
Extended Independent Contact Regions for Grasping Applications

Bao-Anh Dang-Vu, Maximo A. Roa, and Christoph Borst

Abstract— Independent contact regions have been proposed
as a way to overcome possible errors in finger positioning
for grasping an object. Efficient implementations for their
computation have been developed, that even allow their usage
in real-time telemanipulation applications. However, the main
problems in the computation of contact regions are that they
strongly depend on the initial grasp used as an starting point,
and that for a given initial grasp there is not a unique set of
contact regions. This paper analyzes the optimality of current
approaches for ICR computation in 2D, where the optimal
regions are still easily computable, and proposes an algorithm to
obtain contact regions closer to the optimal ones. The approach
is implemented and analyzed for 2D and 3D objects with any
number of contact points.

Index Terms— Grasp planning, contact regions

I. INTRODUCTION

Grasp planning has been an active area of research in
the last decades. Several algorithms have been proposed for
computing contact points on the object surface that guarantee
some desired property in the grasp, mainly force closure
(FC), i.e. that the forces applied by the fingers ensure the
object immobility [1]. Besides the contact points, grasp
synthesis algorithms usually provide also a proper hand
configuration (finger positions and hand pose relative to the
object) that allows the execution of the desired grasp. A
recent review summarizing the main works in this area is
presented in [2]. Most of the approaches for planning grasps
provide precise contact locations for the fingers on the object
surface, but real mechanical hands can hardly assure that the
exact contact points are reached due to different sources of
uncertainty (e.g. a poorly estimated friction coefficient, or
uncertainties in the current object location).

The computation of independent contact regions (ICRs)
on the object boundary was introduced to provide robust-
ness to finger positioning errors, such that if each finger i
is positioned on its corresponding ICRi an FC grasp is
always obtained, independently of the exact location of
each finger [3]. The determination of ICRs was initially
solved for 4 frictionless contacts on 2D polygonal objects,
and for 2 frictional contacts on polygonal and polyhedral
objects [3]. The concept was later extended to 3-finger grasps
of polygonal objects [4], and 4-finger grasps of polyhedral
objects [5] by analyzing the configuration of the grasp space,
i.e. the space representing all the possible grasps on the ob-
ject surface. The geometrical construction of contact regions
starting with an initial example was proposed as a way to
create families of grasps that fulfill a desired property such

All authors are with the Institute of Robotics and Mecha-
tronics, German Aerospace Center (DLR), Wessling, Germany.
{firstname.lastname}@dlr.de

Fig. 1. Application of independent contact regions (ICRs) in a telemanip-
ulation environment.

as FC with a minimum desired grasp quality [6]. A practical
implementation of such approach was later proposed for
creating contact regions on discretized objects, using both
frictionless and frictional contact models [7], [8].

Most of the presented approaches for using or computing
the ICRs are object centered, i.e. they do not include the hand
kinematics in the computational loop. A procedure to obtain
a hand configuration that reaches a predefined contact region
on the object has been proposed [9], although it assumes that
the specified contact regions are reachable for the mechanical
hand. The related problem of how to compute reachable
contact regions for a given object and hand kinematics
has been efficiently solved, allowing the use of ICRs for
applications in virtual reality and teleoperation, as shown in
Fig. 1 [10], [11]. Real experiments involve different sources
of uncertainty that influence the computation of the contact
regions. A method for including the uncertainties in the
location and normal orientation of the contact points that
reduces the problem to choosing a suitable (and conservative)
friction coefficient was recently proposed [12].

One of the main problems in the computation of ICRs
is that the solution is not unique; for a given initial grasp,
the analysis of the grasp space shows that different contact
regions can be obtained. In this paper, we analyze optimality
of current methods for computation of ICRs for 2D objects,
based on a comparison with the full grasp space. Guided
by this analysis, we propose a new method to extend the
size of the ICRs, i.e. to create regions which are closer to
the optimal regions for a given initial grasp. The method
is inspired by a FC condition taken from classical grasp
planning approaches, which allows an iterative extension of
the ICRs. Although reachability of the computed regions
is not explicitly considered in this paper, the proposed
method can be easily merged with the reachability analysis
previously presented in [10] to obtain extended regions that
can also be realized by a given hand.

The required background and an efficient algorithm for

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3527

computing independent contact regions is presented in Sec-
tion II. Section III presents the approach for extending
the contact regions initially computed, and provides the
implementation details. Application examples are shown in
Section IV. Finally, Section V discusses the contributions
and future works along this line.

II. ICR COMPUTATION

A. Background

To find the contact regions, contacts between the fingers
and the object are considered punctual. The force fi applied
at a point pi generates a torque τi = pi × fi with respect
to an object reference system located in the center of
mass CM . fi and τi are grouped together in a wrench
vector ωi = (fi τi)

T . Friction between fingertips and ob-
ject is described with Coulomb’s law. In the 3-dimensional
physical space this model is nonlinear and, to simplify
the computations, the friction cone is linearized using an
m-side polyhedral convex cone (the more sides, the better
the approximation, but the higher the computational cost of
dealing with the linearized cone). A wrench ωij generated
by a unitary force fi along an edge of the linearized friction
cone, i.e. fi = n̂ij , is called a primitive wrench.

Each contact point pi has m corresponding primitive
wrenches ωij . A grasp is defined by the set of contact
points G = {p1, . . . ,pn}, and thus associated to the set
W = {ω11, . . . ,ω1m, . . . ,ωn1, . . . ,ωnm}. Therefore, G and
W will be used as representative sets of a particular grasp.

A grasp is force closure (FC) if and only if the origin O
of the wrench space lies strictly inside the convex hull ofW ,
represented as CH(W) [1]. In this work, the condition O ∈
CH(W) is checked by verifying that O and the centroid P
of the primitive contact wrenches in W (which is always
an interior point of CH(W)) lie on the same side of the
hyperplane Hk containing the facet k of CH(W), ∀ k [7].

The grasp quality is quantified with the largest perturba-
tion wrench that the grasp can resist independently of the
perturbation direction [13]. This grasp quality is equivalent
to the radius of the largest hypersphere centered on O and
fully contained in CH(W), i.e. it is the distance from O to
the closest facet of CH(W).

B. Algorithm for ICR computation

Two main approaches have been proposed to compute in
an efficient way the independent contact regions, both relying
on geometrical constructions on the wrench space [7], [8].
The approach presented in [7] creates a conservative search
space that leads to a quick computation of the regions around
the initial grasp. The approach presented in [8] considers
a more complete condition for computing the contact re-
gions that includes the linear combination of the primitive
wrenches for a given contact point, but is computationally
very expensive due to an inclusion test that repetitively solves
a linear programming problem. The method presented here is
a new algorithm for ICRs computation, which also considers
the linear combination of primitive wrenches but relies on

ICR0

ω00

ω01p0

ICR1

ICR2

ICR3

H ′′+0H ′′+1

H ′′+2

S0

S1

S0
⋂

S1

O
Qmin

Fig. 2. ICR computation in an abstract 2-dimensional wrench space. For
the point p0, the relevant supporting hyperplanes and corresponding search
regions are shown. Two cases of valid primitive wrenches are considered:
at least one primitive wrench in the area S0

⋂
S1 (orange triangles) and at

least one primitive wrench in each search region Si (orange circles). All
the points with valid primitive wrenches form the region ICR0.

simple geometrical conditions that allow a quick computation
of the regions.

The procedure for finding ICR0 for a 4-finger frictional
grasp is illustrated in Fig. 2 with an abstract 2-dimensional
wrench space that includes 2 primitive wrenches per contact
point. Similar to previous methods, this one relies on a
given starting FC grasp G with initial grasp quality Q0.
The approach builds the hyperplanes H ′′k parallel to the
supporting hyperplanes Hk, and tangent to the task wrench
space, represented by a sphere with radius αQ0, 0 < α ≤ 1.
Let Ki = {Hk | ∃ωij ⊂ Hk}, i.e. the set of supporting
hyperplanes of the convex hull CH(W), such that each Hk

contains at least one primitive wrench of the contact point i.
Each hyperplane in Ki creates a positive and negative half-
space, defined such that the origin O of the grasp wrench
space lies on the negative half-space. A search region Sk is
defined as the positive half space H ′′+k . The method uses
a tree-structure representing the local mesh around each
contact point pi. A simple breadth-first-search is performed
to build each ICRi by looking for the neighbor points of pi
such that at least one of its primitive wrenches lies on each
search region Sk. The points that fulfill this condition belong
to the region ICRi.

The formal pseudo-code of the ICR algorithm is presented
in Algorithms 1 and 2.

Complexity: The computation of the convex hull in the
first step of the algorithm uses the Qhull-package [14]. For a
six-dimensional input, it has a complexity of O((nv ·m)3/6)
where nv is the number of contact points whose associated
m primitive wrenches form the vertices of CH(W). As for
the breadth-first-search, since for each contact point each
neighbor is inspected, the complexity is O(N · n), with N
the total number of points describing the object. Hence, the
overall complexity is O(((nv ·m)3/6) +N · n).

3528

Algorithm 1: ICR computation
Given:
• an object discretized in points O = {p}
• a n-finger force closure grasp G = {pi}i=1,··· ,n with

associated grasp quality Q0

• a factor α (0 < α ≤ 1) defining the minimum quality
αQ0 for the ICRs

Output: ICR = {ICR1, . . . , ICRn}
1 Compute CH(W)
2 K = {Ki}i=1,··· ,n ← All the supporting hyperplanes of
CH(W) that contain at least one primitive wrench for
each contact point pi

3 K′′ ← Set of hyperplanes parallel to K and tangent to
the insphere of radius αQ0

4 foreach contact point pi do
5 Create a queue Q
6 Enqueue pi onto Q
7 Mark pi
8 K′′i ← Set of parallel hyperplanes of K′′ for the

contact point pi
9 while Q is not empty do

10 pt ← Q.dequeue()
11 if inclusionTest (pt, K′′i) ; /* Algorithm 2 */
12 then
13 ICRi ← pt
14 foreach pv neighbor of pt do
15 if pv is not marked then
16 Mark pv
17 Enqueue pv onto Q

Algorithm 2: inclusionTest for ICR
Given:
• the tested point pt
• the shifted hyperplanes K′′i that contain at least one

primitive wrench of pi
Output: a boolean (true if

{∀H ′′k ∈ K′′i ,∃ωtj ∈ H ′′+k , j = 1, . . . ,m})
1 foreach H ′′k ∈ K′′i do
2 contain ← false
3 H ′′+k ← positive side of H ′′k
4 foreach primitive wrench ωtj of pt do
5 if ωtj ⊂ H ′′+k then
6 contain ← true
7 break ; /* go to next plane */

8 if contain is false then
9 return false

10 return true

Fig. 3. 2-dimensional grasp space for an ellipse grasped with 2 frictional
fingers. The FC space is shown in dark green, and the non-FC space in light
yellow. The two largest rectangles depicted in red correspond to the largest
ICRs that can be obtained on the object.

C. Exploration of the grasp space

The grasp space for a given object is considered as
the p-dimensional space defined by the p parameters that
represent the positions of possible contact points on the
object. A point in the grasp space represents a possible
grasp G on the object surface. Therefore, the grasp space
is divided into two complementary subsets: the FC space,
formed by the points that correspond to FC grasps, and the
non-FC space, whose points correspond to non-FC grasps.

To study the performance of the ICR algorithm, we
propose to find the optimal independent contact regions. For
each finger, its ICR represent a continuous region on the
surface of a discretized object. Since one axis of the grasp
space represents the possible positions of a finger on the
discretized object, one ICR can be shown as a line in the
grasp space. As a consequence, all the ICRs, defining all
the possible combinations of FC grasps, are represented as
a rectangle in the case of two fingers, or a p-parallelepiped
in the more general case of p fingers. The optimal ICRs are
then defined as the largest p-parallelepiped in the grasp space
that contains the initial grasp G.

The proposed method to find the optimal ICRs is based
on the problem of finding the largest rectangle in a
2-dimensional binary matrix with a dynamic programming
algorithm. Let the grasp space be represented as a p-binary
matrix containing only 0’s (representing the non FC grasps)
and 1’s (for FC grasps). Finding the largest p-parallelepiped
in the FC grasp space is equivalent to find the largest
p-parallelepiped containing only 1’s.

The main idea is to build a histogram that keeps track of
the consecutive 1’s, and then to hold a stack that dynamically
keeps the information of potential rectangles, in decreasing
order. The stack holds the height of each potential rectangle.
By maintaining a stack in decreasing order of size, the
maximum area can be easily calculated in one scan. The

3529

R3

u1

C1

u2
C2

u3

C3

u4

C4

−u4

−C4
C1 ∩ C2 ∩ C3

Fig. 4. Condition for a FC grasp by [5]: Four vectors θ-positively span R3.
The intersection of the trihedra formed by all triples of vectors belonging
to the cones C1, C2 and C3 is shown in grey. The cone C4 is depicted in
orange and its opposite lies in the intersection.

computation of the largest parallelepiped in p dimensions is
done then by reducing the problem to p− 1 dimensions.

Complexity: Let N the total number of elements and k be
the number of elements in one dimension of the grasp space.
A brute-force method runs in O(N2) in 2D. The presented
method runs in linear time O(N) in 2D and O(k2(p−1))
otherwise. Note that the complexity increases rapidly with
the dimension of the space.

III. EXTENDING ICRS

Starting with a precomputed set of ICRs, the method
presented in this section extends as much as possible the
initial regions. The approach is inspired by the necessary and
sufficient condition proposed in [5] for finding an n-finger
frictional FC grasp, as illustrated in Fig. 4:

Definition 3.1: n vectors (representing the generatrices of
n cones) θ-positively span Rn−1 when, for any (n−1)-tuple
of these vectors, the nth cone centered on the direction oppo-
site of the nth vector lies in the interior of the intersection of
the convex polyhedron formed by all (n−1)-tuple of vectors
belonging to their cones.

An application to the more complex case of n-finger ICRs
is possible if the iterative extension of each ICR is consid-
ered, and the cones in the previous definition are replaced by
convex cones for each ICR. To find the interior of the convex
polyhedron mentioned in the previous definition, a discard
region Di is substracted from an external region Ei, as shown
in Fig. 5. Thus, for extending ICRi, a search region S+

i

is defined as the reflection of the previous substraction, i.e.
S+
i = (Ei −Di).
Fig. 6 represents the different steps of the extension

algorithm for one ICR in a 4-finger frictional grasp, starting
with a given set of ICRs (Fig. 6a), following with the
construction of a search region (Fig. 6b to Fig. 6d), and the
inclusion test that defines if a point is inside the new ICR.

1) Construction of a set of primitive wrenches for the
search region: The computation of the initial ICRs with
Algorithm 1 guarantees that each point included in an ICR

S+
3

D3

E3

ICR0

ICR1

ICR2

ICR3

Fig. 5. Representation of the different regions for the extension of ICR3

from a 4-finger grasp. ICR3 is depicted in orange square, and its reflection
is dashed. The external region E3 is represented in green, the discard region
D3 in red, and the search region S+

3 (the reflection of E3 −D3) in grey.

O

ICR3

ICR0

ICR1 ICR2

(a) Initial ICR

O

ICR3

E3

(b) External region

O

ICR3

D3

(c) Discard region

O

S+
3

D3

E3

(d) Search region, and valid points
depicted in orange triangles.

ICR+
3

ICR0

ICR1 ICR2

(e) Result of the extension as ICR+
3

Fig. 6. Steps in the extension of ICR3 in a conceptual example. The
ICRs of a 4-finger frictional grasp are represented. Wrenches belonging to
ICR3 are depicted as orange squares and triangles.

3530

ni

pi

Fig. 7. Linearization of the friction cone around the normal ni at a contact
point pi. The friction cone represented is linearized in ne = 5 edges and
nl = 2 layers.

has one of its primitive wrenches inside the intersection of
all the search regions, or at least one primitive wrench in
each search region.

Since the extension starts with the initial ICRs, the primi-
tive wrenches from each point of the initial ICRs are needed
to build the search region S+

i . The last condition for the
initial inclusion test doesn’t assure that one primitive wrench
is strictly inside the intersection of all the search regions,
it implies that we could overestimate the external region Ei

and the discard region Di by using all the primitive wrenches
from the initial ICR. Also, the external and discard regions
are based one the construction of a convex hull: too few
primitive wrenches might lead to situations where the convex
hull does not exist.

Therefore, to avoid the overestimation of the external and
discard regions for a given ICRi, we define the set Mi of
primitive wrenches that lie strictly inside the intersection of
all the search regions Si for each plane H ′′k :

Mi =

ωrj | ∀pr ∈ ICRi, wrj ⊂
⋂

k=1,··· ,l

H ′′+k

 (1)

To guarantee enough primitive wrenches to build the
required convex hulls, we approximate the complete volume
of the friction cone as nl layers of a polyhedral convex
cone of ne edges, as represented in Fig. 7. Then, we have
nω = ne × nl primitive wrenches per contact point in
each ICR.

Algorithm 3 details the construction of the set Mi of
primitive wrenches for a given ICRi.

2) Search region: Considering a set of points P ,
let CC(P) be the convex cone of P that has a vertex in
the origin O, and let I ′i = {i′ ∈ [1, . . . , n] | i′ 6= i} be the
set of all the indices except the ith.

To obtain the search region S+
i , we need to build the

external region Ei and the discard region Di. The external
region Ei (Fig. 6b) is defined as the convex cone built from

the set M′i =

{ ⋃
i′∈I′

Mi′

}
that is formed by the primitive

wrenches of the ICRs except the ith (which is going to be
extended), i.e. Ei = CC(M′i)

The discard region Di (Fig. 6c) is defined based on
the convex cone Ei. Since a facet of Ei contain primitive

Algorithm 3: UpdateMap
Given:
• the region ICRi of the point pi, ICRi = {pr}
• K′′i = {H ′′k }k=1,··· ,l the set of shifted hyperplanes

for pi
Output: Set of primitive wrenches Mi for the region

ICRi , such that all the primitive wrenches
are inside

⋂
k=1,··· ,l

H ′′+k

1 foreach pr ∈ ICRi do
2 foreach primitive wrench ωrj of pr do
3 if ωrj ⊂

⋂
H′′+k then

4 M← ωrj

5 return M

O
ICR0

ICR1

ICR2

ICR3

v0

v1

fk ∈ E3

Fig. 8. Combination of ICRs for the facet fk . fk = {O, v0, v1}. The
vertice v0 belongs to ICR1 and v1 to ICR2. As a result, comb(f) =
{M1,M2}.

wrenches coming from different ICRs, we define the operator
comb(f) such that for each facet f of Ei, it returns the
union of the setsMi for all the ICRs that contribute with at
least one primitive wrench to f (Fig. 8).

comb(f) = {Mi′∈I′ | ∃Mi′ ⊃ ωi′j ,∀ωi′j ∈ f}
(2)

The discard region is then the union of the convex cones
formed by all the possible combinations of ICRs defined by
the facets of Ei:

Di =
⋃
∀f∈Ei

CC (comb (f)) (3)

However, the discard region can take very different shapes
depending on the number of ICRs considered for building the
region, as represented in Fig. 9. The region Di does not exist
when the set I ′ contains only one index, which happens for a
2-finger grasp. It can also be made of disjoint regions, in the
case that there is only two indices I ′, i.e. a 3-finger grasp,
or it can be properly defined when the number of indices
in I ′ is greater or equal to 3, i.e. for a grasp with minimum
4 fingers. Besides, Di also does not exist when the origin
is inside CH(M′i). In consequence, the search region S+

i

is defined according to the different cases. Let Ei be the

3531

Ei

O

(a) 2 fingers: Di = ∅, S+
i = Ei is

depicted in green

Di

O

(b) 3 fingers: Di, represented in
red, is disjoint

Di

O

S+
i

(c) 4 fingers: The search region in
green is fully contained into Ei

and surrounded by Di in red.

Fig. 9. Existence of discard regions Di depending on the number of contact
points.

reflection of an Ei, and CH(M′i) the reflection of CH(M′i),

S+
i =

Ei, n = 2 (@Di)

CH(M′i), O ∈ CH(M′i) (@Di)

Ei −Di, ∃Di

(4)

3) Inclusion test: As presented in Eq. 4, the search region
depend on the existence of the discard region, which in turn
depends on the number of contact points in the initial grasp
(Fig. 9). Any added point to the extended ICR must guarantee
that an FC grasp is possible when choosing any point from all
the other ICRs to create a grasp. Depending on the different
cases, a point helps to build a convex hull that contains the
origin when the following geometric conditions are fulfilled:
• For the case where no discard region exists, if only the

linear combination of its primitive wrenches is inside
S+
i , while none of its primitive wrenches are inside S+

i .
• For a 3-finger grasp the discard region Di exists but

is discontinuous (Fig. 9b), then a point is valid if at
least one primitive wrench is inside S+

i and none is
inside Di.

• For more fingers, S+
i is fully contained into Ei and

surrounded by Di (Fig. 9c), then a point is included into
the region if all the primitive wrenches are inside S+

i .
The complete algorithm for the extension of ICRs is

provided in Algorithm 4, and the inclusion test is detailed in
Algorithm 5.

Complexity: The complexity of the algorithm depends on
the convex hull computation. It runs in O(r3/6), where r is
the number of points whose associated wrenches form the
vertices of CH(M′i). The number of call to the convex hull
computation depends on the number of combinations defined

Algorithm 4: Extended ICR computation
Given:
• an object discretized in points O = {p}
• initial ICRs={ICRi}i=1,··· ,n

Output: extended ICR+ (ICR ⊂ ICR+)
1 Build the set of primitives wrenches M as defined in

Algorithm 3.
2 Initialize ICR+ with ICR
3 Iorder ← Indices of ICR+ from the smallest to the

largest size (number of points in the ICR).
4 foreach ICR+

i , i ∈ Iorder do
5 Create a queue Q
6 Enqueue the points of ICR onto Q
7 Mark the points

8 Generate the set M′i =

{ ⋃
i′∈I′

Mi′

}
9 Build the search region S+

i following Eq. 4
10 while Q is not empty do
11 pt ← Q.dequeue()
12 if inclusionTest(pt, S+

i) ; /* Algorithm 5 */
13 then
14 ICR+

i ← pt
15 foreach pv neighbour of pt do
16 if pv is not marked then
17 Mark pv
18 Enqueue pv onto Q

Algorithm 5: inclusionTest for ICR+
Given:
• the tested point pt, with primitive wrenches ωtj ,
j = 1, . . . ,m

• the search region S+
i for the contact point pi

Output: a boolean
1 if @ωtj ⊂ D, then
2 case n = 2
3 if ∀Hk ∈ CH(M′i),∃ωtj ∈ H+

k and @ωtj ⊂ E
then

4 return true

5 case n = 3
6 if ∃ωtj ⊂ S+

i then
7 return true

8 case n ≥ 4
9 if ∀ωtj ,ωtj ⊂ S+

i then
10 return true

3532

in Eq. 2. The theoretical maximal number of combinations

for a set of n−1 elements is
∑

j=0,··· ,n−1

(
n
j

)
= 2n−1. Thus,

for n fingers, the convex hull computation is called n×2n−1
times.

IV. NUMERICALLY EVALUATED RESULTS

The proposed algorithms were implemented in C++ and
tested on a Desktop Linux PC. For showing the performance
of the algorithm, both 2D and 3D objects were used.

2D objects: To demonstrate the behavior of the extension
algorithm, different computations of ICRs are performed for
two different 2D objects, an ellipse discretized in 60 points,
and a curve of polar equation 3/(1+3·cos(0.5θ)) discretized
in 129 points. Table I summarizes the results for 400 random
trials with 2, 3 and 4 fingered frictional grasps. The friction
cone was linearized in 6 edges with a frictional coefficient
of 0.45. In the case of 2 and 3 fingers, the computation of the
ground-truth optimal ICRs (Section II-C) was still doable in a
reasonable time, therefore the size of the ICRs is compared
(in percentage) to the optimal size of ICRs for that initial
grasp. The size of the ICRs is measured as the volume of the
parallelepiped in the grasp space; the larger the volume, the
more grasp possibilities that lead to a FC grasp on the object.
Note that in general the obtained ICR extension depends on
the number of fingers; the more fingers, the less extension
it is possible to get. However, computational times do not
increase beyond 8X for the maximum extension obtained.

Two examples of this benchmark are represented for a
2 finger grasp in Fig. 10 for the polar curve, and for a 3 finger
grasp on the ellipse in Fig. 11.

3D objects: Table II shows the results of ICR computa-
tions for two 3D objects, a parallelepiped discretized with
3422 points and a bottle discretized with 6834 points, for
400 random trials with 3 and 4 fingered frictional grasps.
For 3D, the friction cone was linearized in 6 edges and
3 layers for both objects. The frictional coefficient used for
the parallelepiped is 0.2 and for the bottle 0.6. Note that
in the 3D case the time required to get the extended ICRs
might be very high for online grasp computations, although
the total size of the ICRs is increased in general above 2X.

V. CONCLUSIONS AND DISCUSSION

In this work, two main problems in the computation of
contact regions have been pointed out: the dependence on
the initial FC grasp used as a starting point, and the non-
uniqueness of the obtained solutions. To study the optimality
of the computation of independent contact regions, a new
algorithm for their computation is proposed, followed by an
algorithm that computes extended ICRs which are closer to
the optimal contact region as analyzed in the grasp space.
The main drawback of the proposed method is that there
is still a strong dependence of the initial FC grasp used
as a starting point for computing the ICRs, which limits
the ability to explore the complete wrench space. Therefore,
although the new method increases the size of the contact
regions, it still does not lead to the optimal size in the grasp

(a) Local grasp space around the initial
grasp shown as a cyan point. In black
the initial ICR, in red the extended ICR,
and in blue the optimal ICR.

(b) ICRs on the polar curve. The initial ICR is
depicted in yellow squares, the extended ICR in
blue circles and the optimal ICR is shown in red
diamonds.

Fig. 10. Comparison of ICRs computation for a two-finger grasp on a
polar curve. The initial, extended and optimal ICRs are shown in the local
grasp space around the initial grasp (a) and on the object (b).

(a) Local force-closure grasp
space around the initial grasp,
depicted as a cyan point.

Finger 1 Finger
2

Fi
ng

er
3

(b) Zoom: In black the initial ICR,
in red the extended ICR, and in
blue the optimal ICR.

(c) Representation on the ellipse

Fig. 11. Comparison of ICRs computation for a 3 finger grasp on an ellipse.
The initial, extended and optimal ICRs computation are represented in the
local grasp space around the initial grasp (a), (b) and on the object (c).

3533

TABLE I
RESULTS FOR ICR EXTENSION ON 2D OBJECTS

No.fingers Initial ICR Extended ICR Optimal ICR

2
volume 13.2 (38%) 31.25 (91%) 34.1725 (100%)
time (s) 5 · 10−4 (×1) 1 ·10−3 (×2) 4.6 10−2

3
volume 329.71 (27%) 662.71 (54%) 1229.83 (100%)
time (s) 6 ·10−4 (×1) 1 ·10−3 (×1.6) 1.51 ·102

4
volume 7979.91 (×1) 8486.77 (×1.06)
time (s) 5 ·10−4 (×1) 5 ·10−4 (×1)

2
volume 14.65 (58%) 23.94 (94%) 25.47 (100%)
time (s) 1.75 · 10−4 (×1) 1.47 · 10−3 (×8) 2.06 · 10−1

3
volume 830.64 (40%) 973.215 (44%) 2432.16 (100%)
time (s) 8.0 · 10−4 (×1) 1.35 · 10−3 (×1.7) 4.67 · 102

4
volume 32502.7 (×1) 37993.4 (×1.16)
time (s) 8.0 · 10−4 (×1) 1.86 · 10−3 (×2)

TABLE II
RESULTS FOR ICR EXTENSION ON 3D OBJECTS

No. fingers Initial ICR Extended ICR

3 volume 26.8 543.28 (×20)
time (s) 0.002 0.1804 (×90)

4 volume 1.51e7 4.14e7 (×2.7)
time (s) 0.40 4.31 (×10)

3 volume 6069.37 12706.7 (×2.1)
time (s) 0.0279 0.16 (×6)

4 volume 7891.56 14204.8 (×1.8)
time (s) 0.04 1.81 (×45)

space. As stated in the introduction, the reachability of the
computed regions was not considered. However, the modular
structure of the approach presented in [10] allows a seamless
integration of the extended regions into the algorithm that
computes reachable contact regions.

Although the method for extending the ICRs is expen-
sive from the computational point of view in the case of
3D objects, it might still be useful for offline computations,
where a database of grasps is preprocessed for cases where
the complete 3D model of the object is known in advance.

The problem of dependency of the ICRs on the initial
starting FC grasp is still unsolved. One potential way to
overcome this issue is to use more geometrical information
coming from the 3D object to compute directly the ICR on
the object surface, without relying so much on the wrench
space structure; this is currently an ongoing work.

VI. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme

(FP7/2007-2013) under grant agreement No. 287787, project
SMERobotics.

REFERENCES

[1] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Ratón, Florida: CRC Press, 1994.

[2] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3D
object grasp synthesis algorithms,” Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 326–336, 2012.

[3] V. Nguyen, “Constructing force-closure grasps,” Int. J. Robotics Re-
search, vol. 7, no. 3, pp. 3–16, 1988.

[4] J. Ponce and B. Faverjon, “On computing three-finger force-closure
grasps of polygonal objects,” IEEE Trans. Robotics and Automation,
vol. 11, no. 6, pp. 868–881, 1995.

[5] J. Ponce, S. Sullivan, A. Sudsang, J. Boissonat, and J. Merlet,
“On computing four-finger equilibrium and force-closure grasps of
polyhedral objects,” Int. J. Robotics Research, vol. 16, no. 1, pp. 11–
35, 1997.

[6] N. Pollard, “Closure and quality equivalence for efficient synthesis of
grasps from examples,” Int. J. Robotics Research, vol. 23, no. 6, pp.
595–614, 2004.

[7] M. A. Roa and R. Suarez, “Computation of independent contact
regions for grasping 3-D objects,” IEEE Trans. Robotics, vol. 25, no. 4,
pp. 839–850, 2009.

[8] R. Krug, D. Dimitrov, K. Charusta, and B. Iliev, “On the efficient
computation of independent contact regions for force closure grasps,”
in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2010,
pp. 586–591.

[9] C. Rosales, L. Ros, J. Porta, and R. Suarez, “Synthesizing grasp con-
figurations with specified contact regions,” Int. J. Robotics Research,
vol. 30, no. 4, pp. 431–443, 2011.

[10] M. A. Roa, K. Hertkorn, C. Borst, and G. Hirzinger, “Reachable
independent contact regions for precision grasps,” in Proc. IEEE Int.
Conf. on Robotics and Automation, 2011, pp. 5337–5343.

[11] K. Hertkorn, M. A. Roa, M. Brucker, P. Kremer, and C. Borst, “Virtual
reality support for teleoperation using online grasp planning,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013.

[12] M. A. Roa and R. Suarez, “Influence of contact types and uncertainties
in the computation of independent contact regions,” in Proc. IEEE Int.
Conf. on Robotics and Automation, 2011, pp. 3317–3323.

[13] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. IEEE Int.
Conf. on Robotics and Automation, 1992, pp. 2290–2295.

[14] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Trans. Mathematical Software,
vol. 22, no. 4, pp. 469–483, 1996.

3534

