
Topological Exploration of Unknown and Partially Known Environments

Soonkyum Kim1, Subhrajit Bhattacharya2, Robert Ghrist3 and Vijay Kumar4

Abstract— We present the mathematical framework and
algorithms for multi-robot topological exploration of unknown
environments in which the main goal is to identify the different
topological classes of trajectories and thus efficiently distribute
the task of exploration among different groups of robots.
We consider two-dimensional configuration spaces. At any
point in time, the robots’ map consists of known, partially-
mapped obstacles. The unknown, yet-to-be-explored area is
mapped to a single point, thus giving us a quotient space. The
topological classes on the quotient space allows us to define
topological classes of trajectories connecting a robot pose to
the unknown region in the original configuration space. Robots
explore this configuration space choosing different homology
classes when confronted by obstacles or walls. We illustrate
the basic idea with simulations of small teams of robots.
Experiments with a single robot illustrate the applicability of
the method to robots that have small sensor footprints and
limited computational resources. We also provide comparisons
with a standard frontier-based algorithm.

I. INTRODUCTION

Exploration and mapping have been treated quite ex-
tensively in the robotics literature. The general problem
can be formulated as finding the next best view or pose
[12] to acquire information required to build a map of the
environment [15]. In most settings, the spatial representation
of the map is based on metric information. Indeed approaches
like metric-based multi-robot coordinated exploration have
been studied widely in the past [1], [4], [14]. In decision-
theoretic approaches to exploration, mutual information and
entropy are often used [14], [16], [13], [17] to guide robots to
perform efficient exploration. Simpler approaches involving
the identification of frontiers and segmentation representing
the boundaries between unexplored and explored regions
have also been widely used for deployment of robots in
exploration and mapping of unknown or partially known
environments [20], [6], [18], [9]. Most of these fundamental
techniques work in conjunction with coordination strategies
for the multiple robots or team of robots.

In contrast, we are interested in building a topological
representation of the environment that might serve as a coarse
map for coverage or for search and rescue by a single robot
or allow for coordination and planning of multiple robots
engaged in cooperative tasks. In this paper, we explicitly

1Soonkyum Kim is a graduate student in Department of Mechanical
Engineering and Applied Mechanics. soonkyum@seas.upenn.edu

2Subhrajit Bhattacharya is a post-doctoral researcher in Department of
Mathematics. subhrabh@math.upenn.edu

3Robert Ghrist is a professor with Department of Mathematics
and Department of Electrical and Systems Engineering.
ghrist@math.upenn.edu

4Vijay Kumar is a professor with Department of Mechanical Engineering
and Applied Mechanics. kumar@seas.upenn.edu

compute the topological classes of trajectories (we will con-
sider only non-looping classes [2] – classes in which the op-
timal trajectory is embedded) connecting the explored region
to the unexplored region and use this to guide deployment
of robots for efficient exploration of the environment. We
also provide a detailed coordination algorithm for achieving
the later. Methods involving segmentation of the known
region and construction of a Voronoi graph for efficient
deployment [19] is akin to a topological approach as ours.
However, in our approach, we avoid complex segmentation
algorithm by direct computation of optimal trajectories in
different topological classes leading to the unknown region.

In the following discussion we assume that the reader
is familiar with the notion of topological equivalences of
trajectories, in particular that of homology [2], [11].

To motivate the approach in this paper, consider the
simple scenario in Figure 1(a) in which there is a group
of robots at locations close to p equipped with sensors with
a limited field of view mapping an unknown environment.
In the figure, the current map consists of the three obstacles
(marked in black) and the free space colored in pale blue. The
region, L, in pale yellow is not visible to any of the sensors
and hence is unknown. An information gain maximization
based approach as in [13] or [16] will essentially give an
unique gradient descent direction at the location of the robots
(if all the robots are roughly the same location, the control
inputs will also be very similar) and make the robots move
together. However, clearly there are three distinct topological
classes in this environment that can lead the robots to the
unknown region (indicated by the blue dashed arrows in the
figure). We are interested in methods that will maximize the
collection of information by naturally assigning robots to
different topological classes of trajectories.

A frontier-based exploration as in [6] would find three
distinct trajectories or assignments in two steps [18]: i.
Identify the boundary between the known and the unknown
regions and segment it to obtain its connected components
(using an edge detection algorithm for example), followed
by ii. finding optimal trajectories to each of the connected
components (using Dijkstra’s search). While this method
would perform satisfactorily in the example of Figure 1(a),
remarkable out-performance of a topology-based method as
ours is observed in scenarios like that in Figures 1(b) or
1(c) – when the known region is not simply-connected.
Moreover, in a frontier-based algorithm like in [18], the
additional step of identification of the connected components
of the frontier may be expensive. When there are multiple
robots, the standard frontier-based approach makes robot-
frontier assignment by taking into consideration the size of

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 European
Union

3851

L

p

(a) A group of robots, using their laser range
sensors, finds 3 topological classes of paths
leading to the unknown region, L. There are also
3 frontiers in this scenario.

L
τ1

τ2

f
p

O1O2

∞

(b) In this partially known environment there is a
single frontier (green dashed curve), but 2 topological
classes connecting the location of the robots and
frontier, f . Such scenarios are natural when the known
free region, R2 −O − L, is not simply-connected.

L

O1

τ1

τ2

τ3

f1

f2

O3

O2

p

∞

(c) In this scenario the known region is not
simply-connected and there are 2 frontiers. But
on R2−O as well as on (R2−O)/L there are
3 non-looping topological classes.

Fig. 1. Partially explored environments. The group of robots (red dots) need to be split and deployed for exploration of the unknown regions (pale yellow
region marked as L). The figures illustrate the distinction between frontier-based and topology-based deployments.

the frontier [18]. In an indoor environment with lots of
corridors and passages, possibly leading up to large open
areas, the size of the frontier may not be the best indicator
of information gain. Furthermore, when there are multiple
groups of robots in different locations, performing distributed
cooperative exploration, it is unclear how the groups can
have a consistent way of referring to a particular frontier
when communicating (without communicating the complete
description of the frontier). Our topological approach, on
the other hand, is completely free from the task of frontier
identification or representation, and instead uses a single pass
of search/planning to discover trajectories in different topo-
logical classes, each of which is represented by a topological
invariant (H-signature) that is consistent over the different
groups (Figure 3(b)).

Consider the scenario illustrated in Figure 1(b), where
a group of robots are provided with a partial map of the
environment. There is a single frontier, f . A frontier-based
approach would find a single shortest path to the frontier
(either τ1 or τ2). However, there are two topological classes
of trajectories in the plane punctured by the obstacle, O,
that connect p to all points in L. As shown, τ1 and τ2
are two trajectories in different topological classes. Thus
clearly, the number of frontiers do not correspond to the
number of distinct non-looping topological classes when
the explored/known free region is not simply connected. A
similar example is shown in Figure 1(c), where O is the
set of all obstacles that have been discovered. In particular,
the group of robots have explored the perimeter of obstacle
O1, thus resulting in a map that is not simply connected. In
this case although there are two connected components of the
frontier, there are three topological classes of trajectories and
therefore three directions for exploration. Clearly, deploy-
ment of groups of robots in each of the distinct topological
classes will result in more efficient exploration (i.e. discovery
of the unseen obstacles marked in thick dotted lines).

Our focus here is on topology-based exploration. In our
recent work [2] we developed a method to find least cost
paths in different topological classes connecting a start and
a goal coordinate. We can choose a candidate point in the
unknown region (for example, the points at ∞ shown in
Figure 1) and directly use the method in [2] to determine the
lowest cost trajectories leading up to the frontiers, but one
in each topological class in R2−O. Since we are interested

in the topological classes in the known region for deciding
deployment strategy, and do not want any possible non-trivial
topology of the unknown region to influence that, we will
collapse the unknown region, L, to a single point. We do not
want multiplicity in the topological classes due to topological
features in L (e.g. trajectories in different homology classes
in R2−O that agree on the explored free space, R2−O−L,
but are in different topological classes in L). Thus, we use the
notion of quotient spaces [11], and describe a homology class
invariant in the quotient space, (R2−O)/L, to characterize
the topological classes of trajectories.

Because our interest is in topological mapping, we will not
concern ourselves with questions of localization, detection or
mapping of obstacles or control. We will assume each robot
is able to localize either using lasers and cameras or by using
GPS, detect obstacles with a laser scanner, communicate with
other robots, and avoid collisions with the environment. We
implement our algorithm with nonholonomic robots in ROS,
and demonstrate the multi robot exploration in simulation,
along with comparisons with a frontier-based exploration
algorithm. We also present experimental results with a single
robot with a small field-of-view laser and odometry to
illustrate the basic ideas in a real world setting.

II. HOMOLOGY CLASSES

A. Homotopy and Homology Class Invariants of Trajectories
Two trajectories connecting the same start and goal coor-

dinates are said to be in the same homotopy class if one can
be continuously deformed into the other without intersecting
any obstacle and with endpoints always fixed. Such homo-
topy classes possess algebraic manifestations (in terms of the
fundamental group) which are clean but extremely difficult to
compute. A simpler analog can be found in homology, which
is built on linear-algebraic constructs. Homology classes are
similar to, but subtly different from, homotopy classes (see
see Fig. 1 of [2]). In [2] we developed an invariant for
homology classes of trajectories, called the H-signature,
to find trajectories in different homology classes and for
planning with topological constraints. In this paper we will
exploit this idea for finding trajectories in multiple homology
classes in the explored region of the environment.

For completeness of this paper we include below some
of the basic definitions that appear in [2]. A few of these
definitions are slightly narrower than the general form (as

3852

in [8], [11]) for simplicity and to accommodate the present
applications.

Definition 1 (Homologous trajectories): Two trajectories
τ1 and τ2 connecting the same start and end coordinates, xs
and xg respectively, are homologous iff τ1−τ2 (i.e., τ1 union
an orientation-reversed τ2) forms the complete boundary of
a 2-dimensional chain (i.e., compact sub-domain) in the free
configuration space, C, not containing/intersecting any of the
obstacles.

We represent R2 by the complex plane, C.
Definition 2 (Representative points [2]): Given a set of

connected planar obstacles, O1,O2, · · · ,ON , a system of
representative points, denoted ζl ∈ Int(Ol), ∀l = 1, · · · , N ,
is a selection of one point in the interior of each obstacle. The
exact location of the representative points is not of particular
significance as long as each lies inside the respective obstacle
interiors.

Note that in general it is possible that two (or more) of
the obstacles might not be mutually disjoint. That is, Oi
and Oj can be parts of a same connected obstacle, but
each of these parts need to be connected. This amounts
to assigning multiple representative points for the same
connected component of an obstacle, which changes the H-
signature but not the basic method.

Definition 3 (H-signature in R2 punctured by obstacles):
For the given system of N obstacles and their representative
points, we define the obstacle marker function F : C→ CN

as F(z) =
[

1
z−ζ1 ,

1
z−ζ2 , · · · ,

1
z−ζN

]
T . We thus define the

H-signature of a trajectory τ using the complex integral
H(τ) =

∫
τ

F(z)dz

Lemma 1 (H-signature as homology class invariant [2]):
Two trajectories τ1 and τ2 connecting the same points in the
plane punctured by obstacles are homologous if and only if
H(τ1) = H(τ2)

Remark: The above lemma gives a way of computing
homology invariant in R2−O. Note that from the definition
of H-signature and using the residue theorem from complex
analysis, it is easy to see that when τ is a closed loop, H(τ)
is a vector of the form [a1, a2, · · · , aN]T 2πi, where al ∈ Z.
Moreover, according to the terminology of [2], we call a
trajectory non-looping (which is an embedded curve) if the
imaginary part of each element of its H-signature is between
−2πi and 2πi.

Equipped with these basic tools, we define the homology
class invariant for quotient spaces

B. The Quotient Space and H-signature
In [2] the H-signature of trajectories was used for finding

different homology classes of trajectories connecting two
points. However, for exploration we are interested in the
topological classes of trajectories that emanate from a start
coordinate, with the goal being not a single point but rather
a set L. To adapt to this situation, we collapse the set L to
a single point via the construction of a quotient space [11].

To adapt the definition of the H-signature in this context,
we will collapse the entire unknown region to a single
abstract point via a quotient map, q, so that the space under

L

�2 - O - L

�2 / L�2

 quotient map,

q
O q(O)

(�2-O) / L

q(L)

τ1 τ2

q(τ1)

q(τ2)

Fig. 2. A simple illustration of a quotient map. The set L is collapsed to
a point, q(L). Here we consider the Euclidean plane, R2, with its subset L
being the entire region outside a small disk on the plane. Collapsing L to
a single point gives us the topological 2-sphere. All non-trivial 1-cycles (or
closed loops) that completely lie in L become trivial in the quotient space
under the quotient map, q.

consideration becomes (R2 − O)/L (where O is the set of
obstacles in the known region). The image of L under the
quotient map, q, thus being a single point lets us use the
notion of homology classes of trajectories connecting to this
point from the image of the start coordinate on the quotient
space (Figure 2). For a formal definition of quotient map
see [11], [8].

The following proposition extends the result of Lemma 1
to the quotient space (R2 −O)/L.

Proposition 1 (Homology invariant in quotient space [3]):
Let O be the collection of obstacles in R2 with respect
to which we compute the H-signature as described in [2],
and let L ⊂ R2 − O. Let Q be the set of H-signatures
of all closed loops (1-cycles) in (R2 − O) contained
entirely in L. Let τ1 and τ2 be two trajectories connecting
two points, s,g ∈ (R2 − O). Now consider the quotient
map q : (R2 − O) → (R2 − O)/L. The images of the
trajectories τ1 and τ2 under the action of q are homologous
in (R2 −O)/L iff H(τ1)−H(τ2) ∈ Q.

Sketch of proof. First, note that the set Q is a countable
set. Each element of Q corresponds to an element of the
homology group H1(L;Z) [8]. The proof follows from the
observation that by identifying L to a point under the quotient
map, we essentially trivialize every closed loop (1-cycle) in
L. This implies that the loops that were non-trivial in L
before applying the quotient map (i.e. whose H-signatures
were not zero), need to be set to zero when we compute
and compare the H-signatures in the quotient space. Thus,
before applying the quotient map we would say that τ1 ≈ τ2
(i.e. belong to same homology class) iff H(τ1)−H(τ2) = 0.
However, after applying the quotient map, each element of
Q, containing the H-signatures of non-trivial loops in L,
are to be considered equivalent to 0. Thus the new criteria
becomes q(τ1) ≈ q(τ2) (i.e. the images of the trajectories
belong to same homology class in the quotient space) iff
H(τ1)−H(τ2) ∈ Q.

For a more formal algebraic proof and an illustration
demonstrating the concept behind the proof, see Section 7
of [3]. �

III. THE ALGORITHM
In this section we provide a complete description of the

algorithm for topological exploration with multiple robots
while respecting the present constraints on the available
space. We assume that the reader is familiar with the con-
struction of the H-augmented graph [2] and the process of

3853

performing search (using Dijkstra’s or A* algorithm) in it [5].
A. Representation

We discretize the environment (the subset of R2 that is
of interest) into a uniform square grid and create a graph,
G, by placing a vertex in each square cell and connecting
a cell with its neighbors using directed edges. More com-
plex forms of discretization (triangulation, unstructured or
adaptive discretization) can also be used. But to focus on
the main contribution of the paper, we choose the simplest
discretization scheme. We maintain a probability map by
associating an occupancy probability with each cell. The
initial probability for each cell in a completely unknown
environment is set to 0.5, and the state of each cell is
designated as ‘unknown’. As the laser sensor data are re-
ceived, the probability map is updated. If the probability
of a cell goes above a high threshold, Tobs, we designate
the cell as an ‘obstacle’. Otherwise if it goes below Tfree,
we designate it as a ‘free’ cell. This, at any instant of
time, gives us an obstacle map (see Line 3 of Algorithm
1: ToplogicalExplore).

A candidate point (an arbitrarily chosen point) is placed
inside each connected component of the unknown region (a
point is chosen near the boundary of the region, and shifted,
if possible, to create a padding). Like representative point,
the exact location of a candidate point is not of significance
as long as it falls inside the desired region.

B. Multi-robot Exploration Algorithm

Suppose we start with N robots at a location, say p0, in
the environment. At the beginning we have a single group
of robots. The basic idea behind our algorithm is to split the
group of robots based on the number of homology classes
of trajectories discovered and deploy each newly-formed
smaller group along those trajectories, and repeat this process
for each subsequently formed group (Figure 3).

Discrete time is represented by t. The re-planning for
trajectories does not happen in every time step, and instead
happens at time steps t0, t1, · · · . The values at the subscript
of these time steps are the planning cycle numbers, and are
denoted by the variable, pl = 0, 1, 2, · · · .

At any instant, the groups formed by the robots are
represented by a partition of the set of robot indices,
{1, 2, 3, · · · , N}. We represent that partition (created af-
ter planning cycle, pl) by the ordered set Gpl ={
{r1,1pl , r

1,2
pl , · · · }, {r

2,1
pl , · · · }, · · ·

}
. A group, g, is simply a

partition element g ∈ Gpl, and variables giving attributes to
the groups are indexed by g (e.g., τgpl). |Gpl| denotes the
number of groups.

The planning cycle, pl, creates a set of trajectories,
τgpl, g ∈ Gpl (with H-signature, hgpl, w.r.t. base-point p0 –
see Section III-B.1), that the groups need to follow. We will
unambiguously (and without going into implementational
details) refer to two obvious components of each such
trajectory: traversed part and the un-traversed part.

Each group of robots, during their coordinated travel
together as a group, has a representative location (a point in
configuration space), with respect to which all computations

of trajectories are performed. This point, representing the
position of the group g ∈ Gpl at time t (with tpl ≤ t <
tpl+1), is denoted as Pgt . On the contrary, the positions of
individual robots are denoted by prt , r ∈ {1, 2, · · · , N} (and
thus at the individual level of robot r, the control objective
will be to reach Pgt , where r ∈ g). We represent the trajectory
history of the gth group at the time instant t by Pg0:t.

At t = 0, pl = 0, we start with a single group, G0 =
{{1, 2, · · · , N}}. After obtaining the first few sets of laser
sensor data and building the occupancy map in the neigh-
borhood of the robot group, the algorithm ToplogicalExplore
(Algorithm 1) is used to direct the exploration task. Figure
3 illustrates the working of the algorithm.

We use ‘∗’ in place of a index of a variable to denote
the entire set of variables over all the possible indices (e.g.,
τ∗pl = {τ

g
pl | g ∈Gpl}). An overline over a variable is used

to emphasize that it is a temporary variable.

Algorithm 1: Pseudocode for ToplogicalExplore:
1. |t = 0; pl = 0; tpl = 0; Gpl = {{1, 2, · · · , N}}
2. |while TRUE
3. |i. Update probability map based on laser sensor data.

|ii. Threshold probability map to generate obstacle map.
4. |if t == 0 OR map has changed significantly

| OR a group has reached its immediate goal
5. |i. Place representative points on newly discovered obstacles,

|ii. Place candidate points in connected components of
| unexplored regions.

6. |for each g ∈ Gpl // Plan new trajectories
7. |γg =

{
{τg1, h

g
1}, {τ

g
2, h

g
2}, · · ·

}
=

| FindTrajectories(Pgt ,P
g
0:t)

8. |end for each
9. |if γg = ∅, ∀g ∈ Gpl // No trajectory found. All explored!

10. |break while loop
11. |end if
12. |Set Gpl+1 = Gpl // Copy groupings from previous plan cycle.
13. |{Hg | g ∈ Gpl+1} =

| AssignHomologyClassesToGroups(c(τ∗∗), h
∗
∗, h
∗
pl)

14. |{Gpl+1, γ
∗} =

| CheckNearbyGroupsForRedistribution(P∗t , Gpl+1, H
∗
)

15. |for each g ∈ Gpl+1

16. |if |Hg | == 0 // Group not assigned any homology class.
17. |{Gpl+1, H

∗
, γ∗} = RejoinWithClosestGroup(g)

18. |end if
19. |end for each
20. |for each g ∈ Gpl+1

21. |if |Hg | > 0 // Group assigned multiple homology classes.
22. |{Gpl+1, H

∗
, γ∗} = SplitGroup(g)

23. |end if
24. |end for each

| // At this point each Hg
, g ∈ Gpl+1 contains one H-signature.

| // The new group structure is present in Gpl+1.
25. |for each g ∈ Gpl+1

26. |τgpl+1 = τgk, h
g
pl+1 = h

g
k , k is such that h

g
k ∈ H

g

27. |end for each
28. |tpl+1 = t; pl ++
29. |end if
30. |for each g ∈ Gpl
31. |Choose the next point ((t− tpl)th point in τgpl), P

g
t+1 ∈ τ

g
pl.

32. |Pg0:t+1 = Pg0:t tPgt+1
33. |for each r ∈ g
34. |Move robot r towards Pgt+1 via the shortest path in the map.

| // Controller for making robot follow planned trajectory.
35. |end for each
36. |end for each
37. |t++
38. |end while

3854

τ1
g τ2

gg

p0

(a) At t = t0 = 0 a planning cycle starts with a single
group of N robots at p0. Thus Gt0 = {{1, 2, · · · , N}} =:
{g}. The group finds 2 topological classes of trajectories:{
{τg1, h

g
1}, {τ

g
2, h

g
2}

}
= FindTrajectories(p0, ∅). Thus

the group splits into two sub-groups, each containing ∼N/2
robots. The new groups are g′ = {1, 2, · · · , bN/2c} and
g′′ = {bN/2c+ 1, · · · , N} (see figure on the right), and they
follow trajectories τg

′

1 := τg1 and τg
′′

1 := τg2 .

p0

τ1
g'

g'

τ2
g'

τ3
g'

τ4
g'

g''
τ1

g''

τ2
g''τ3

g''

τ4
g''

Pt
g' Pt

g''

(b) At the beginning of the next planning cycle (at t = t1) there are two groups:
Gt1 = {g′, g′′}, when the condition in Line 4 of Algorithm ToplogicalExplore
returns true. Thus, in this cycle of planning the groups obtain the following
trajectories respectively:
FindTrajectories(Pg

′

t1
, τg

′

1) =
{
{τg

′

1, ha}, {τ
g′

2, hb}, {τ
g′

3, hc}, {τ
g′

4, hd}
}

;

FindTrajectories(Pg
′′

t1
, τg

′′

1) =
{
{τg

′′

1 , hc}, {τ
g′′

2 , hd}, {τ
g′′

3 , hb}, {τ
g′′

4 , ha}
}

.
Note the correspondence between the values of the H-signatures.

Fig. 3. Illustration of algorithm ToplogicalExplore.

In Line 4 of the above algorithm, the condition for check-
ing whether the ‘map has changed significantly’ consists of
two checks: i. We first check if any of the most recently
planned trajectories (i.e., τ ipl, i ∈ Gt) has become invalid
(blocked by newly discovered obstacles), and ii. the number
of cells in the environment that have changed state (i.e. from
‘unknown’ to ‘free’ or ‘obstacle’) is greater than a threshold.

Below are brief descriptions of each of the remaining
subroutines used in the algorithm.

1) FindTrajectories(P, τ): (Refer to Figure 3) This sub-
routine is used to find all trajectories emanating from P in
the different topological classes. The subroutine also returns
the H-signature of the planned trajectory appended with the
already traversed path, τ . This requires searching in the H-
augmented graph, GH , as described in [2]. However, in the
search algorithm we initiate the open set with the vertex
{P,H(τ)} (i.e., instead of using 0 as the H-signature of
the start vertex, we use H(τ) – the H-signature of the
traversed path, τ). Consequently we expand the vertices in
GH as usual. This ensures that we consider p0 as the base
point of the space so that the value of the H-signature
remains consistent over the different groups and over time
(see Figure 3(b)). Vertices that lie in the explored region are
expanded, and a path is stored every time a vertex connected
to the unknown region is reached via a new homology class
(identified by the sum of the H-signature of the expanded
vertex and the H-signature of a trajectory connecting that
vertex with the candidate point in unknown region).

Note that according to Proposition 1, the way we deter-
mine whether H-signatures h and h′ represent the same
homology class in the quotient space is to check if the
elements of the difference, h − h′ (which, recall from the
definition of H-signature, is a vector of complex numbers),
are either i. all equal when the unknown region is not
simply connected (i.e., the unknown region that extends to
the boundary of the environment), or, ii. all zero when the
unknown region is simply connected (for all other unknown
regions). If none of these is true, they represent different
homology classes. Using a method similar to [2], we do not
allow trajectories that loop around obstacles. Moreover we
do not place representative points on obstacles smaller than

a threshold radius, thus avoiding multiplicity of topological
classes merely due to sensor noise. Arguably, this subroutine
is the most computationally intensive since it involves search-
ing in the H-augmented graph. The worst complexity is that
of a Dijkstra’s algorithm (for a graph of almost-constant
degree): O(v log(v)), where v is number of vertices in the
graph created by discretization of the environment.

2) AssignHomologyClassesToGroups: The number of
trajectories returned by the ‘FindTrajectories’ procedure will
be the same for each of the groups g ∈ Gpl (see Figure 3(b)).
Since we used the same base-point, P0, for the searches for
each group, we will obtain the same set of H-signatures
for each group from the search in Line 7, although the
trajectories will of course be different.

The purpose of this subroutine is to make the assignment
of each of the homology classes to the different groups of
robots based on the cost of the planned trajectories, c(τ∗∗),
their H-signatures, h

∗
∗, and the H-signature of the trajecto-

ries assigned in the last plan cycle, h∗pl. The basic strategy
for doing this is as follows: i. If, for a group g, the H-
signature of the last planned trajectory, hgpl, that it has been
following, is found in the result returned by FindTrajectories,
that homology class is assigned to the group g (the H-
signature comparison being made with respect to obstacles
that are common to the time instants when the last plan was
made and the current time). This ensures that a group (or
one of its subgroups) keep following the homology class
that it has been following. ii. Whichever homology class
remain unassigned after this is assigned to group for which
the trajectory corresponding to the class is shortest. The
H-signatures of the homology classes assigned to group
g ∈ Gpl+1 is fixed in H

g
(i.e., it is a set of H-signatures,

H
g
= {ηg1, η

g
2, · · · }).

3) CheckNearbyGroupsForRedistribution: If a group has
been assigned homology classes more than the number of
robots available in that group (i.e., |Hg| > |g|), then it
is checked if there is another nearby group, g′, such that
c|Hg′ | < |g′|, ‖Pg

′

t − Pgt ‖ < R (c > 1, R > 0 are
parameters). If so, a re-shuffling of the groups is performed
(with dome robots from g′ being transferred to g) and the
new group arrangement is returned to Gpl+1. Since the

3855

content of each group gets changed, the indices of γ∗ are
updated accordingly.

4) RejoinWithClosestGroup: This subroutine gets trig-
gered when a group is not assigned any homology class. The
reason for this is typically two-fold: i. Sometimes a spurious
homology class may be observed because of incorrect laser
readings, which would soon turn out to be blocked as new
sensor data arrives, thus resulting in some of the recently
created group to be assigned no trajectories, or, ii. a group
can reach a dead-end in the environment (e.g., end of a
corridor). This requires that we rejoin those groups with other
groups so that they don’t remain idle. We first look for closest
“cousin” groups (groups having common distant parent –
group at an earlier plan cycle from which the current groups
originated – see SplitGroup next) that are not more than D
generations apart. This requires a traversal of D levels of the
family tree (the sets Gpl, Gpl−1, Gpl−2, · · · , Gpl−D contain
all the information required for this) and identification of
the closest cousin. If such a cousin cannot be found, the
group is joined with the distance-wise closest group in the
environment. The subroutine returns the new grouping (i.e.
partition of the set {1, 2, · · · , N}) and the corresponding re-
ordering that is required in H

∗
. Since γ∗ and H

∗
are indexed

by the groups, an update of their indices is also required (and
removal of the elements corresponding to the joined, hence
no-more existing, group).

5) SplitGroup: If H
g

contains more than one element
(i.e. multiple homology classes assigned to a single group
of robots), the group will be split into sub-groups of almost-
equal sizes and at most one homology class will be assigned
to each of the sub-groups. Thus, if there aren’t enough robots
in the group (i.e. |Hg| > |g|), clearly a choice has to be made
and some of the homology classes has to be left unattended
for future exploration. Under such situations the unattended
homology classes are removed from H

g
. As before, the

indices of γ∗ and H
∗

are updated.
C. Distributed Implementation

It is to be noted that the algorithm ToplogicalExplore can
be implemented in a distributed manner where the ith group
performs its own computation for the robots in the group. In
a distributed implementation the ‘for each’ loops starting at
Lines 6, 15, 20, 25 and 30 would be replaced by computation
for the respective group only in their respective threads. Each
group would maintain its own probability map and update it
based on the laser sensor readings. Each group also broad-
casts the changes in its own map so that the other groups
in the environment can update their maps (a communication
protocol similar to that in [4]). Moreover, when one group
decides that a re-planning of trajectory is required (condition
in Line 4 becomes true), all the groups are communicated
the decision and they come to a consensus to re-plan.
Since the procedure AssignHomologyClassesToGroups
requires a consensus, the groups communicate the cost of
their respective planned trajectories as well.

IV. RESULTS
We implemented the ToplogicalExplore algorithm on ROS

(Robot Operating System), that lets us accurately simulate

robot dynamics, actuator noise and sensor noise. Although
our current implementation is mostly centralized and runs on
a single processor, the overall structure of the algorithm is
perfectly suited for distributed implementation on multiple
parallel processors as described in Section III-C.

We also provide extensive comparison with the frontier-
based algorithm described in [18] (the implementation of
which was also made in ROS, with identical models of robot
dynamics, sensor and actuator). Section IV-A illustrates,
using a simple environment, why our algorithm logically
outperforms a frontier-based algorithm. Section IV-B demon-
strates similar performance comparison for a more complex
indoor environment.

All simulations were run on a dual core machine with
processor clock speed of 2.6GHz and 4GB memory. Note
that the run times reported involve the complete dynamic
simulation of the non-holonomic robots.
A. Partially Known Environment

We consider a simple partially known environment that
is 30m × 30m in size, discretized by 0.1m × 0.1m cells,
with 4 robots exploring it. The environment has 3 rectangu-
lar obstacles, of which two fall inside the initially known
elliptical region as shown in Figures 4(a) and 4(c). The
initial known region, as clearly seen, is not simply-connected.
Consequently, the number of topological classes do not
correspond to the number of frontiers. Thus, using a frontier-
based algorithm (as described in [18]) the entire group of 4
robots are driven towards the single frontier as shown in
Figure 4(a). However, using our topological exploration, the
initial group of robots discover two topological classes of
trajectories and hence split up into two sub-groups as seen in
Figure 4(c). This, without surprise, results in more efficient
exploration of the environment. Our TopologicalExplore
algorithm explores the entire environment in 1045 iterations
(and actual run time of ∼ 35mins), while the frontier-based
algorithm took 2359 iterations (and run time of ∼ 78mins).

This example illustrates how a topological approach to
exploration, as ours, visibly and structurally outperforms
standard frontier-based approaches in cases when the known
environment is not simply-connected.
B. Simulations of Multi-robot Topological Exploration

Figure 6 shows an example with eight robots. The environ-
ment used is a part of the 4th floor of the Levine hall at the
University of Pennsylvania (a 21.3m × 34.2m environment,
discretized by 0.1m× 0.1m cells). In Figure 6(a) the single
group of robots discovers two topological classes, and hence
splits into two groups, each consisting of four robots (Fig-
ure 6(b)). In Figure 6(c) each of those groups get assigned
two topological classes to discover, thus each splitting further
into groups of two robots (Figure 6(d)). Further splitting
of three of those groups happen in Figure 6(e). Following
which, as some of the groups end up exploring the homology
classes assigned to them, they rejoin the other groups to help
explore whatever remains.

Figure 6(i) shows comparison with the final result obtained
using the frontier-based approach of [18]. Even in this
case not only the number of iterations required using the

3856

(a) t = 3: A frontier-based explo-
ration algorithm initially finds a sin-
gle frontier and plans a trajectory to
drive all the robots towards it.

(b) Using the frontier-based algo-
rithm the robots explore the entire
environment in t = 2359 iterations.

(c)t=3: Our TopologicalExplore
algorithm finds 2 topological classes
of trajectories and hence splits the
group of robots into two.

(d) Using TopologicalExplore al-
gorithm the robots explore the entire
environment in t = 1045 iterations.

Fig. 4. Comparison between the frontier-based exploration algorithm (top
row) of [18] and our TopologicalExplore algorithm (bottom row) in a
partially-known environment using 4 robots. The purple curves show parts of
the planned trajectories, while black represents traversed trajectories. White
is known/explored, while light yellow is the unknown region.

frontier-based approach is higher, the actual time required
for computation was also higher in case of the frontier-based
exploration. The frontier-based approach took ∼ 100mins,
while our algorithm took ∼ 69mins to completely explore
this particular environment.

C. Experiment with a Single Robot

Laser
Sensor

Differential
Drive Wheels

Bumper

Radio

Fig. 5. The SCARAB mo-
bile robot platform [10]

To demonstrate practical appli-
cability we implemented our al-
gorithm on a mobile robot plat-
form developed in the GRASP
laboratory and known as the
SCARAB [10]. Figure 5 illustrates
the various components of the ex-
perimental platform and a snap-
shot of the robot in action. To
localize the robot we currently use

an adaptive Monte Carlo localization [7] module that relies
on laser sensor data. Having multiple robots would not only
require an additional local collision check layer, but also an
additional complexity for localization.

The overall ToplogicalExplore algorithm, even when there
is a single robot, remains the same. The key feature during
the execution, however, is that we always have a single
group of robots consisting of a single robot (i.e., Gpl =
{{1}}), and whenever the SplitGroup subroutine is called,
the group/robot has to choose one of the trajectories.

We performed the single-robot experiment in the same
indoor environment (the blue-print of which we used to
perform the multi-robot simulations). However, we sealed
the two entrances at lower left and lower right leading to
the larger room at the bottom. Figure 7 shows the result. In
Figure 7(a), the robot starts from the bottom left corner and
explores the environment to initially find three topological
classes. The robot follows one of these trajectories that
lead to the frontier 2 in Figure 7(a) (In the figures we
number the frontiers for convenience of referencing. It should
however be noted that at no point in our algorithm do we
need to compute or identify the frontiers or its connected
components). When the robot finds further branches, it keeps
on following the trajectory with the current H-signature
(thus, for example, reaching frontier 2 in Figure 7(b)). When
there are no more feasible trajectories with the current H-
signature (e.g., the frontier 2 disappears in Figure 7(c)), the
robot starts following the shortest trajectory with a new H-
signature to a new frontier (e.g., frontier 5 in Figure 7(c)).
This process continues until there are no frontiers left, hence
completing the process of building the map (Figure 7(e)).

V. CONCLUSIONS AND FUTURE DIRECTION
In this paper we have presented an algorithm to explore

an unknown or partially known environment by gradually
building a topological description of the environment. Using
the notion of quotient spaces, optimal trajectories in different
topological classes leading up to the unknown region were
found by searching in the H-augmented graph. Groups of
robots are split into subgroups with each subgroup being
assigned to a different homology class to enable efficient
exploration of the environment. In contrast to previous work,
the exploration is guided by topological and not metric
information about the world and is ideally suited to obtaining
a coarse topological map without detailed metric informa-
tion. We demonstrated the performance of our algorithm in
simulation using multiple robots, and in experiment using a
single robot. We also provided a comparison of performance
between our algorithm and a frontier-based approach. We
are in the process of creating a distributed implementation of
the algorithm and in near future plan to conduct experiments
with more than one robot.

ACKNOWLEDGMENT
We gratefully acknowledge support from the ONR Anti-

dote MURI project, grant no. N00014-09-1-1031. We would
also like to thank Mr. Benjamin Charrow for his help with
setting up and resolving technical issues with the SCARAB
robots and the Monte Carlo localization module.

REFERENCES

[1] Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar. Multi-
robot coverage and exploration in non-euclidean metric spaces. In
Proceedings of The Tenth International Workshop on the Algorithmic
Foundations of Robotics, 13-15 June 2012.

[2] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. Topo-
logical constraints in search-based robot path planning. Autonomous
Robots, pages 1–18, June 2012. DOI: 10.1007/s10514-012-9304-1.

[3] Subhrajit Bhattacharya, David Lipsky, Robert Ghrist, and Vijay Ku-
mar. Invariants for homology classes with application to optimal search
and planning problem in robotics. Annals of Mathematics and Artificial
Intelligence, 67(3-4):251–281, March 2013.

3857

(a) t = 4. (b) t = 136. (c) t = 186. (d) t = 275. (e) t = 580.

(f) t = 891. (g) t = 1180. (h) t = 1790 (exploration
complete).

(i) Comparison: Final result (t = 2638 iterations) using
frontier-based approach of [18].

Fig. 6. (a)-(h): Simulation result with 8 robots exploring an indoor office-like environment. (i): Comparison of performance with frontier-based algorithm
of [18] (in the same environment, with same number of robots and same initial configurations).

(a) t = 1. (b) t = 310. (c) t = 540. (d) t = 900. (e) t = 1226.
Fig. 7. Experiment result with a single robot exploring an indoor office-like environment.

[4] Subhrajit Bhattacharya, Nathan Michael, and Vijay Kumar. Distributed
coverage and exploration in unknown non-convex environments. In
Proceedings of 10th International Symposium on Distributed Au-
tonomous Robotics Systems. Springer, 1-3 Nov 2010.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT Press, 2nd edition, 2001.

[6] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart.
Distributed multirobot exploration and mapping. Proceedings of the
IEEE, 94(7):1325 –1339, july 2006.

[7] Brian P. Gerkey. amcl ros package. http://www.ros.org/wiki/amcl.
[8] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.
[9] John G. Rogers III, Carlos Nieto-Granda, and Henrik I. Christensen.

Coordination strategies for multi-robot exploration and mapping. Ex-
perimental Robotics, 88:231–243, 2013.

[10] N. Michael, J. Fink, and V. Kumar. Experimental testbed for large
multi-robot teams: Verification and validation. Robotics and Automa-
tion Magazine, 15(1):53–61, Mar 2008.

[11] James Munkres. Topology. Prentice Hall, 1999.
[12] Richard Pito. A solution to the next best view problem for auto-

mated surface acquisition. IEEE Trans. Pattern Anal. Mach. Intell.,
21(10):1016–1030, October 1999.

[13] M. Schwager, P. Dames, D. Rus, and V. Kumar. A multi-robot control
policy for information gathering in the presence of unknown hazards.

In International Symposium on Robotics Research, Aug. 2011.

[14] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD
thesis, University of Freiburg, Freiburg, Germany, April 2006.

[15] C. Stachniss. Robotic Mapping and Exploration. Springer Tracts in
Advanced Robotics. Springer, 2009.

[16] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based
exploration using rao-blackwellized particle filters. In Proc. of Robot.:
Sci. and Syst., pages 65–72, Cambridge, MA, June 2005.

[17] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[18] Arnoud Visser and Bayu Slamet. Balancing the information gain
against the movement cost for multi-robot frontier exploration. In
Second European Robotics Symposium 2008, EUROS 2008, Prague,
Czech Republic, pages 43–52, 2008.

[19] K.M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-robot
exploration using a segmentation of the environment. In Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on, pages 1160–1165, 2008.

[20] B. Yamauchi. A frontier-based approach for autonomous exploration.
In Computational Intelligence in Robotics and Automation, 1997.
CIRA’97., Proceedings., 1997 IEEE International Symposium on,
pages 146 –151, jul 1997.

3858

