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Abstract— Real-time shape sensing and state acquisition is
important for closed-loop control of hyper-redundant snake
robots in minimally invasive surgery. Due to the miniaturized
size of such minimally invasive surgery robots, it is not feasible
to use existing angular sensors involving rotary encoders. With
recent advances of the MEMS technology, micro inertial sensors
have shown their potential for robot state estimation. Previous
studies have demonstrated that accurate joint angles can be esti-
mated for one degree-of-freedom (DoF) joints. However, higher
DoF joints of the robot can impose a number of challenges to
the current joint angle estimation methods. This paper presents
a micro-sensing platform and shape reconstruction algorithm
for minimally invasive surgery snake robot with two DoF joints.
The method incorporates both gravitational and gyroscopic
sensing for calculating the rotation difference between any
consecutive robot segments. The gyroscope measurements are
first used as the input to predict the rotation difference by
direct orientation integration. The orientation difference is then
derived from the consecutive acceleration vectors to update
the prediction through a complementary filter. To demonstrate
the performance of our proposed approach, a robot prototype
with two universal joints was fabricated. Detailed experimental
results have demonstrated that high accuracy can be achieved
by using the proposed method for joint angle estimation.

I. INTRODUCTION

Robotic assisted surgery is a rapidly expanding field in
recent years, with a wide range of robot platforms being
developed. To cater for emerging surgical techniques such
as single incision laparoscopic surgery and natural orifice
trans-luminal endoscopic surgery, many snake-like hyper-
redundant robots have been proposed [1]–[3]. When these
robots are operated under a master-slave setup, real-time pro-
prioceptive position feedback is not essential as human vision
and manipulation is used to close the control loop. However,
when reconstructing the snake robot shape, position feed-
back is critical. In general, snake-like surgical robots can
be divided into two categories: tendon actuated continuum
robots and articulated joint based robots. Tendon actuated
continuum robots usually use the tendon displacement at the
proximal end where the actuators are located to control the
posture of the robot [4]. Large errors can be caused due
to robot shape deformation or backlash of the robot. Recent
development of fibre optic shape sensing provides a new way
of reconstructing the shape of the robot, but application of
such technology to snake robots is still in its infancy. For
joint based robots, the most common sensing element used
currently is rotary encoders, which provide precise angular
displacement. Recently, we have developed an articulated
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universal joint based snake-like robot for minimally invasive
surgery [3]. The need for size miniaturization of the robot
for minimally invasive surgery procedures means it is not
feasible to use the traditional rotary encoders. The purpose
of this work is to explore a new way of sensing the joint
angles based on micro-inertial sensors.

Thus far, micro-inertial sensors have been extensively
used for wearable human motion estimation. The wearable
inertial sensors can be placed on strategic locations of the
human body to derive motion information of each link, so
that the overall posture of the body can be reconstructed,
typically with a constraint kinematic model [5] [6]. Due to
the inherent drift of the inertial sensor, other micro-sensors
such as magnetometer, are used in parallel to counteract
the problem of drift [7] [8]. Some commercial products
for body-posture reconstruction are already available on the
market [9] [10] and they have been used not only for human
biomechanical analysis [11] and activity recognition [12], but
also for virtual reality and navigation [13] [14].

Previous work of using inertial sensors in robotic manip-
ulation is mainly focused on kinematic calibration and fault
detection. Inertial sensors can offer a compelling source of
information [15] [16], but none of them has attempted for
robot state estimation and control. Recently, some research
effects have demonstrated that it is possible to estimate robot
joint angles using inertial sensors. For example, Ghassemi et
al. [17] designed and implemented an angle sensing method
for a mini-excavator arm, and the approach was based on
processing the outputs of a pair of biaxial accelerometers
placed close to the joint axis on the adjacent links. Quigley
et al [18] explored the use of consumer-grade accelerom-
eters as joint position sensors for robotic manipulators,
and they presented an extend Kalman filter (EKF) based
method to infer the joint angles from a 3-d accelerometer
mounted on each pair of joints. Roan et al. [19] presented
a strategy for angular position estimation of revolute joints
in rigid bodies using micro-accelerometers and gyroscopes.
Common filtering techniques were adapted to combine the
joint angles estimated from one triaxial accelerometer on
each link and the measurements from a uniaxial gyroscope.
However, all methods mentioned above were designed only
for one degree-of-freedom (DoF) joint angle estimation. For
robots with higher DoFs, however, there are many practical
difficulties for accurate joint angles estimation due to more
flexibility of the robot movement.

The aim of this paper is to propose a new joint angle
estimation scheme for hyper-redundant robots with two DoF
joints. The method incorporates a triaxial accelerometer and
a triaxial gyroscope on each link to calculate the rotation
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Fig. 1. Schematic illustration of segment n − 1 and segment n in a
snake robot. An inertial sensor unit (green cuboid) consisting of a three-
axes accelerometer and gyroscope is mounted onto each segment. The local
segment coordinate system is defined as shown in the figure. The joint
between segment n − 1 and n for example, can have two DoFs: rotating
around Z axis of segment n− 1 and rotating around Y axis of segment n.

difference between any consecutive robot segments. The
gyroscope measurements are used as the input for direct
orientation integration and prediction of the rotation dif-
ference between adjacent robot segments. The consecutive
acceleration vectors are also used to derive the orientation
difference and update the gyroscope prediction through a
complementary filter. To demonstrate the performance of our
proposed approach, a robot prototype with universal joints
was fabricated. The experimental results have demonstrated
that our proposed method can achieve accurate joint angle
estimation when compared to the ground-truth data.

II. METHODS

The main objective of the proposed joint state estimation
scheme is to recursively estimate the orientation of each
robot segment from the stationary robot base to the final
manipulator. Here we use quaternion to represent the segment
orientation due to its computational efficiency and free
of singularity. Fig 1 gives a schematic illustration of the
segment n − 1 and segment n of a snake robot. A sensor
unit is mounted on each segment. The robot shape sensing
is to estimate the orientation qnt of segment n at time t from
the nth sensor unit measurement ynt and and (n−1)th sensor
measurement yn−1t given the segment n−1 orientation qn−1t .

Three coordinate systems are used in our method: 1) the
global coordinate system used as the reference; 2) the sensor
coordinate system with the axes aligned with the inertial
sensor unit; 3) the robot segment coordinate system for the
local coordinate system of each robot segment. For the rest of
this paper, we will use capital X , Y and Z to represent the
axes of coordinate systems. The robot segment coordinate
system is defined as: X pointing towards the longitudinal
direction, Y pointing backwards while Z pointing upwards to
construct a right hand system. For the joint between segment
n−1 and n for example, it can have two DoFs incorporating
rotation around Z axis of segment n−1 and rotation around
Y axis of segment n.

For any sensor unit n, the sensor unit measurement ynt
consists of two parts: 3-axis accelerometer measurement

yna,t = [yn,Xa,t , yn,Ya,t , y
n,Z
a,t ] and gyroscope measurement

yng,t = [yn,Xg,t , y
n,Y
g,t , y

n,Z
g,t ]. However, we will use the ac-

celerometer measurement only as the gravity component
while ignoring the small centripetal and centrifugal com-
ponents due to the relatively slow movement of the robot.
Before processing any sensor measurement, the sensor data
needs to be transformed to the local robot segment coordinate
system, which can be achieved by the sensor to segment
calibration before the snake robot assembling. Here, we
assumed that the sensor coordinate system and the local robot
segment coordinate system are consistent with each other
after calibration.

A. Gyroscope Prediction

The gyroscope measures the angular rate, so the orien-
tation of segment n can be predicated via the gyroscope
signal integration. Given the n segment orientation qnt−1 at
time t− 1, the predicated quaternion can be written as [20]:

qnt|t−1 = Θtq
n
t−1 (1)

where Θt = exp{ 12R(yng,t)∆t}, ∆t is the sampling rate (we
set to 0.03s in our implementation), and R(yng,t) is a 4 × 4
skew symmetric matrix as:

R(yng,t) =

[
−byng,t×c yng,t
−
(
yng,t
)T

0

]

=


0 −yn,Zg,t yn,Yg,t yn,Xg,t

yn,Zg,t 0 −yn,Xg,t yn,Yg,t

−yn,Yg,t yn,Xg,t 0 yn,Zg,t

−yn,Xg,t −yn,Yg,t −yn,Zg,t 0

 .
(2)

and byng,t×c represent the cross product operator. Based on
quaternion integration, Θt can be simplified as:

Θt = cos(
|yng,t|∆t

2
) � I4×4

+
1

|yng,t|
sin(
|yng,t|∆t

2
) �R(yng,t).

(3)

The predicted orientation difference ∆q
n−1|n
t|t−1 between

segment n and segment n− 1 can be written as:

∆q
n−1|n
t|t−1 =

(
qnt|t−1

)−1
⊗ qn−1t (4)

where ⊗ is the quaternion multiplication. To convert the
orientation difference ∆q

n−1|n
t|t−1 to the rotational angles, the

DCM (Direction Cosine Matrix) representation C(∆q
n−1|n
t|t−1 )

of ∆q
n−1|n
t|t−1 is required:

C(∆q
n−1|n
t|t−1 ) = (q24 − eT e)I3×3 + 2eeT − 2q4be×c (5)

where q4 and e are the scale and vector parts, respectively,
in the quaternion ∆q

n−1|n
t|t−1 respectively, and the I3×3 is the

identity matrix of dimension 3 × 3. The rotation matrix
C(∆q

n−1|n
t|t−1 ) can also be represented by Euler angle θn−1|nt|t−1,X ,

θ
n−1|n
t|t−1,Y , θn−1|nt|t−1,Z , called roll, pitch, yaw, indicating the

rotation angle about the X , Y , Z axes of the n segment
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coordinate respectively (XYZ Euler angle is used here. After
rotations about X and Y axes of the segment n, the Z axes
of both the segment n and n− 1 points the same direction).
Based on Euler theory, the three Euler angles or the predicted
joint rotation angles can be written as:

θ
n−1|n
t|t−1,X = atan(c32/c33)

θ
n−1|n
t|t−1,Y = atan

(
−c31/

√
c211 + c221

)
θ
n−1|n
t|t−1,Z = atan(c21/c11)

(6)

where cij is the element of C(∆q
n−1|n
t|t−1 ) at row i and column

j, and i, j = 1, 2, 3.

B. Acceleration Decomposition

Due to inevitable drift of inertial sensor, any error in
yng,t can make the error of predicted joint angles increase
exponentially; therefore, we use the gravity information to
compensate for the drift. Given the accelerometer measure-
ment yn−1a,t and yna,t for the segment n and n−1, the purpose
of the acceleration decomposition is to derive the joint angles
from the difference between yn−1a,t and yna,t. As shown in
the Fig. 2, the rotation difference between segment n and
n − 1 can decompose as two simple rotations: 1) Rotate
the segment n local coordinate system around its Y axis
to form an intermediate coordinate system; and 2) Rotate
the intermediate coordinate system around its Z axis to the
segment n− 1 local body coordinate. Thus the acceleration
vector yn−1|na,t = [y

n−1|n,X
a,t , y

n−1|n,Y
a,t , y

n−1|n,Z
a,t ]T in the

intermediate coordinate system should have the following
equations:

y
n−1|n,Y
a,t = yn,Ya,t

y
n−1|n,Z
a,t = yn−1,Za,t

y
n−1|n,X
a,t = ±

√
g20 − (y

n−1|n,Y
a,t )2 − (y

n−1|n,Z
a,t )2

(7)

where g0 is the magnitude of the gravity. Define the joint
angles estimation by accelerometers as: θn−1|nt|a,X , θn−1|nt|a,Y and

Fig. 2. Schematic illustration of the relative rotation between segment n−1
and segment n. (a) The segment n local body coordinate system; (b)The
intermediate coordinate system after rotating the segment n local coordinate
system around its Y axis; (c) The segment n − 1 local body coordinate
system, which is achieved by rotating the intermediate coordinate system
around its Z axis.

θ
n−1|n
t|a,Z , then we can have the following properties:

θ
n−1|n
t|a,X = 0y

n−1|n,X
a,t

y
n−1|n,Y
a,t

y
n−1|n,Z
a,t

=
cos(θ

n−1|n
t|a,Z ) −sin(θ

n−1|n
t|a,Z ) 0

sin(θ
n−1|n
t|a,Z ) cos(θ

n−1|n
t|a,Z ) 0

0 0 1


y

n−1,X
a,t

yn−1,Ya,t

yn−1,Za,t


y

n,X
a,t

yn,Ya,t

yn,Za,t

=
cos(θ

n−1|n
t|a,Y ) 0 −sin(θ

n−1|n
t|a,Z )

0 1 0

sin(θ
n−1|n
t|a,Y ) 0 cos(θ

n−1|n
t|a,Y )


y

n−1|n,X
a,t

y
n−1|n,Y
a,t

y
n−1|n,Z
a,t


(8)

Thus the joint angles estimated by accelerometers can be
written as:

θ
n−1|n
t|a,X = 0

θ
n−1|n
t|a,Y = atan

(
y
n−1|n,Z
a,t yn,Xa,t − y

n−1|n,X
a,t yn,Za,t

y
n−1|n,X
a,t yn,Xa,t + yn,Za,t y

n−1|n,Z
a,t

)

θ
n−1|n
t|a,Z =atan

(
y
n−1|n,Y
a,t yn−1,Xa,t − yn−1|n,Xa,t yn−1,Ya,t

y
n−1|n,X
a,t yn−1,Xa,t + y

n−1|n,Y
a,t yn−1,Ya,t

) (9)

In the above equation (9), only the magnitude of yn−1|n,Xa,t

is known while the sign of it is still unknown. However, we
can use the gyroscope prediction to determine the sign of this
variable. Given the predicted Z axis rotation angle θn−1|nt|t−1,Z ,

the predicted intermediate acceleration vector yn−1|na,t|t−1 can be
written as:

y
n−1|n
a,t|t−1 =


y
n−1|n,X
a,t|t−1

y
n−1|n,Y
a,t|t−1

y
n−1|n,Z
a,t|t−1


=

 cos(θ
n−1|n
t|t−1,Z) −sin(θ

n−1|n
t|t−1,Z) 0

sin(θ
n−1|n
t|t−1,Z) cos(θ

n−1|n
t|t−1,Z) 0

0 0 1


 y

n−1,X
a,t

yn−1,Ya,t

yn−1,Za,t


(10)

Therefore the sign of yn−1|n,Xa,t can be selected as:

sign(y
n−1|n,X
a,t ) =

 1, if y
n−1|n,X
a,t|t−1 ≥ 0

−1, if y
n−1|n,X
a,t|t−1 < 0

(11)

C. Complementary Filter

The complementary filter is chosen to combine the gyro-
scope prediction and acceleration decomposition result for
joint angle estimation due to its simplicity and efficiency.
The acceleration decomposition normally introduces high
frequency noise, whereas the drift in the gyroscope prediction
is primarily low frequency. A simple complementary filter is
designed by passing the acceleration decomposition results
and the gyroscope prediction through a low-pass filter and a
high-pass filter respectively. Using the first-order IIR filters
with the same cut-off frequency, the following joint angles
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estimation can be derived:

θ̂
n−1|n
t,X = 0

θ̂
n−1|n
t,Y = αθ

n−1|n
t|t−1,Y + (1− α)θ

n−1|n
t|a,Y

θ̂
n−1|n
t,Z = βθ

n−1|n
t|t−1,Z + (1− β)θ

n−1|n
t|a,Z

(12)

where α and β are smoothing constants which determine the
cutoff frequency. In this paper, both of them were set to 0.5
except the following two situations when singularity exists
in the acceleration decomposition:α = 1, if

∥∥∥‖yn,Ya,t ‖ − g0
∥∥∥ < δ

β = 1, if
∥∥∥‖yn−1,Za,t ‖ − g0

∥∥∥ < δ
(13)

where δ is a constant to implicate whether the rotations in
Fig. 2 are about the gravity. Once the joint rotation angles
are determined as given in equation (12), the ∆q̂

n−1|n
t can

be updated by converting the Euler angles to quaternion.
Therefore, the final orientation for segment n can be written
as:

q̂nt = qn−1t ⊗
(

∆q̂
n−1|n
t

)−1
(14)

The whole algorithm is summarized in Algorithm. 1.

Algorithm 1 Joint angles estimation from stationary segment
0 (Base) to N (Manipulator)
Initialization:

for n = 0 to N do
•Set the initial quaternion for segment n: qn0 ;

end for
Angles Estimation:

for t = 1, 2, · · · do
• Set the quaternion of the base to q0t = q00 and set the
acceleration measurement of the base to y0a,t = y0a,0;
for n = 1 to N do
• Use the gyroscope measurements to predict the
delta quaternion ∆q

n−1|n
t|t−1 between the segment n and

segment n− 1;
• Calculate the predicted joint angles: θ

n−1|n
t|t−1,X ,

θ
n−1|n
t|t−1,Y and θn−1|nt|t−1,Z ;
• Calculate joint angles by acceleration decomposi-
tion: θn−1|nt|a,X , θn−1|nt|a,Y and θn−1|nt|a,Z ;
• Update the joint angles estimation by complemen-
tary filter: θ̂n−1|nt,X ,θ̂n−1|nt,Y ,θ̂n−1|nt,Z ;
• Update both the Delta quaternion ∆q

n−1|n
t and the

orientation for segment qnt .
end for

end for

III. EXPERIMENTAL RESULTS

A. Experimental Setup

To demonstrate the accuracy of using inertial sensors to
sense the robot joint angles, a robot prototype with two
universal joints was fabricated. This is shown in Fig. 3. The

Fig. 3. The fabricated robot prototype with two universal joints

configuration is the same as the robot mentioned in [3]. The
design was scaled up in order to be able to fit motors for
driving the joints and integrated encoders to measure the
joint angles. The integrated quadrature encoder gives 75000
counts per turn, representing resolution of 0.005 degrees,
which was used as the ground-truth of the joint angle. The
base segment was fixed on a table, while a Body Sensor Net-
work (BSN) sensor node [21] was fixed at the body of each
segment. Each BSN node used is equipped with an Analog
Devices ADXL330 [22] for 3D acceleration measurement, an
InvenSense ITG-3200 digital gyroscope [23] for 3D angular
velocity measurement.

B. Performance Analysis

At the beginning of each experiment, we manually ad-
justed the segments 0 and 1 to make them in a straight
line, thus we took the acceleration reading on the segment
1 as the acceleration vector y0a,0. During the experiment,
the only unknown parameter in our algorithm is δ, which
indicates whether the rotation axis is parallel or close to
the gravity direction. In our implementation, the δ was
empirically set to 0.28g0 to provide the best results based
on 10 different trials. In our experiments, the snake-robot
was driven smoothly through different trajectories while the

TABLE I
THE RMS, MEAN, SD, MAX ERROR AND CORRELATION COEFFICIENTS

OF THE ESTIMATED ANGLES COMPARED TO THE ENCODER.

Unit: Degree Correlation

RMS Mean±SD Max Error Coefficient

Joint 1: Yaw 0.4764 0.2651±0.3823 1.0636 0.9999

Joint 1: Pitch 1.1746 0.4446±0.8387 3.2003 0.9991

Joint 2: Yaw 0.4000 -0.0150±0.3890 1.2893 0.9998

Joint 2: Pitch 1.2283 -1.634±0.8269 2.7855 0.9998
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(a) Joint 1 Angles

(b) Joint 2 Angles

Fig. 4. The joint angles estimation and the ground-truth from the on-board
quadrature encoders. All the estimation for the 4 joint angles are very close
to the corresponding ground-truth.

inertial sensor units sampled the movement at a rate of 33
Hz. The joint angle readings from the on-board quadrature
encoders were compared against the joint angles estimate
from the complimentary filter using the accelerometers and
gyroscopes.

Figures 4 shows the tracking performance of our proposed
method. It is obvious that the error between our estimation
and the ground-truth are very small. Table I summarizes the
quantitative comparison results between our estimated angles
and the ground-truth. In this table, we considered the root
mean square error (RMS), mean error, error standard devia-
tion and maximum absolute error between them. Correlation
coefficient is also considered. From the results derived, it is
evident our proposed method can be used to estimate the
robot joint angles accurately.

(a) Without Simulated Bias

(b) With Simulated Bias

Fig. 5. Assessment of the robustness of the proposed algorithm. When the
one rotation axis (corresponding to pitch angle) of the joint 2 is parallel the
gravity for long period, the gyroscope integration will result in drift, which
can be removed once the acceleration measurement is back. (a): Integration
with the original gyroscope measurements; (b): integration after manually
added bias to the gyroscope measurements

C. Error Recovery for Rotations Perpendicular to Gravity

It is wellknown that when the joint motion is in perpendic-
ular to the gravity vector, accelerometer fails to correct the
gyro integration drift. In this case, the joint angles cannot be
accurately estimated. To further investigate the robustness of
the proposed algorithm and accuracy of the proposed method
under such condition, we applied the proposed algorithm to
extreme operating conditions of the robot. In this experi-
mental, the Y axis of the segment two was set parallel to
the gravity, so the pitch angle of the joint 2 can only rely
on the gyroscope measurement. After about 240s, we rotated
the segment one to make the Y axis of the segment two leave
the gravity direction. To make the situation even worse, we
added a small bias to all the gyroscope measurement of the
sensor unit two to make the integration drift larger. Fig 5
shows the estimated angles. As we can see from the figure,
the yaw angle of the joint 2 is resilient to such manually
added bias, it is mainly because the angle derived from
accelerometer decomposition can compensate for such drift.
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Unlike the yaw angle, the pitch angle starts to accumulate
drift since there is no acceleration compensation, but once
the rotation axis is not close to the gravity direction, the drift
can be removed and get accurate estimation.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel joint angle
estimation scheme for snake robot with 2 DoF joints. The
gyroscope measurements were used as the input for direct
orientation integration and prediction of the rotation dif-
ference between adjacent robot segments. The consecutive
acceleration vectors were also used to derive the orientation
difference and update the gyroscope prediction through a
complementary filter. The experimental results derived have
demonstrated that the proposed method can achieve accurate
joint angle estimation with regards to the on-board quadra-
ture encoder measurements as the ground-truth.

With recent advances in MEMS technology, micro gyro-
scopes and accelerometers are small enough to be embedded
directly into the robot body. It is expected that this will initi-
ate many new engineering opportunities for the mechatronic
design of medical robots. By integrating the micro inertial
sensors and using the algorithm we have developed in this
study, shape sensing of snake robots with restricted available
space can be achieved with high precision and much reduced
cost.
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