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Abstract— We consider planning and implementation of fast
motions for industrial manipulators constrained to a given
geometric path. With such a problem formulation, which is
quite reasonable for many standard operation scenarios, it is
intuitively clear that a feedback controller should be designed
to achieve orbital stabilization of a time-optimal trajectory
instead asymptotic. We propose an algorithm to convert an
asymptotically stabilizing controller into an orbitally stabilizing
one and check achievable performance in simulations and, more
importantly, in experiments performed on a standard industrial
robot ABB IRB 140 with the IRC5-system extended with an
open control interface. It is verified that the proposed re-design
allows significantly reduced deviations of the actual trajectories
from the desired one at high speeds not only for a chosen
base feedback design but also outperforming the state-of-the-
art commercial implementation offered by ABB Robotics.

Index Terms— Motion and trajectory planning with con-

straints, Orbital stabilization, Time optimal control, Industrial

manipulators

I. INTRODUCTION

Robotic systems with higher levels of autonomy are to

become key elements of advanced factories of the future.

Most of robotic manipulation tasks require the deviations

of the executed motion from a nominal one, preplanned

according to a scenario, to be as small as possible (and

persistently repeatable). Such nominal motions are often

chosen to be the best with respect to one or several optimality

criteria and not to violate specifications imposed by the task.

For instance, if in a scenario the end-effector of a robot

should follow a particular geometrical path in a configuration

space with predefined path-dependent sequence of orienta-

tions, it is common to plan a time-(sub)optimal trajectory

or its approximation, which is consistent with velocity and

acceleration constraints imposed by various kinematic and

dynamic limitations. Since the middle of the 1980s, this

constraint-based optimization for velocity assignment has

become in focus of the robotics research community and

upon various assumptions solutions were found, see e.g. [1],

[2], [3], [4] and references therein.
However, the implementation and realization for the found

time-optimal trajectories for industrial robots manipulators

S. Pchelkin and A. Shiriaev are with the Department of Engineering
Cybernetics, Norwegian University of Science and Technology, NO-7491
Trondheim, Norway. E-mail: Stepan.Pchelkin@itk.ntnu.no.

L. Freidovich and A. Shiriaev are with the Department of Applied Physics
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in experiment is a challenging task. Indeed, the phase-plane

arguments of [2] are model-based and, therefore, might be

sensitive to unavoidable uncertainties in parameters of the

model of the robot, to presence of excited hidden dynam-

ics of non-collocated compliances of joints that are non-

negligible for an aggressive (optimal!) motion, as well as

to mismatches in estimates for payload mass-distribution,

dimensions, etc. As a result, even the best available com-

mercial software packages for motion planning, such as [5],

and motion control might not always guarantee the required

accuracy in generating such motions in experiments.

In this paper, we present control re-design arguments,

integrated with a motion planning strategy, that can improve

robustness, accuracy and repeatability of time-optimal trajec-

tories. In this way, we have complemented the classical and

well-known motion planning methods bringing efforts for

an appropriate formulation of control task and arguments

for control design solutions and their implementation. To

illustrate the contribution, we have chosen to work with an

ABB IRB 140 robot. Below we are to re-iterate and to apply

the known motion planning arguments for one of the targeted

behaviors, and to elaborate in detail a new control re-design

steps and then to test performance of the closed-loop system

in simulation and in real hardware experiments.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Modeling the Manipulator

Let us concentrate on manipulation tasks related to moving

the end effector from a start point to an end point in the world

frame, i.e. local grasping tasks are not considered here. Thus,

the robot geometry to be described is an open kinematic

chain of six joints from the base to the links where the

end effector is attached. In Fig. 1 a schematic picture of the

ABB IRB 140 robot manipulator with 6 Degrees of Freedom

(DOF) is shown.

However, for simplicity, below we consider only 3 DOF

of the robot corresponding to axis 1, axis 2, and axis 3

(see Fig. 1). The joint variables (angles) form the vector of

generalized coordinates q = [q1, q2, q3]
T for these 3 DOF.

The forward kinematics can be conveniently expressed

using the Denavit-Hartenberg (DH) convention [7], where

configuration of each (i-th) link is represented by a homo-

geneous transformation

Ai(qi) = Rotz,qiTransz,di
Transx,ai

Rotx,α, i = 1, 2, 3
(1)

formed by standard elementary translations and rotations, see
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Fig. 1. The robot manipulator with 6 DOF [6].

e.g. [7], and parameterized by the joint angle q i, the link off-

set di, the link length ai, and the link twist α.

The Cartesian position of the flange with respect to the

base frame of the robot is defined by

P 0 =





x

y

z



 =
[

I3×3 03×1

]

T 0
3

[

03×1

1

]

(2)

where I3×3 is the identity matrix, 03×1 is a zero vector, and

T 0
3 = A1(q1)A2(q2)A3(q3).
Inverse kinematics from a configuration of the flange to

the joint variables can be found as a solution of a set of

nonlinear trigonometric equations given by T 0
3 in (2).

The configuration space of the manipulator is spanned by

the joint variables and it is restricted by the mechanical

construction of the robot. Differential constraints, on the

other hand, are imposed by the dynamics of the system,

which, to some extent, can be described by the following

differential equation

M(q)





q̈1
q̈2
q̈3



+ C(q, q̇)





q̇1
q̇2
q̇3



+G(q) =





τ1
τ2
τ3



 (3)

where τ = [τ1, τ2, τ3]
T is the vector of control torques

applied at the joints, M(q) is the inertia matrix, the vec-

tor C(q, q̇)q̇ represents Coriolis and centrifugal generalized

forces, and G(q) is due to gravity.

For a robot manipulator, velocity constraints show up

naturally due to limited rotation speeds of the actuators,

whereas acceleration constraints are defined by maximal

achievable torques of the actuators. In this study, we use

configuration and velocity constraints given in Table. I. These

ranges of allowable velocities and angles are taken from the

robot manual.

B. Path Planning

Let us specify a path that the flange should follow over

time. In this study, we are not concerned with the path-

planning problem. So, we concentrate on the goal of com-

TABLE I

POSITION AND VELOCITY CONSTRAINTS FOR CONSIDERED LINKS OF

THE MANIPULATOR

Link i qi,min qi,max q̇i,min q̇i,max

1 −3.1415 rad 3.1415 rad −3.4907 rad/s 3.4907 rad/s

2 −1.5708 rad 1.9199 rad −3.4907 rad/s 3.4907 rad/s

3 −4.0143 rad 0.8727 rad −4.5379 rad/s 4.5379 rad/s

puting a feasible fast time-evolution along a predefined path

subject to differential constraints.

Let us introduce a sample desired path that we are going

to work with from here on. This path describes a 2D circle

in the x− y plane of the base frame as depicted in Fig. 2.
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Fig. 2. Path of the end effector of the robot describing a circle in the x−y
plane.

This path in the task space can be parameterized as follows

P 0 =





x

y

z



 =





r cos θ + x0

r sin θ
z0



 (4)

where r = 0.2, x0 = 0.65, z0 = 0.3, and θ ∈ [−π, π].
Solving the inverse kinematics problem, one can define

the desired path in the joint space

q =





q∗1(x, y, z)
q∗2(x, y, z)
q∗3(x, y, z)



 (5)

In Fig. 3 below, q∗1 , q∗2 , and q∗3 are shown as functions

of the parameter θ, which is taken as the angle defining the

location along the circle.

C. Path-Constrained Trajectory Planning

Let us illustrate a parameterization of motions along

predefined paths without explicit dependence on time. The

procedure is exemplified for the circular path (4).

At first, we define a new variable that describes the path as

a function of the generalized coordinates. For instance, the

arc length along the path would be one choice that naturally

2522
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Fig. 3. Evolution of coordinates q∗
1

(blue line), q∗
2

, (green line) q∗
3

(red
line) for the target trajectory as functions of θ ∈ [−π, π].

yields a monotonic evolution. For our case of the circular

path (4), it is also natural to take the angular position as

such a path coordinate

θ = atan2(y, x− x0) (6)

associated with a point P 0 on the circle (see Fig. 2).

As the next step, all the target evolutions of the joint

variables q = q∗(t) must be parameterized as functions of

the new variable θ instead of time

q =





q∗1(t)
q∗2(t)
q∗3(t)



 = Φ(θ)|θ=θ∗(t) =





φ1(θ)
φ2(θ)
φ3(θ)





∣

∣

∣

∣

∣

∣

θ=θ∗(t)

(7)

This can be interpreted as a synchronization of all joints

along the path clocked to an independent configuration

variable. With such representation the explicit dependence

of time disappears and, thus, θ = θ∗(t) can be viewed as a

motion generator. Once a velocity profile for θ is chosen, all

joint velocities are directly assigned by

q̇ = Φ′(θ)θ̇ (8)

It means that the nominal evolution of the full state space

vector [q, q̇]T is parameterized along the path, without even

using the system dynamics (3). This approach is known as

path-constrained trajectory planning [8], which is subject

to velocity and acceleration constraints. In the context of

control theory, the geometric function (7) is called a virtual

holonomic constraint [9], [10], if it is preserved by some

control action along solutions of the closed-loop system.

Finally, we have to assign a velocity profile along the path

taking into account that there are configuration-dependent

differential constraints. In this study only velocity constraints

(see Table I) shall be considered. It is straightforward to

also account for acceleration constraints linked to the system

dynamics (3) as soon as a reliable quantification of them is

obtained. However, we have found out that they are not as

restrictive as the velocity constraints and so they are not to

be taken into account.

Individual joint velocity and acceleration constraints can

be efficiently handled introducing a differential equation

relating θ and θ̇. The time evolution of θ along the path

may be derived by integrating this differential equation

θ̇ = h(θ) (9)

which consequently defines the time evolution of all the joint

coordinates in (7).

We introduce the function path coordinate θ ∗ so that the

velocity along the trajectory is the maximum possible:

ṡi = max
(∣

∣

∣

q̇i,max

φ′

i

∣

∣

∣
,
∣

∣

∣

q̇i,min

φ′

i

∣

∣

∣

)

∣

∣

∣
θ̇∗
∣

∣

∣
≤ min (ṡi)

(10)

where q̇i,min, q̇i,max are physical constraints for the ith joint

velocity (see Table I). We choose the function in the right-

hand side of (9) as a Bezier polynomial of order 10.

From the differential equation (10), we obtain velocity

profiles along the path in the (θ, θ̇)-plane, see Fig. 4. In

Fig. 5, the obtained time-evolution of θ∗ is shown. From
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Fig. 4. Velocity profiles along the path in the (θ,θ̇)-phase plane (red
line). The path-constrained optimal curve yields a faster motion compared
with the driver. Velocity constraints along the path are above the cyan line.
Velocities at the start and end are not zero and equal.
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Fig. 5. Obtained function θ∗ is blue line. Time evolution θ for the ABB
generated trajectory is presented by the black line.

Fig. 5, we can see that the period of motion is T = 0.92 (s)

for our choice of a sub-optimal θ∗(t). Note that this is faster

than the trajectory generated by the standard ABB planner

run with the “maximal velocity” settings.

D. Control Design for Asymptotic Stability

Motion planning should be complimented with a feedback

control design. A possible choice is the controller originally

2523



introduced in [11]. It was one of the first results guarantee-

ing tracking for rigid-joint robots achieving global uniform

asymptotic stability (GUAS) of the origin (q− q∗, q̇− q̇∗) =
(0, 0) for the model (3). It is a natural extension of the

famous tracking controller in the form of PD (proportional-

derivative) feedback plus gravity cancellation, suggested for

the regulation problem in [12].

The PD+ control law τ = U(e, ė, Q∗(t)) of [11] is

τ = M̂(q)q̈∗(t)+ Ĉ(q, q̇)q̇∗(t)+ Ĝ(q)− Kp e−Kd ė (11)

where
e = q − q∗(t), ė = q̇ − q̇∗(t),

Q∗(t) = [q∗(t), q̇∗(t), q̈∗(t)]
(12)

Kd, Kp are (diagonal) positive definite matrices; M̂(q),
Ĉ(q, q̇), and Ĝ(q) are available estimates for M(q), C(q, q̇),
and G(q) respectively. Note that for implementation of this

controller q∗(t) and q̇∗(t) must be specified as functions of

time and be available on-line.

We will show below how to transform this regulator into

a one that is appropriate for orbital stabilization. After that

we are to investigate performance of the closed-loop system.

III. MAIN RESULT

A. Re-design of Feedback Control

Suppose we are given an asymptotically stabilizing feed-

back control law

τ = U(e, ė, Q∗(t)), (13)

with (12), where q∗(t) is defined by (7) and θ = θ∗(t) being

a solution of the differential equation (9), right-hand side

of which is derived from the sub-optimal motion planning

procedure as above.

We are interested here to propose a procedure to transform

it into another feedback control law that ensure asymptotic

orbital stability. Roughly speaking, in essence, instead of

classical stability: ∀ε > 0 ∃δ > 0 such that
∥

∥

∥

∥

[

q(0)− q∗(0)
q̇(0)− q̇∗(0)

]∥

∥

∥

∥

≤ δ ⇒

∥

∥

∥

∥

[

q(t)− q∗(t)
q̇(t)− q̇∗(t)

]∥

∥

∥

∥

≤ ε ∀t ≥ 0

we need orbital stability: ∀ε > 0 ∃δ > 0 such that

inf
s∈[0,T ]

∥

∥

∥

∥

[

q(0)− q∗(s)
q̇(0)− q̇∗(s)

]∥

∥

∥

∥

≤ δ

⇒ inf
s∈[0,T ]

∥

∥

∥

∥

[

q(t)− q∗(s)
q̇(t)− q̇∗(s)

]∥

∥

∥

∥

≤ ε ∀t ≥ 0

where s is some variable that determines the shortest dis-

tance between the trajectories q(t) and q∗(t) and instead of

ensuring asymptotic time-wise closeness

lim
t→∞

∥

∥

∥

∥

[

q(t)− q∗(t)
q̇(t)− q̇∗(t)

]∥

∥

∥

∥

= 0

we would like to have asymptotic orbital closeness

lim
t→∞

{

inf
s∈[0,T ]

∥

∥

∥

∥

[

q(t)− q∗(s)
q̇(t)− q̇∗(s)

]∥

∥

∥

∥

}

= 0

where T is the period of the planned target trajectory; see

[13], [10] for related discussions.

Inspired by a natural choice of coordinates that are

transversal to the target trajectory used in [10], we propose

to substitute the classical tracking error e = q − q∗(t)
(and ė = q̇ − q̇∗) measuring time-wise distance by the

synchronization errors

y = q − Φ(θ), ẏ = q̇ − Φ′(θ) θ̇,

θ = Pr(q, q̇), θ̇ = h(θ)
(14)

where Pr(q, q̇) is an arbitrary smooth projection operator

defined to ensure that Pr(q∗(t), q̇∗(t)) = θ∗(t).
In this way, we obtain

τ = U(y, ẏ, Q∗(t)), (15)

that should lead to asymptotic orbital stability.

B. Stability Statements

Let us first remind the result of [11].

Theorem 1: Suppose either q∗(t) is smooth and periodic

or Q∗, defined in (12), is uniformly bounded. Moreover,

suppose M(q) is uniformly bounded from below and above

(as can be easily verified for our model). Consider the closed-

loop system (3) and (13) and suppose there exists a positive

definite in e and ė function V (e, ė, q∗(t), q̇∗(t)) such that

d
dt
V (e, ė, q∗(t), q̇∗(t)) ≤ −

[

e

ė

]T

Q1(e, ė, Q
∗(t))

[

e

ė

]

where either Q1(e, ė, Q
∗(t)) is positive definite in e and ė

or it is positive semi-definite but restricted to the set where
d
dt
V (e, ė, q∗(t), q̇∗(t)) = 0 we have

d3

dt3
V (e, ė, q∗(t), q̇∗(t)) ≤ −

[

e

ė

]T

Q3(e, ė, Q
∗(t))

[

e

ė

]

where Q3(e, ė, Q
∗(t)) is positive definite in e and ė.

Then, (e, ė) = (0, 0) is an asymptotically (uniformly)

stable solution.

We should notice that under some mild additional techni-

cal assumptions global stability can be verified as well.

This statement was used in [11] to verify UGAS of (3) and

(11) with the help of the natural Lyapunov function candidate

V (e, ė, q∗(t), q̇∗(t)) = 1
2

([

e

ė

]T

M(q)

[

e

ė

]

+ eT Kp e

)

that under assumptions M̂ = M , Ĉ = C, Ĝ = G and C

being taken so that the matrix Ṁ(q) − 2C(q, q̇) is skew-

symmetric, leads to d
dt
V = −ėT Kd ė and to UGAS.

The following statement is valid for our modification of

the feedback control law.

Theorem 2: (Main result) Suppose either q∗(t) is smooth

and periodic or Q∗, defined in (12), is uniformly bounded.

Moreover, suppose M(q) is uniformly bounded from below

and above. Suppose there exists a positive definite in e and

ė function V (e, ė, q∗(t), q̇∗(t)) that satisfies conditions of

Theorem 1.

Then, (q, q̇) = (q∗(t), q̇∗(t)) is an asymptotically orbitally

stable solution of the closed-loop system (3), (15), (14).
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The validity of Theorem 2 can be verified using a

slight modification of the arguments presented in [11],

with the help of a Lyapunov function candidate taken as

V (y, ẏ, q∗(t), q̇∗(t)).
Correspondingly, we obtain a new asymptotically orbitally

stabilizing controller

τ = M̂(q)q̈∗(t)+ Ĉ(q, q̇)q̇∗(t)+ Ĝ(q)− Kp y−Kd ẏ (16)

while other controllers to achieve asymptotic orbital stability

can be easily constructed in a similar manner.

Note, however, that to ensure global stability, additional

properties of the projection function are required.

C. Simulation Results

Now we simulate the system (3) with controls (11) and

(16). The simulation results of the system (3) with control

(11) are showed in Figs. 6 - 7. We choose matrices for con-

troller as Kp = diag(250, 250, 250), Kd = diag(50, 50, 50).
Initial condition for simulation is q(0) = qd(0) + ǫ1, q̇(0) =
0, where ǫ1 is an error in the initial position.
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Fig. 6. Left: Resulting trajectory (blue line) achieved through simulation
system (3) with control (11) in task space. Red line is the desired trajectory.
Right: Resulting trajectory in joint space. Dashed lines are the desired
trajectories q∗(t) (q1 – blue line, q2 – green line, q3 – red line).
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Fig. 7. Resulting trajectory in task space achieved through simulation
system (3) with control (11). Dashed lines are desired trajectory x(t) –
blue line, y(t) – green line, z(t) – red line.

The result of the simulation is showed in Fig. 8 and

Fig. 9. The matrices Kp and Kd are the same as in the

previous simulation. Initial conditions for simulation are

q(0) = qd(0) + ǫ1 and q̇(0) = 0, where ǫ1 is an initial

position error.
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Fig. 8. Left: Resulting trajectory (blue line) achieved through simulation
of system (3) with modified control (16) in task space. Red line is desired
trajectory. Right: Resulting trajectory in joint space. Dashed lines are desired
trajectory q∗ (q1 – blue line, q2 – green line, q3 – red line).
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Fig. 9. Resulting trajectory in task space achieved through simulation of
system (3) with control (16). Dashed lines are desired trajectory x(t) – blue
line, y(t) – green line, z(t) – red line.

By simulation results, we see that the system with control

law (16) faster converges to the desired trajectory than with

the control law (11).

D. Analysis of Robustness

Let us check the sensitivity and response of the closed-

loop system to errors in the initial state of the robot and to

uncertainties in the parameters. In particular, it is of interest

to know whether the virtual holonomic constraints (vector

of synchronization errors), which is specified in the path

planning step, and defined by

Y = [y1, y2, y3]

y1 = q1 − φ1(P (q))
y2 = q2 − φ2(P (q))
y3 = q3 − φ3(P (q))

(17)

are kept small for the closed-loop system with uncertainties

in parameters of the system (3). This is an important issue

for implementation, since the sensitivity of the closed loop

system dynamics might limit the use of the motion planner

aimed at the time optimal performance. It is expected that

the most sensitive parameters of the three links of model

(3) would be parameters of the third link representing the

most distant part of the mechanism from the base of the

robot. For this we simulate the system with uncertainties in

center of mass of the third link and mass of the third link.

In Fig. 10 the results of simulation are shown. Analyzing
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Fig. 10. Left: Evolution of coordinate Y with uncertainties in center of
mass of the third link varying within the range of 10% of its nominal value.
Right: Evolution of coordinate Y with uncertainties in mass of the third link
varying within the range of 10% of its nominal value.
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Fig. 11. Left: Error between desired and real trajectory of the robot for
standard ABB controller for one period. Right: Error between desired and
real trajectory of the robot for our controller for one period.

the simulation results, we can conclude that the closed-loop

system with control law (16) is not sensitive to induced

parametric uncertainty.

IV. EXPERIMENTAL RESULTS

In this part of the paper we concentrate on the real-time

implementation of the desired controls on IRB 140 robotic

manipulator. The experiments are carried out with in real-

time at a sampling frequency of ∆s = 0.004s. It is same as

the sampling time of the standard ABB controller. We use

parameters obtained through identification for the dynamic

model in (3). The non-linear friction is compensated by a

model-based addition to the control signal. Due to the facts

that the robot components are mounted together and that their

friction models are not known, an appropriate lumped model

obtained by identification is used. In robots, friction sig-

nificantly reduces performance and increase negative effects

such as tracking errors, large settling times or limit cycles.

In our control system we take into account such effects it in

order to gain accuracy.

Here, we show results of experiment for the trajectory of

Fig. 2 using control (16) and compare accuracy of following

the trajectory using our controller and the controller provided

by a standard commercial ABB system. In Fig. 11 errors

between desired trajectory and trajectory of the robot for our

controller and for the standard ABB controller are presented.

The errors are calculated as the distance between the desired

and the real trajectories. Path accuracy are 1.1mm for our

controller and 3mm for the standard controller, respectively

at the highest achievable velocity of the manipulator.

V. CONCLUCIONS

In this paper we have considered the problem of tra-

jectory planning and control for an industrial manipulator.

In trajectory planning we concentrated on the dominant

velocity constraints which are apparent in actuators. It is

straightforward to also account for acceleration constraints.

We have illustrated the case of a circular Cartesian path

and two trajectories are chosen as examples. The angular

position of a point on the path is used as an independent

configuration variable for parameterization of the whole

motion in terms of a virtual holonomic constraint and a

velocity profile of the new variable along the motion. Such a

parameterization can be instrumental and helps with assign-

ments of velocity profiles along the same path so that we can

optimize trajectories for execution time or other performance

indices. We have planned trajectory with period 0.915s. It is

25% faster than the trajectory generated by the standard ABB

planner. The explicit dependence on time disappeared, which

allows for implementation of our proposed control strategy,

built upon standard tracking controllers, that achieves invari-

ance of a preplanned trajectory and contraction to it if the

system is moved away by external forces. Experimental tests

demonstrate the feasibility of the proposed strategy. We can

see that implementation of our design allows to obtain better

accuracy than achievable by the currently commercially

available standard controller.
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