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Abstract— This paper presents an adaptive algorithm for
checking collisions over any continuous robot motion set when
tasks or constraints are given. As robots have begun to operate
in human environments, which are unstructured and dynami-
cally changing, the need for on-line robot planning and control
strategies has increased. In implementing an on-line system,
a fast and reliable collision checking method for continuous
paths is a critical element. However, since external objects
move unexpectedly, collision checking along the continuous
path of a robot’s motion suffers from increased uncertainty.
Furthermore, computing the desired motion path or trajectory
of a complex robotic task is very complex and slow. Therefore,
we have developed a new collision checking strategy that can
be applied to many types of motions that satisfy many given
constraints. Our algorithm defines the applicable robot motions
in a constraint-based manner, which is suitable for the multiple-
task motion of a complex robot. This method can check the
collision for the entire motion by finding the worst case with a
small amount of computation, so that we can use the method for
on-line applications. Moreover, our algorithm has a feature of
adaptive resolution, which provides advantages in dynamically
changing environments. The proposed method has been tested
on high d.o.f. robots and the experimental results show that the
method is suitable for on-line applications of multiple-tasks.

I. INTRODUCTION

This paper presents an adaptive method for checking
collisions over any continuous motion within provided mo-
tion constraints. This method is applicable to every robot
motion that is restricted by multiple motion constraints. Since
with this new method the continuous task trajectory of the
conventional motion planning problem can be defined as one
of the constraints, the method can also be applied to the
conventional problems of trajectory tracking motion as well
as the expanded cases of continuous range of motion, which
includes the start configuration and the goal configuration.
The range of motion is defined as the union of all con-
figurations that satisfy the given motion constraints. Thus,
this method provides a way to formulate robot motions in a
general form.

As robots begin to operate in dynamic environments,
where configurations of external objects change unexpect-
edly, collision checking along the continuous path of the
robot’s motion suffers from increased uncertainty. Since in
dynamically changing situations the motion path keeps being
modified, the robot’s path tracking produces larger errors
than in pre-defined and closed work spaces. Furthermore,
it can be very complex and expensive to compute the
desired motion path or trajectory of a complex robotic task.
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For example, without simulating and recording the given
motions beforehand, it is not possible to compute the desired
joint trajectory between two configurations of a complex
robot performing multiple tasks. As a result, the strategy
of detecting collisions over a continuous motion path in real
time can only be applied to very restricted situations in which
simple robots are used. Therefore, we have developed a new
collision checking strategy which can be applied to more
types of motions that satisfy many constraints.

Since our method defines the applicable motion in a
constraint-based manner, not in a trajectory-based manner, a
low-level motion controller has more flexibility in executing
the task motion. Thus, the actual robot is able to react to
sudden events in real time by running an additional reactive
task within the boundaries of the previously provided con-
straints, since the method allows every motion that complies
with the original constraints. This is a very useful feature
for improving the safety of a robot system in dynamic
environments. Furthermore, the definition of constraint-based
motion is more suitable to the multiple-task framework that
is frequently used for high degree of freedom (d.o.f.) robots.

One of frequently used approaches is the sample-based
method, which samples configurations along a trajectory
and checks collisions on the discrete samples with static
collision-check algorithms such as [1], [2], [3], [4]. However,
the sample-based methods are not able to guarantee safety
over the continuous motions between the sampled configu-
rations.

Thus, other algorithms have been developed to detect
collisions along continuous motions, such as swept-volume
methods [5], [6], [7], trajectory parameterization methods
[8], [9], feature-tracking methods [10], [11], [12], and
dynamic-envelope method [13]. However, those methods are
applicable only to simple geometries or limited types of
trajectories.

The collision checking method proposed in this paper is
suitable to implementing on-line motion planning frame-
works such as the elastic strip framework [14]. The elastic
strip framework is an on-line motion modification strategy
that can maintain a feasible motion in unpredictably changing
situations. In this framework, a fast and reliable collision-
checking method for continuous motions connecting discrete
configurations is a critical element in implementing real-time
systems. Our collision checking method is suitable to such
real-time applications since the geometric or kinematic com-
plexity does not significantly affect the load of computation,
and the method can promptly check the collision for the
entire target motion by finding the worst case configuration
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with a small amount of computation. The elastic strip frame-
work uses more numbers of robot configurations in a narrow
space than in a wide space in order to increase the resolution
of the collision checking method. By this way, the planning
system can adapt the total amount of computation loads to
the complexity of the environment.

The purpose of this paper is to present a collision-checking
method that is able to test continuous motions. In order
to detect a collision, the collision-checking method uses
a proximity function that computes the minimum distance
between the discrete configurations of two objects. However,
this paper does not aim to improve the performance of a
proximity function, but to present a new strategy to use the
result of a proximity function. Hence, the collision-checking
algorithm is able to adopt any kinds of existing proximity
functions.

II. ALGORITHM

A. Collision Checking on a Motion Set

The most important issue with regard to on-line collision
checking of a moving object is how to efficiently detect
collisions over continuous motions. However, it is not a
simple task to detect collisions over an infinite number of
motions without false-negative (false non-collision) results
and with a performance of real-time speed.

The objective of our algorithm is to detect a collision
between obstacles, {O1, ..., Om}, and all configurations of
a motion set, S(qi, qi+1), whenever there exist overlaps
between them. In our algorithm, a motion set is regarded as
a set of continuous motions that include and connect two
discrete configurations. Thus, the algorithm should return
true only when all configurations in the motion set do not
have any overlap with the obstacles, and it should return
false when it cannot confirm that there is no overlap with the
current resolution. With this approach, the collision-checking
algorithm should be able to efficiently decide whether it is
free of collision when a robot moves in a motion set.

A motion set is defined by a set of constraints that are
parameterized by the start and goal configurations. Thus,
we can adapt the motion constraints and the corresponding
motion set to changing environments by updating the start
and goal configurations. As a result, any continuous config-
urations in the current motion set satisfy all the constraints
related to the current situation. Let Ck(qi, qi+1, q) ≥ 0,
k = 1, · · · ,m be m constraints that are defined by the given
start and goal configurations qi, qi+1, and restrict the range
of valid configuration q. Therefore, when qi and qi+1 are
given, a motion set is defined as

S(qi, qi+1) = { q | Ck(qi, qi+1, q) ≥ 0 , k = 1, · · · ,m}
(1)

Since the motion set includes the start and goal configura-
tions qi, qi+1, the constraints Ck, for every k, must satisfy

Ck(qi, qi+1, qi) ≥ 0 , Ck(qi, qi+1, qi+1) ≥ 0 (2)

Our approach to detecting collisions over the infinite
number of configurations included in a motion set is to

qi qi+1

qm

pa
th

Fig. 1: Basic method for checking collision on an intermediate
configuration: An intermediate configuration, qm, is collision free
if there exists at least one collision-free path which contains qm.
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di

di+1

Fig. 2: Basic method for checking collision on a path: A path is
collision free if the travel distance, dtravel(i,i+1), is shorter than
the sum of the two distances from the both ends’ configurations to
the obstacles such as dtravel(i,i+1) < di + di+1.

define a common collision-test method for a configuration
and find the worst-case configuration with respect to the test
method. The collision-testing method for a configuration that
we use in our algorithm is to find at least one collision-free
path that begins at the start configuration, ends at the goal
configuration, and passes through the tested configuration. If
a valid path is found, the collision-free path guarantees that
the tested configuration is also free of collision as shown in
Figure 1.

The method for testing collisions on a path we use is
to compute the travel distance along the path and compare
it with the sum of the distances from the configurations
of the both ends to the closest obstacles, as introduced by
Schwarzer, et al. [15]. If the travel distance is less than the
sum of the obstacle distances, it is guaranteed that the path
is free of collision. As shown in Figure 2, let di be the
minimum distance from a robot body at a configuration qi to
the surrounding obstacles, and let dtravel(i,i+1) be the travel
distance along a test path that connects qi and qi+1. Then
every configuration along the path is free of collision if

dtravel(i,i+1) < di + di+1 (3)

According to this test condition (3), a configuration qm
between qi and qi+1 has a lower possibility of colliding with
the obstacles if the test path which passes qm has a shorter
travel distance, dtravel(i,i+1). For example, in the case of
translation-only motion in the two-dimensional space, the
straight line has the shortest travel distance and the path
along that line has a higher possibility of satisfying the test
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Fig. 3: Selecting the best test path for an intermediate configuration:
Since a path which has the shorter travel distance can more easily
pass the path collision test of condition (3), it is recommended to
select a path which is as short as possible. For example, a straight
line has the shortest travel distance when only translating motion
is allowed.
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Fig. 4: Collision checking on the entire configurations in a mo-
tion set: Since di and di+1 are common for every intermedi-
ate configuration, qm ∈ S(qi, qi+1), in travel-distance computa-
tion, the collision checking on the entire intermediate configu-
rations amounts to finding the extreme-case configuration, qmax,
which has the test path of the longest travel distance. Therefore,
dtravel(i,i+1)(qmax) ≡ dmax(i,i+1) ≥ dtravel(i,i+1)(qm).

condition (3) and being confirmed as a collision-free path
than any other possible path passing through the intermediate
test points, as shown in Figure 3. Therefore, the first step is
to determine the type of test path that has a small travel
distance for each tested configuration.

The entire computation during the run-time amounts to the
computation load for searching for the worst-case configu-
ration in the motion set. After determining the type of test
path, we need to formularize the function to compute the
travel distance in order to find the worst-case configuration,
qmax, that has the longest travel distance dtravel,max along
the test path. In this case, the efficiency of finding the
worst-case configuration is important for the overall speed
of the algorithm. The final collision-test is done using the
inequality:

dmax(i,i+1) < di + di+1 (4)

It is worth noting that the collision-checking method can
be applied to each of the robot’s rigid bodies independently.
If it is independently proved that every rigid body is free
of collision within its corresponding motion set, the whole
robot body is free of collision. Therefore, we don’t need to
consider the joint constraints during the collision-checking
process. This fact enables us to choose a simple test path,
with which it is easy to compute the travel distance. The
only conditions to consider in choosing a test path are that

the path should include qi and qi+1, and it should be included
in the motion set, S(qi, qi+1).

B. Adapting a Resolution to the Width of Free Space

In our collision-detection algorithm, the resolution is adap-
tively determined in accordance with the free-space width
near the motion set that is currently tested. The resolution of
the algorithm means the level of free-space detail inspected
by the collision tests. A motion planner that uses our collision
checking algorithm can increase the resolution by adding
more number of nodes to capture the collision-free motion
in the tested region.

The result of the collision-test algorithm agrees more with
the actual collision status as the resolution becomes higher.
Since the algorithm does not produce false-negative results,
all configurations of a motion set are free of collision when
the algorithm returns true. However, when the return value
is false, the result can be interpreted as an indication that
the algorithm is not able to guarantee no collision in the
motion set since the resolution is not fine enough. Therefore,
a motion planner can inspect the motion-set more specifically
by inserting more nodes into the current motion set. If any of
the new nodes have a robot configuration that collides with
obstacles, the motion set is confirmed to have collisions since
an actual collision is found. Or if no collision is found along
the continuous motion in the motion set, the entire motion
set is considered free of collision. Otherwise, whether there
are collisions or not has not yet been confirmed and the
motion planner needs to determine whether to increase the
resolution further or stop the free-space inspection at this
level of resolution.

When the resolution is refined, the current motion set,
S(qi, qi+1) is sub-divided into two smaller motion sets of
S(qi, qj) and S(qj , qi+1). The new configuration qj , which
divides the original motion set into those smaller motion sets,
should be contained by the original motion-set such as

qj ∈ S(qi, qi+1) (5)

Once the motion-set is divided, the original collision-
checking condition (4) is replaced by the two separate
conditions:

dmax(i,j) < di + dj
dmax(j,i+1) < dj + di+1

(6)

If a motion planner chooses to conserve the range of the
initial motion-set after a sub-division, which is

S(qi, qj) ∪ S(qj , qi+1) = S(qi, qi+1) (7)

, then the maximum travel distances of the sub-divided
motion-sets have a positive lower-bound dbound. Let k be
the number of sub-divisions, Sk be a k-times sub-divided
motion-set, V (Sk) be the volume of a motion-set Sk, and
dmax,k be the maximum travel distance of Sk, then

V (Sk)→ 0, dmax,k → dbound > 0 as k →∞ (8)

Otherwise, if a motion planner chooses to make the
maximum travel distance converge to 0 as the resolution
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keeps being refined, the condition (7) needs to be relaxed
as

S(qi, qj) ∪ S(qj , qi+1) ⊆ S(qi, qi+1) (9)

In this case, if obstacles approach to the motion path and
the free-space becomes narrow, then the overall motion-set
range is reduced by the sub-divisions. As a result, the allowed
robot-motion range shrinks and converses to a collision-
avoidance motion.

If the collision checking of the original motion set,
S(qi, qi+1), returns the value “false” and the newly added
configuration qj is found to collide with obstacles, we have
a case of an actual collision after increasing the resolution.
Or if all the collision checks on both of the smaller sets
return the value “true”, the motion set is confirmed to be
free of collision at the higher resolution.

The feature of adaptive resolution provides advantages
when it is used in dynamically changing environments. When
the surrounding area becomes narrower, a motion planner
can increase the resolution and inspect collisions of motion
sets with higher accuracy so that the method does not fail to
find a collision-free path. On other hand, a motion planner
can increase the speed of the inspection by reducing the
resolution in a wider region. By using this approach, a motion
planner can concentrate the computation resource more on
narrower regions than on wider regions so that the algorithm
can increase its accuracy as well as the efficiency in changing
environments.

III. EXPERIMENTS

The collision checking algorithm has been developed for
real-time applications in dynamic environments, for continu-
ous motions of high d.o.f. complex robots, and for frequently
changing, multiple tasks. Therefore, we have performed
various experiments designed to test on-line updating per-
formance, multiple task capability, and efficient and adaptive
computation capability.

A. Performance in On-line Updating

Using a motion-modification approach in dynamically
changing situations requires updating the path in a very
short time period. Moreover, the computation time of the
collision checking algorithm over the whole motion path is
a critical part of the motion-modification process. Thus, we
have measured the computation time of the algorithm for
different types of manipulation robots when obstacles move
around the robots at various distances.

For the first experiment, we used a 7 d.o.f. Kuka robot
arm. The robot’s task is to move from an initial posture to a
goal posture. Three motion-sets are implemented to check
collisions along the task motion; three spherical motion-
ranges constrain the orientations of the upper arm, the lower
arm, and the end-effector, respectively, as shown in Figure 7.
The spherical motion-set defines boundaries of a direction ~e
according to the global coordinates by using a margin angle
ω, as in Figure 5. The maximum travel-angle in a spherical
motion-set boundary is computed as shown in Figure 6.

pbase

pend,i
pend,f

~ei ~ef

~ei ~ef

~a = ~ei × ~ef

o

~a

o~am

��	
~em

ω

���

~eb

Fig. 5: A spherical motion-constraint, which defines a motion-
set boundary of the direction of a body in global coordinates. A
direction vector ~e is defined by the global positions of two points
on the bodies as in ~e = pend−pbase

|pend−pbase|
. The initial direction ~ei and

the final direction ~ef can be indicated on a unit sphere as shown on
the middle. The motion-set boundary is also indicated on the unit
sphere: the main axis ~a is the rotation axis of ~ei and ~ef , defined
as ~a = ~ei × ~ef . The boundary on the unit sphere is composed
of the vectors of ~eb as shown on the right. When ~am = ~em × ~a
for a vector ~em on the middle line, a boundary vector ~eb can be
constructed by rotating ~em along ~am by a predefined margin angle
ω.

α

~ei ω
~ef

~em,f

Fig. 6: The maximum travel-angle in a spherical motion-set. The
travel angle is longest when the direction-point travels through one
of points at the four corners. For instance, if ~em,f is the vector
that is rotated from ~ef by the margin angle ω, and α is the angle
between ~ei and ~em,f such as α = ∠(~ei, ~em,f ), then the maximum
travel-angle is (α+ ω).

p0,i

p1,i

p2,i
p3,i

~e1,i
~e2,i

~e3,i

p0,f
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p3,f

~e1,f

~e2,f

~e3,f��)��

��
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((

end
effector

lower
arm
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arm

Fig. 7: Motion-sets placed on the Kuka arm. Three spherical
motion-sets are configured on the 7 d.o.f. manipulator. Four posi-
tions of p0, · · · , p3 on the robot body define the three unit-vectors
of ~e1, · · · , ~e3, each of which defines a motion-set on a unit sphere.

The maximum travel-angle θmax,ua and maximum travel-
distance dmax,ua of the upper arm are computed as

θmax,ua = αua + ωua (10)

dmax,ua = Lmax,uaθmax,ua (11)

where αua is the angle between the initial direction ~ei and the
intermediate direction ~em,f of the upper arm, as in Figure 6,
and Lmax,ua is the longest length from the point p0 to every
point in the upper-arm body. Since the value of Lmax,ua is
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pi pf
dij = |pf − pi|

dw

Fig. 8: A rectangular motion-constraint, which defines a boundary
of the position of a body point. The boundary is defined by the
positions of pi and pf , and a pre-defined margin width dw. The
maximum travel-distance in the motion-set is

√
d2ij + d2w, where

dij is the distance between pi and pf .

pi

pf

B
B
BM

dij = |pf − pi|

� rw

Fig. 9: A cylindrical motion-constraint, which defines a boundary of
the 3D position of a body point. The 3D cylinder-shaped boundary
is defined by the positions of pi and pf , and a pre-defined radius
rw. The maximum travel-distance in the motion-set is

√
d2ij + r2w,

where dij is the distance between pi and pf .

constant once the position of p0 has been decided, Lmax,ua

can be pre-computed before a run-time loop begins.
Similarly, the maximum travel-angle of the lower arm is

θmax,la = αla + ωla (12)

And the maximum travel-distance of the lower arm is

dmax,la = dmax,p1 + Lmax,laθmax,la (13)

where dmax,p1 is the maximum travel-distance of the point
p1, computed as

dmax,p1 = Lp0p1
θmax,ua (14)

and Lmax,la is the maximum length from the point p1
to every point in the lower-arm body. Lp0p1 is the length
between the point p0 and the point p1, which is also a
constant value. Therefore,

dmax,la = Lp0p1θmax,ua + Lmax,laθmax,la (15)

For the end-effector part, the travel distance is computed
similarly as

dmax,ee = Lp0p1θmax,ua + Lp1p2θmax,la + Lmax,eeθmax,ee

(16)
The motions of rotating along the direction axes ~e1, ~e2, ~e3

are not considered in the computation of the maximum travel
distances since those motions are less likely to cause a
collision due to the cylindrical shapes of the robot’s arm.

In the second experiment, we used a 9 d.o.f. Puma mobile
robot model that has a 6 d.o.f. Puma-560 manipulator on a 3
d.o.f. mobile base. The robot’s task is to move from an initial
position to a goal position 1.6m away and reach a specific

p0

��*p1
��*~e1

?

p2

p3

p4

� ~e2

-~e3

AAK
cylindrical
motion-set

?

rectangular
motion-set

C
CO

~j1

���9
~j2

upper
arm
?

lower arm

���
end

effector

���

mobile
base

Fig. 10: Motion-sets placed on the Puma-mobile robot. A rectan-
gular motion-set bounds the base position p0 on a plane, and a
cylindrical motion-set bounds the wrist position p3. Three unit-
vectors of ~e1, ~e2, ~e3 define spherical motion-sets, which bound the
orientations of the upper arm, the lower arm, and the end-effector.
Note that since the point p1 is located on the crossed axis of
(~j1 × ~j2), where ~j1 and ~j2 are the axes of the first and second
joints of the manipulator, p1 is placed outside the second link body
even though the point moves with the second link. Placing p1 on
(~j1× ~j2) eliminates the rotating motion of the upper arm along ~e1.

goal point with the tip of its end-effector. The task motion
is monitored by five motion sets: a rectangular motion-set
constraining the mobile base position, a cylindrical motion-
set for the wrist position, and three spherical motion-sets for
the orientations of the upper arm, the lower arm, and the
end-effector, as shown in Figure 10. The collision checking
algorithm applies separately to four different parts: the mo-
bile base, the upper arm, the lower arm, and the end-effector.

The maximum travel-distance of the mobile base is com-
puted as

dmax,base =

√
(p0,f − p0,i)2 + dw0

2 (17)

where dw0 is the pre-defined margin width of p0. Similarly,
the maximum-distance of the wrist point is computed as

dmax,wrist =
√

(p3,f − p3,i)2 + rw3
2 (18)

where rw3 is the pre-defined margin radius of p3. The
maximum travel-distance of the upper arm is the sum of
the translation motion of p0 and the rotational motion of the
upper arm, which is

dmax,ua = dmax,base + Lmax,uaθmax,ua (19)

where the definitions of Lmax,ua and θmax,ua are same as
in equation (11). The maximum travel-distances of the lower
arm and the end-effector are computed from the translation
motion of the wrist point p3. Therefore, those distances are

dmax,la = dmax,wrist + Lmax,laθmax,la (20)

dmax,ee = dmax,wrist + Lmax,eeθmax,ee (21)

For those two types of the robots, we made an external
obstacle model move around the robot motion paths at
various distances and recorded the algorithm-computation
time, proximity-computation time, number of nodes, number
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Fig. 11: The number of nodes that are created to check collisions
of the Kuka robot motion with obstacles at different distances. The
blue dots indicate the number of proximity-computation function
calls at the corresponding distances. This result shows that the
number of nodes is adjusted to adapt the computational amount
to the environmental complexity.
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Fig. 12: Update time (Kuka robot) of the collision-checking algo-
rithm at various distances from the obstacles. The blue dots indicate
the portion of proximity-computation time with respect to the time
of the overall collision-checking algorithm. This result shows that
the overall computation time increases up to 0.08 seconds when the
obstacle is very close to the robot models, and that more than 90%
of the computation time is used for the proximity computation.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30

U
pd

at
e

Ti
m

e
(s

ec
.)

Number of Nodes

Time(n) = 0.00258 n - 0.00124

Fig. 13: Update time (Kuka robot) of the collision-checking algo-
rithm for each different number of nodes. The plot shows that the
update time is linearly related to the number of nodes. The data is
fitted to the straight line whose slope is 0.00258. Thus, each node
adds 2ms to the computation time.
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Fig. 14: Number of nodes that are created to check collisions of
an 8 d.o.f. mobile-base Puma robot along the 1.6m long motion
path. The number of nodes increases steeply when the distance to
obstacles is less than 0.4m and reaches to the maximum number
when the distance is less than 0.1m.
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Fig. 15: Update time (Puma robot) of the collision-checking
algorithm at various distances from the obstacles. The overall
computation time increases up to 0.03 seconds when the node
number increases to 14. As similar to the results of Kuka robot, the
proximity computation consumes 90% of the overall computation
time.
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Fig. 16: Update time (Puma robot) of the collision-checking algo-
rithm for each different number of nodes. The fitting line has a
slope of 0.00199, which is similar to the result of Kuka robot.
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Fig. 17: The x and y positions of the base and the end-effector. The
base position moves along a sinusoid path, and the end-effector
moves toward the goal position along a straight line. Those two
tasks were implemented with the whole body control framework
and successfully run without any mutual interference.

of proximity computations, and minimum distance from
every node configuration to the obstacle. The performance
was measured on a computer with an Intel Core i7 CPU (8
cores of 2.8GHz) and a Windows 7 operating system.

Figure 11, 14 show the number of nodes that were created
for the recursive collision checking at various distances
from the closest obstacle, and the number of proximity-
computation function calls at those distances. Those plots
show that the node number is the smallest when the obstacle
is more than 1.0m away from the robot models and that it
increases up to the maximum node number when the obstacle
approaches closer than 0.1m. The number of proximity-
computation function calls increases almost linearly with the
number of nodes in both cases.

Figure 12, 15 show the update time of the collision-
checking algorithm at various distances. The update time
of the Kuka robot ranges between 0.003 and 0.08 seconds
and time of the Puma robot ranges between 0.003 and 0.03
seconds, which is almost linearly dependent on the number
of nodes, as shown in figure 13, 16. In both experiments,
each node adds approximately 2ms to the update time. The
result shows that our algorithm is suitable for constructing
an on-line motion-modification system that updates on the
order of 10Hz in speed.

In those previous figures, the results show the ability
to adapt the computation load to the complexity of the
environment. A motion planner can create more nodes at
narrower areas in order to increase the resolution of the
collision-checking method. On other hand, it can remove
redundant nodes and minimizes the number of nodes at wider
areas so that it can reduce computation load and speed up
the collision checking process.

Figures 12 and 15 also indicate the portion of update
time occupied by the proximity-computation function. In
both cases, the proximity computation occupied almost 90%
of the overall update time. The proximity computation was
able to dominate in both examples because the complexity
of the computation of the maximum travel-distance is merely
O(1). Therefore, in order to achieve the best performance, it
is very important to use the fastest proximity-computation
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Fig. 18: Motion-set constraint evaluation of the cylinder model
at the wrist position. In order to satisfy the constraint, the wrist
position should stay inside the cylinder that connects the start wrist
position and final wrist position as shown in Figure 10. The plot
indicates the wrist positions by the distance from the initial wrist
position along the center axis and the radius from the center axis.
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Fig. 19: Motion-set constraint evaluation of the sphere models for
the orientations of the upper arm, the lower arm, and the end-
effector. The sphere model indicates an orientation as a point on
the surface of a unit sphere as shown in Figure 5. Thus, the relative
position of the end point with respect to the base point is converted
into a point on a unit sphere. The plot shows the trajectory of the
points indicated by two angles on a unit sphere.

algorithm and optimize it in the implementation. In our
current implementation, we use Quinlan’s hierarchical sphere
model [16] for the proximity computation.

B. Multiple-Task Motions in the Safe Range

One of the advantages of the algorithm is that we can
easily run a complex task motion without collision since
the algorithm provides collision-free conditions as a set
of motion ranges. Therefore, complex task motions such
as multiple task motions or suddenly changing, reactive
motions can be run quickly if those motions satisfy the
collision-avoidance conditions of the motion-set. The next
experiment is an example of multiple-task execution within
the motion-set constraints. In the example, two different tasks
are executed by the Puma mobile-base robot. The first task is
for the base to follow a sinusoid path between the start and
end positions; the second task is for the end-effector to move
in a straight line until reaching the goal position. Those two
different tasks can be executed by the high d.o.f. Puma robot
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when the controller is implemented with the whole body
control framework [17], which supports prioritized, multiple-
task control in operation spaces. For collision checking, the
same set of five motion sets (1 rectangle, 1 cylinder, 3
spheres) as in the previous experiments was used in this one.

The whole body controller computes the multiple-task
torque with

Γ = Γee +NT
ee(Γbase +NT

baseΓposture) (22)

where Γee is the three-dimensional position-control torque
at the end-effector, Γbase is the two-dimensional position-
control torque at the base, and Γposture is the torque for a
default posture. Nee and Nbase are the null-space matrices of
the end-effector position and the base position, respectively,
by which the priorities of multiple tasks are implemented.

Figure 17 indicates the two trajectories recoded during
the multiple task execution. The two task conditions are
satisfied until the robot reaches the final position and there
are no significant interferences between those different task
controls. The base position stays within the base motion-set
constraint that has a rectangular shape.

Figure 18-19 show the evaluations of the motion-sets on
the wrist position, the upper arm orientation, the lower arm
orientation, and the end-effector orientation, respectively.
Figure 18 shows the wrist position trajectory as distance
from the initial position along the cylinder axis and radius
from the axis. The other figures show the orientation
trajectories with two angles. Those plots indicate that
none of the five motion-set constraints has been violated.
These results mean that the robot successfully finished
the multiple tasks without any collision against external
obstacles. As seen in this example, when proper motion
sets are constructed and indicated as collision-free by the
algorithm, a high d.o.f. robot can easily execute complex
tasks and avoid collisions within the ranges of the motion set.

IV. CONCLUSIONS

Our adaptive collision-checking method has demonstrated
fast collision detection over continuous motion ranges of
high d.o.f. robots. The method has three advantages, which
were verified by experimental results. First, since the amount
of computation in run-time is very small, the method is
suitable for on-line applications. Moreover, the algorithm
defines the applicable motion in a constraint-based manner
so that complex robots can simultaneously execute multiple
tasks and avoid collisions. Furthermore, for computational
efficiency the resolution of the collision checking is dynami-
cally adapted to the free-space width near the motion. There-
fore, the proposed method promises to become one of the
essential elements in realizing on-line, robotic applications
in dynamically changing environments, such as applications
in which humans and robots cooperate to perform interactive
tasks.
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