. The method presented in this
article can be used for example by a group of aerial robots
to localize factory emissions in a city that are not following
air pollution regulations.

A Gaussian plume model was used in our case as the
environment contained no obstacles with constant and lam-
inar wind flow. However this will not work on complex
or realistic environments such as a warehouse. The virtual
cancelation plume algorithm can however be used with
different plume models, including numerical models. A more
complex plume model can be generated using Computer
Fluid Dynamics (CFD) software. That would require robots
with good computational capabilities as well as a perception
of the obstacles present in the environment as that infor-
mation would be necessary. In spite of the fact that this is
not suited for swarming applications, it can be implemented
on a multi-robot or even a single robot system. The virtual
cancelation plume algorithm is intended to work with all
odor source localization algorithms that treat the problem as
a global optimization problem.
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