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Abstract— This paper presents a method to develop trajec-
tories which remain optimally insensitive to sudden changes
in dynamics. The approach is applied to two example systems
that model a vehicle’s attempt to navigate through potentially
hazardous areas of the state space. Through these simplified
examples, we show how to automatically plan trajectories which
either avoid or adjust controls to safely pass through critical
regions of the state space.

I. INTRODUCTION

When traveling along winter roads drivers attempt to avoid
ice patches or slow and align with the direction of travel
before passing through. These intuitive driving styles are
applied to keep the vehicle driving in a safe and predictable
manner. They can also be posed as solutions to an optimal
control problem. In this context, the driver attempts to track a
desired trajectory, minimize control input, and avoid changes
in the planned trajectory which could be caused by road
hazards. As ice and other hazards emerge in their path,
sacrifices in tracking and/or control adjustments must be
made in order to pass through or around obstacles safely. It is
important to note that in these circumstances the safety of a
trajectory is tied to its predictability. A predictable trajectory
is less sensitive to the sudden changes in dynamics which
can be encountered near ice or other dynamically disparate
regions of the state space.

This paper considers the sensitivity of trajectory optimiza-
tion to discrete changes in system dynamics that might occur
when the wheels of a vehicle slip over ice, stick in sand,
or when parts of the system or carried load break or are
removed. This sensitivity metric, measuring the change in
system trajectory due to a transition from nominal dynamic
conditions to alternative dynamic modes associated with
potentially hazardous obstacles / regions, will be referred to
as the hybrid sensitivity of a trajectory. By incorporating and
minimizing a norm on these sensitivity terms during trajec-
tory optimization, we show that it is possible to automatically
synthesize trajectories which remain optimally1insensitive to
discrete dynamic changes.

Several authors have developed methods for path and
trajectory planning that account for critical or hazardous
areas of the state space (e.g. [2], [6], [9], [10], [11], and [12]).
Most of these approaches use barrier functions or similar
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1The trajectory optimization and optimal control techniques discussed are
local methods. As such, optimal trajectories are locally optimal with respect
to a cost functional.

methods in order to calculate trajectories that effectively
avoid regions to mitigate their impacts on system dynamics.
However, avoidance is not always feasible. Instead of strictly
avoiding regions of the state space, controllers produced
using the methods developed here can vary both path and
applied control in order to pass through dynamically sensitive
regions in an optimally insensitive manner. To our knowledge
this approach to optimizing hybrid sensitivities in order to
deal with dynamically critical regions of the state space is
unique.

The techniques in this paper rely on a significant body of
work in the area of hybrid systems. Specifically, we make
use of the mode insertion gradient (see [3], [4], [5], [13], and
[14]) to provide a measure of the sensitivity of a cost function
to a switch in dynamics. More formally, the term provides a
first-order approximation of how a cost function is impacted
by a discrete dynamic change. As the approximation is valid
for some neighborhood around the mode transition time, the
mode insertion gradient has been used in mode scheduling
[5], [13], [14] and switching time optimization problems [4]
to determine the optimal time to insert or remove dynamic
modes from hybrid trajectories. Optimizing trajectories with
respect to an L2 norm on the mode insertion gradient, we
ensure trajectories remain insensitive to new dynamic modes
that may be encountered at any point along a trajectory.

The derivations and approach presented for incorporating
and optimizing a norm on hybrid sensitivities in optimal con-
trol calculations are intended to be general. The methods can
be directly applied to any number of iterative optimization
techniques which utilize solutions to approximating LQR
problems [1]. However, implementation results discussed
make use of optimal control methods described in [7] and [8]
as they can be applied to continuous time nonlinear systems
without a-priori discretization. Additionally, the methodol-
ogy returns feasible trajectories, ξ(t) = (X(t), U(t)), with
feedback controllers at each iteration.

Following this introduction, Section II provides a deriva-
tion of the methods used to incorporate hybrid sensitivity
optimization into iterative optimal control calculations. Sec-
tions III and IV describe results obtained by applying the
techniques to two example systems – 1) a mass and damper
system that models a vehicle passing through a dynamically
sensitive region, and 2) a kinematic car that models the
geometry of sensitivity avoidance.

II. OPTIMIZING HYBRID DYNAMICAL SENSITIVITIES

The derivations presented in this section can be applied
to any optimal control algorithm. For the implementation
examples presented in Section III, we utilize an optimal

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3023



control based approach to trajectory optimization described
in [7] and [8]. Below, Section II-A provides a brief overview
of the general, iterative approach to trajectory optimization
for which the sensitivity optimization techniques discussed
can be applied. With this as a framework, Section II-B
derives the method for optimizing hybrid sensitivities in
trajectory optimization.

A. Overview of Trajectory Optimization

The trajectory optimization approach used here is tradi-
tionally applied to iteratively optimize quadratic cost func-
tionals of the form2

J =
1

2

∫ tf

t0

‖X(t)−Xd(t)‖2Q + ‖U(t)− Ud(t)‖2R dt

+
1

2
‖X(tf )−Xd(tf )‖2P1

, (1)

where matrices

Q ≥ 0, R > 0, and P1 ≥ 0.

Trajectory optimization is performed by minimizing cost
functional (1) with respect to trajectory, ξ(t) = (X(t), U(t)),
constrained by dynamics

Ẋ(t) = f(X(t), U(t)). (2)

For a first order method, optimization is achieved by
iteratively approximating (1) with a model, g(ζ), that is
quadratic with respect to perturbations to the trajectory,
ζ(t) = (z(t), v(t)). Curves z(t) and v(t) represent pertur-
bations to the current trajectory’s state, X(t), and controls,
U(t), respectively. With this approximation, LQR methods
as described in [1] can be directly applied to solve the
constrained minimization problem3

min
ζ
g(ζ) = DJ(ξ) · ζ +

1

2

∫ tf

t0

‖ζ‖2dt (3)

subject to constraint

ż(t) = A(t)z(t) +B(t)v(t). (4)

Where A(t) and B(t) represent linearizations of the dynam-
ics (2) with respect to the state and controls, constraint (4)
requires that perturbations locally obey the system dynamics.

Solutions to minimization (3) provide first order descent
directions at each iteration. Following from traditional steep-
est descent, the trajectory optimization approach perturbs
each iteration’s trajectory in these directions, using a line
search to determine scaling for sufficient decrease. Through
a feedback projection, each perturbed trajectory is projected
to a nearby solution obeying system dynamics. As such, the
process ensures feasible trajectories, ξ(t), at each iteration.
The techniques guarantee incremental progress and conver-
gence to an optimizer if one exists.

2The notation, ‖·‖2M , indicates a norm on the argument where matrix,
M, provides the metric (i.e. ‖X(t)‖2Q = X(t)T ·Q ·X(t) ).

3DJ(ξ) refers to the slot derivative of J(ξ) with respect to its argument.
Generally, DnF (arg1, arg2, . . . , argn) refers to the slot derivative of
function F with respect to its nth argument.

Following this trajectory optimization proceedure, con-
trollers can be calculated that, under model conditions,
minimize norms on state tracking error and applied controls
while steering systems along a specified course. For further
details the reader is referred to the works of [7] and [8].

B. Incorporating Hybrid Sensitivities

In order to select trajectories that remain insensitive to
sudden changes in dynamics, it is necessary to quantify the
sensitivity of a trajectory to a discrete dynamic switch. Where
cost functional (1) provides a norm on the state tracking
error and applied controls across a given trajectory, the mode
insertion gradient, denoted

dJ

dλ+
= ρ(t)T (f2(ξ(t))− f(ξ(t))), (5)

provides a measure of the sensitivity of the cost func-
tional to a dynamic mode insertion of infinitesimal duration
[5].4Because changes in the cost functional relate to changes
in trajectory, (5) also provides a measure of the sensitivity
of a trajectory to the insertion of a new dynamic mode.

Using the tools of trajectory optimization previously de-
scribed, it is difficult to directly incorporate (5) into cost
functional (1) because (1) should be a function of only the
current trajectory. While it is possible to append the state
vector with (5) to incorporate the mode insertion gradient
into the cost functional, calculating (5) first requires solving
for the adjoint variable, ρ(t). This necessitates backwards
integration of the relation

ρ̇(t) = −D1l(X(t), U(t))T −D1f(X(t), U(t))T ρ(t), (6)

where l(X(t), U(t)) is the incremental cost (portion under
the integral) from (1) and ρ(tf ) = 0. Because it relies on
integration of the dynamics, (5) is not a simple function of
the current trajectory and cannot be appended to the state
without further modifications to the underlying trajectory
optimization algorithm.

To keep the derivation general and to allow use of the
trajectory optimization techniques described in Section II-A,
a norm on the mode insertion gradient can be incorporated
into (1) by first defining a new appended state vector, X(t) =
[X(t), ρ(t)]T . This choice results in an appended dynamics
vector

f̄(X(t), U(t)) =

(
f(X(t), U(t))

−Q · (X(t)−Xd(t))−A(t)T ρ(t)

)
.

(7)
Additionally, it should be noted that while X(t) is calculated
from forward integration of dynamics (2), X(t) is calculated
as the solution of a two point boundary value problem. Where
the first half of vector (7) requires forward integration of
(2) from initial time t0, the second half requires backwards
integration of (6) from final time tf . Because the first half
of this dynamics vector can be solved independently of the
second however, the problem remains tractable.

4As used in this paper, f(ξ(t)) represents the system dynamics without
the mode insertion and f2(ξ(t)) represents the system dynamics that
corresponding to a new dynamic mode inserted for an infinitesimal duration.
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Appending the state vector in this form requires new
definitions for appended weighting matrices, Q ∈ R2n×2n

and P 1 ∈ R2n×2n, to replace positive semi-definite weight
matrices, Q ∈ Rn×n and P1 ∈ Rn×n, which define norms
on state tracking error in (1). To incorporate a norm on the
mode insertion gradient we define5

Q =

(
Q 0
0 w(f2 − f)(f2 − f)T

)

and P 1 =

(
P1 0
0 0

)
.

The w term in the Q weighting matrix above is a scalar
multiplier used to weight the norm on the sensitivity terms
relative to the state tracking error and applied controls. As
defined, Q provides a quadratic form on the state tracking
error and sensitivities determined by the mode insertion
gradient. Because the adjoint variable is 0 at the final time,
the entries of P 1 which provide the quadratic form on these
terms can be left as 0. As such, P 1 only provides a norm
on the state tracking error at the final time, as in the case of
matrix P1.

With these modifications, a new cost functional for sensi-
tivity optimization can be defined as

J̄ =
1

2

∫ tf

t0

‖X(t)−Xd(t)‖2Q + ‖U(t)− Ud(t)‖2R dt

+
1

2
‖X(tf )−Xd(tf )‖2

P 1
. (8)

Equation (8) is identical to the original trajectory optimiza-
tion cost functional (1) except for the term

1

2
‖X(t)−Xd(t)‖2Q =

1

2
(X(t)−Xd(t))

T ·Q · (X(t)−Xd(t))

+
w

2
[ρ(t)T (f2 − f)]2.

The norm on the appended state tracking error introduces
a term to the integral of (8) which is equivalent to a
weighted square of the mode insertion gradient.6With this
addition, the cost functional incorporates an L2 norm on the
sensitivity of trajectories to discrete changes in dynamics.
As will be shown, optimal trajectories computed using this
cost functional can balance sensitivities to sudden changes
from dynamics f(ξ(t)) to dynamics f2(ξ(t)), relative to state
tracking error and the magnitude of applied controls.

To calculate the descent directions, ζ(t) = (z(t), v(t)),
required to iteratively optimize (8), the constrained mini-
mization problem

min
ζ
g(ζ) = DJ̄(ξ) · ζ +

1

2

∫ tf

t0

‖ζ‖2dt (9)

5The dependence of dynamics f(ξ(t)) and f2(ξ(t)) on the current
iteration’s trajectory solution, ξ(t), has been dropped for brevity.

6The Xd(t) terms associated with the adjoint variables in X(t) are set
to 0 to obtain an L2 norm on the magnitude of the mode insertion gradient.

must be solved subject to the constraint

ż(t) = A(t)z(t) +B(t)v(t). (10)

As formulated, g(ζ), provides a local quadratic approxima-
tion to (8) analogous to the way g(ζ) locally approximates
(1). However, the linear terms differ between the two models.
Where DJ(ξ) = [ ∂J

∂X(t) ,
∂J
∂U(t) ] is made up of partial

derivatives

∂J

∂X(t)
=

∫ tf

t0

(X(t)−Xd(t))
T ·Qdt+(X(tf )−Xd(tf )T ·P1

(11)
and

∂J

∂U(t)
=

∫ tf

t0

(U(t)− Ud(t))T ·Rdt, (12)

DJ̄(ξ) = [ ∂J̄
∂X(t) ,

∂J̄
∂ρ(t) ,

∂J̄
∂U(t) ] is composed of partial

derivatives

∂J̄

∂X(t)
=

∫ tf

t0

(X(t)−Xd(t))
T ·Q

+ w(ρ(t)T (f2 − f))ρ(t)T (A2 −A)dt

+ (X(tf )−Xd(tf ))T · P1, (13)

∂J̄

∂ρ(t)
=

∫ tf

t0

w(ρ(t)T (f2 − f))(f2 − f)T dt, (14)

and

∂J̄

∂U(t)
=

∫ tf

t0

w(ρ(t)T (f2 − f))ρ(t)T (B2 −B)

+ (U(t)− Ud(t))T ·Rdt. (15)

To constrain the solutions to (9), linearizations of dynamics
(7) with respect to X(t) and U(t) are required. Respectively,
these linearizations are represented by the A(t) and B(t)
terms in (10), where

A(t) =

(
A(t) 0
−Q A(t)T

)
and

B(t) =
(
B
0

)
.

III. SIMULATIONS

In the following sections the sensitivity optimization tech-
niques discussed are applied to two simple example systems.
These systems provide abstractions of vehicle trajectory
optimization scenarios that demonstrate the performance
characteristics of the algorithm and its application to robotic
vehicles.

A. Example System I

In the first example scenario a simulated robotic vehicle
is provided a desired trajectory from its starting position to a
desired position 2 meters away in the least time possible. In
this scenario, the robot has collected sufficient measurements
to localize an ice patch at a point in the state space in between
the robot’s initial configuration and the final desired position.
The approximate location of the ice patch is represented
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Fig. 1: Dynamics f2 are designed to transition between
dynamics fice near the expected location of the ice patch
and the normal dynamics f in other areas of the state space
according to the pdf (light blue). The robot (blue circle) is
depicted traveling along its desired trajectory (gray dashed
line). The expected location of the ice patch is at the center
of the pdf at x = 1.5m.
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Fig. 2: State trajectories resulting from standard trajectory
optimization techniques (blue curve) and sensitivity opti-
mization (purple curve). The dashed gray curve reflects the
desired trajectory.

by a Gaussian belief distribution centered at the expected
location of the patch. Assuming the robot has a rough
model of how the ice influences its dynamics, standard and
sensitivity-enhanced trajectory optimization are applied and
results compared in Section IV.

For the system described, the vehicle controls vector,
U(t) = F (t), consists only of the thrust developed by tires.
The vehicle’s state vector, X(t) = [x(t), ẋ(t)]T , includes its
position and velocity as it moves in one dimension between
initial and final locations. These simplified vehicle dynamics
are given by

f(X(t), U(t)) =

(
ẋ(t)

−bẋ(t) + F (t)

)
, (16)

Control L2 Norm
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Fig. 3: The magnitude of thrust applied during standard tra-
jectory optimization techniques (blue curve) and sensitivity
optimization. Increasing weight, w, in the sensitivity norm
produces the brown and green curves. The colored dashed
lines reflect the time at which each correspondingly colored
trajectory crosses the expected location of the ice patch.
Sensitivity optimized trajectories apply less initial accelera-
tion and reduce control authority to minimize braking when
crossing the ice. After crossing, braking is reapplied with
greater magnitude than nominal trajectories.

where b = 0.9 is the viscous frictional damping coefficient
assumed under normal driving conditions. For the scenario
discussed, it is assumed the dynamics of the vehicle on ice
can be roughly modeled by

fice(X(t), U(t)) =

(
ẋ(t)

1

2
(−bẋ(t) + F (t))

)
, (17)

reflecting the fact that when on ice, the robot’s control
authority and viscous damping are reduced drastically.

If the goal of sensitivity optimization were to develop a
trajectory with minimal sensitivity to ice patches that could
be encountered anywhere in the state space then f2 could be
directly equated to fice. However, the expected location of
the ice patch can be incorporated into the definition of f2 to
develop trajectories that have nominal state evolution except
in the vicinity of ice. In this case,

f2(X(t), U(t)) =

 ẋ(t)
fice2,1

(1 + e−(x(t)−µ)2/(2σ2))

 (18)

incorporates the expected location and influence of the ice
on the dynamics. Where fice2,1 is the second component of
vector fice, (18) ensures that dynamics (17) are applied at
this location and transitions to dynamics (16) in other areas
of the state space according to the Gaussian describing the
expected location of the ice. The dynamics imposed by f2

as the robot passes through different areas of the state space
are graphically depicted in Figure 1.

In implementation, we used µ = 1.5m to center the
distribution representing the expected location of the ice,
with σ = 0.1m as its standard deviation. Optimization results
are included in Figures 2 and 3. These figures show sensi-
tivity optimized trajectories develop less initial acceleration
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to avoid braking and minimize control authority over the
ice. By reapplying braking after the ice, these trajectories
successfully reach the desired position with similar state
tracking performance and slightly less control authority.

B. Example System II

The second example scenario simulates a robotic vehicle
following a desired path that passes in the vicinity of a sand
pit. Again, the location of the sand pit is only approximately
known and represented as the center of a Gaussian belief
distribution. It is assumed the robot has a rough model
of how the sand will impact its dynamics. Traditional and
sensitivity-enhanced trajectory optimization are applied and
results compared in Section IV.

For this scenario the kinematic car model is used. In this
model, the state space vector of the robot, given by X(t) =
[x(t), y(t), θ(t)]T , reflects its 2D location and orientation.
The control vector, U(t) = [v(t), ω(t)]T , encompasses
both forward and angular velocity controls. The dynamics
associated with this model are

f(X(t), U(t)) =

v(t)cos(θ(t))
v(t)sin(θ(t))

ω(t)

 . (19)

Assuming that getting caught in sand will have a near uni-
form slowing effect on the robot’s movements, the dynamics
of the robot in sand can scaled down by

fsand(X(t), U(t)) =
1

10
f(X(t), U(t)). (20)

The optimization methods discussed remain relatively insen-
sitive to specific parameters in the dynamics used to model
these critical regions7as long as the relative dynamic effects
are captured. In this case, using a factor of 1

10 compared to
other fractional multiples produces similar trajectories and
affects the optimization in the same manner as choosing an
alternative weight, w.8These approximate dynamics and the
expected location of the sand are incorporated into dynamics

f2(X(t), U(t)) = f · (1− 0.9 e
(
−(x(t)−µx)2

2σ2x
− (y(t)−µy)2

2σ2y
)
).
(21)

As opposed to the first example scenario, (21) uses a
2D Gaussian distribution centered at (µx, µy) with standard
deviations in x and y directions of (σx, σy) to transition
between (20) at the believed location of the sand and (19)
in other areas of the state space (see Figure 4). Simulation
parameters (µx, µy) = (1.5m, 0.85m) were applied with
(σx, σy) = (0.18m, 0.1m). Trajectory optimization results
included in Figure 4, demonstrate trajectories applying vary-
ing degrees of obstacle avoidance as the vehicle attempts to

7Critical regions refer to areas of the state space where the expected
dynamics significantly differ from nominal modeled dynamics. In these
examples critical regions refer to the areas of ice and sand.

8As a rough measure of this influence, consider that weights used to
develop the sensitivity trajectories in Figure 4 vary by a factor of 10 between
purple and orange curves.
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Fig. 4: State trajectories resulting from standard trajectory
optimization techniques (blue curve) and sensitivity opti-
mization. Increasing weight, w, in the sensitivity norm pro-
duces the purple, green, and orange curves. The dashed gray
curve reflects the desired trajectory, and the gray contours
depict level sets of the Gaussian representing the location
of the sand pit and the influence of the sand dynamics in
f2. Dynamics f2 transitions between fsand at the center of
the Gaussian and f elsewhere. As the weight on sensitivity
optimization is increased, trajectories apply greater degrees
of obstacle avoidance in the vicinity of the sand.

minimize hybrid sensitivities in regions around the sand.9

IV. DISCUSSION

Simulated trajectory Figures 2 and 3 show the state
evolution and applied controls for the robotic vehicle model
in the example scenario described in Section III-A as it
tracks a desired trajectory. The results included in these
figures ignore the effects of the ice patch on the vehicle’s
state and dynamics. Instead, the purpose of the figures is to
demonstrate the different driving styles the vehicle develops
when the expected location of the ice patch is incorporated
in sensitivity optimization calculations.

Through a weighted L2 norm on the mode insertion
gradient, sensitivity optimized trajectories use control author-
ity and adjust state tracking to minimize the sensitivity of
resulting trajectories to discrete changes in dynamics. Using
these methods, even a rough model of how ice impacts the
dynamics of a robotic vehicle recovers one of the natural
control strategies discussed in Section I. Demonstrated in
Figure 3, the vehicle slows earlier on, reducing the magnitude
of applied controls before entering the vicinity of the ice
patch and minimizing applied controls. Only after passing
through the believed location of the patch does the vehicle
begin aggressively braking to slow itself and come to a stop
at the desired position. Through this control strategy, the
robot minimizes the influence the ice patch could have on
its trajectory.

9In all cases the norm on the directional derivative of the cost functional
was used to test for convergence using a criterion of 0.1. This value was
approximately three orders of magnitude smaller than the initial norm on
the directional derivative.
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As evinced by the L2 errors included in Figures 2 and
3, in applying the sensitivity optimized driving style, the
vehicle manages to reach the desired final position with only
modest sacrifice in tracking error and an overall reduction
in the norm on the applied controls. This performance is
notable considering that more traditional obstacle avoidance
techniques (i.e. barrier functions) may be unable to reach the
final position and would perform poorly when the vehicle
does not have the option to “change lanes” to avoid the ice.
In conditions where ice were actually present, the methods
discussed provide plausible trajectories to mitigate its effects
and thus could reduce tracking error at relatively little cost.

The example scenario described in Section III-B demon-
strates the performance of the algorithm in a 2D environment
where the optimal trajectories can be interpreted as obstacle
avoidance. In this case, the desired trajectory tracked by
the robotic vehicle brings it toward areas of the state space
where a sand pit is located with high expectation. In this
scenario, the robotic vehicle is modeled as a kinematic car
and limited so that it cannot take advantage of sliding or
inertial dynamic effects. Additionally, because the sand pit
dynamics uniformly damp the robot’s motions, if the robot
enters the sand its trajectory will be significantly affected
regardless of applied controls.

Under the described conditions, sensitivity optimization
returns the results presented in Figure 4, where the robot
minimizes its sensitivity to a switch to the sand dynamics
by avoiding areas of the state space around the sand. Where
the blue curve represents trajectory optimization results that
do not account for the sand, the purple, green, and orange
curves represent trajectories which result from sensitivity
optimizations with increasing weight, w, on the norm of
the mode insertion gradient. As the figure makes apparent,
increasing the weight on the mode insertion gradient causes
the vehicle to make sacrifices in trajectory tracking in order
to give the sand pit a wider birth.

In both scenarios dynamically disparate areas of the
state space are represented using a Gaussian distribution
to approximate their location and extent of influence. By
increasing the standard deviation or shape of the belief dis-
tributions, it is a straightforward process to adjust the shape
and influence of these regions. By increasing the standard
deviations of the Gaussian representing the location of the
sand in the scenario in Section III-B, one can achieve the
same effect as increasing weight, w, to select for trajectories
with avoid a greater area of the state space. As shown
in Figure 4, when the vehicle cannot minimize sensitivity
through controls alone, trajectories results can be influenced
to apply varying levels of obstacle avoidance to mitigate the
impacts of sand.

V. CONCLUSIONS

The methods in this paper provide a means to incorporate
an L2 norm on the mode insertion gradient in trajectory
optimization calculations. The approach is used to select
trajectories which avoid dynamic transitions, and thus can

be tracked more predictably in the presence of hybrid uncer-
tainty.

Performance is demonstrated under conditions where only
approximate locations and models for dynamically disparate
regions of the state space are available. Examples illustrate
how the approach can be used to synthesize robotic vehicle
trajectories which employ intuitive means to avoid or pass
through these critical regions in an optimally insensitive man-
ner. As the paths produced can be tracked more predictably
in dynamically varied environments, these techniques can
provide for more reliable and safer trajectories without
necessitating the strict avoidance of hazardous regions.
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