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Abstract— Identification of the wheel sinkage of exploration 

rovers provides valuable insight into the characteristics of 

deformable soils and thus the ease of traversal is also identified. 

In this paper we propose a simple vision based approach that 

robustly detects and measures the sinkage of any shaped wheel 

in real-time and with little sensitivity to various operating 

conditions. The method is based on color-space segmentation to 

identify the wheel contour and consequently the depth of the 

sinkage. In addition, our approach also provides a dynamic 

sinkage analysis which potentially allows for the identification 

of non-geometric hazards. The robustness of the algorithm has 

been validated for poor lighting, blurring, and background 

noise.  The experimental results presented are for a hybrid 

legged wheel from our in-house single-wheel test-bed. 

I. INTRODUCTION 

The majority of current planetary exploration rovers are 
designed with conventional rigid wheels such as MER and 
MSL. New and emerging research suggests that a faster and 
more agile breed of scouting rovers are to be used in future 
exploration missions [1]. These rovers have adopted more 
complex methods of traversal, e.g. walking, which gives 
them an extra edge over conventional wheels. A hybrid 
legged wheel system, such as the one on the Asguard high 
mobility rover by DFKI (Fig. 1), combines the best of both 
designs where wheels allow for fast traversal and legs 
provide the extra agility over highly deformable terrains. As 
with conventional wheeled rovers, legged rovers would also 
benefit from identifying the sinkage of their legs to monitor 
the mobility performance and potentially assess the terrain 
characteristics. 

The sinkage of a wheel can be accurately determined 
through vision based techniques [6 – 10]. These approaches 
represent the current state of the art in vision based sinkage 
detection. In [10] a camera is directed towards a wheel with 
a pattern of equally spaced 1mm thick concentric black 
circumferences on a white background. An edge detection 
algorithm is then employed to identify and count the number 
of visible radial lines within a region of interest of the 
sinking wheel to determine the sinkage with high accuracy. It 
is however unheard of that such solid wheels with radial mar- 
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Figure 1.  Asguard high mobility rover by DFKI [3] 

kings are used in practice. Usually exploration rovers tend to 
have hollow wheels so as to reduce the weight and minimize 
soil interaction effects such as bulldozing. 

In [11] the Normalized Cuts method is employed to 
determine the similarities in pixels’ intensity values and their 
spatial locations. This however is computationally intensive 
and in order to reduce the computational load the Mean-Shift 
clustering algorithm is applied to the image as a pre-
conditioning stage to obtain homogeneous regions called 
Super-Pixels. Although this approach seems to produce 
promising robustness towards poor lighting conditions and 
shadowing, it remains more computationally intensive than 
simpler stochastic segmentation approaches. 

In ‎[6] the vision based approach uses simple intensity 
segmentation of a grayscale image to detect the intensity 
variation between the wheel and the terrain. The beauty of 
this solution is its simplicity. However, segmentation of 
grayscale intensity based variations would fail when the 
contrast between the wheel and the terrain is small and when 
objects within the Region Of Interest (ROI) of the image 
frame have similar intensity values to that of the wheel. To 
improve the efficiency while keeping the approach simple, it 
was suggested to use color space segmentation in 
conjunction with a yellow wheel such that the contrast 
between the wheel and the terrain is kept at a maximum even 
in poor lighting conditions. 

Moreover, the algorithms presented in [6 - 10] are 
restricted to wheeled vehicles and cannot be adapted for 
legged or even hybrid legged-wheels as the computation 
depends on the symmetry of the shape of the wheel at all 
times and while the wheel rotates. The trajectory of legged or 
hybrid wheels means that the legs need to be tracked. To our 
knowledge, there are no vision based techniques that have 
been developed for measuring or estimating the sinkage for a 
legged exploration rover. This paper aims to address this by 
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bridging the gap in research for legged exploration rovers 
towards being realized as formidable alternatives to wheeled 
rovers. The visual approach presented in this paper is based 
on detecting the contours of the locomotion system whether 
it is a wheel or a leg thus making it a generic solution to 
estimating the sinkage of all kinds of locomotion systems. 

The following chapter gives a brief overview of the 
proposed algorithm. In Chapter III the algorithm is described 
in further detail and a hybrid legged wheel is used as an 
example case study. The experimental setup and results are 
presented in chapter IV and finally the concluding remarks 
and future steps are presented in chapter V. 

II. ALGORITHM OVERVIEW 

The vision based sinkage detection algorithm is 
concerned with measuring the level of sinkage of a wheel 
into various types of deformable terrain such as soil, sand or 
loose gravel. In the context of this paper a legged wheel (Fig. 
2) is used to determine the efficiency and validity of the 
algorithm. Since an ordinary wheel has a more straight 
forward and predictable shape, working with a legged wheel 
demonstrates the versatility of our algorithm in detecting the 
sinkage of any locomotion shape. 

A camera rigidly mounted below the center of the legged 
wheel hub, on the belly of the rover, is positioned to “look” 
at the wheel leg from the moment it touches the terrain to the 
instance it disconnects (Fig. 2). The maximum level of 
sinkage is assumed to be half way up the leg; hence the 
camera FOV needs to cover the whole transition of each leg. 

The algorithm is dependent on correctly segmenting the 
contour of the wheel or leg from the background and from 
deformable terrain. This is achieved by constructing a wheel 
using a blue material (Fig. 2) and performing color space 
segmentation of the wheel. Additionally, an encoder is 
required to compute the pose of the wheel or leg such that 
anything that lies outside the ROI is masked. Finally, the 
sinkage is calculated by measuring the level of occlusion on 
the leg by the deformable terrain. 

The algorithm is constructed using the following steps: 
A) Image capture and masking, B) Segmentation and 
morphological operations, C) Detection of wheel contour 
and interface, D) Calculation of sinkage. These steps are 
explained in further detail in the following section. 

III. DETAILED ALGORITHM DESCRIPTION 

The algorithm is only concerned with the 2 dimensional 
aspect of the wheeled leg since the camera frame is rigidly 
attached to the wheel frame and therefore the transition of 
the leg through the image is known at all times. 

A. Image Capture and Masking 

Images are captured from the camera at the highest 
possible frame rate. The frame rate is dependent on the 
processing power and computational resources, however, 
sub-second measurements are required to ensure real-time 
performance. The mask consists of 2 polygons and 2 ellipses 
that create an annular sector which represents a window corr- 

 

Figure 2.  Legged Wheel sinking into deformable terrain 

esponding to the position of a leg. The ellipses are of a fixed 
and constant radius so in actual fact they are circles that 
mark the inner and outermost sections of the annular sector 
of interest. 

The polygons are computed through simple trigonometry 
to create an annular sector window through which the leg 
transitions or, in the case of a circular wheel, the sector that 
will interact with the deformable terrain. In the case of a 
circular wheel, a fixed angular sector mask is created that 
reveals only the sector of the wheel that will interact with the 
deformable terrain [6]. The part of the image that isn’t 
masked is set as the region of interest where subsequent 
computations are performed thus having the benefit of 
reduced noise and increased computation speeds. 

B. Segmentation and Morphological Operations 

Most color based segmentation techniques are based on 
the notions of grey-scale methods [7]. The image is 
transformed into various color spaces and each channel or 
combination of channels are analyzed as if they were a grey-
scale image, then merging the results to obtain a single 
template that represents the segmented region(s) of interest. 

In the context of this paper a simple linear equation is 

used for color based segmentation to identify blue pixels 

within the image. The equation assumes that the blue channel 

value of a pixel that is above a predefined threshold should 

have a value of at least 40% greater than the red channel 

within that pixel and should be at least 40% greater than the 

mean value of the red and green channels within that pixel. 

This is also described in the following: 
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where dst is the output binary image, src is the source image 
captured from the camera, r, g and b are the red, green and 
blue channels of src, x and y are the pixel row and column 
within the image and thresh is a default threshold value 
which can be determined by a calibration process at regular 
intervals or other triggers. Equation 1 can be thought of as an 
adaptation of the RGB transformation into rg-chromaticity 
with a combined thresholding and segmentation function. 
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Figure 3.   Identification of sinkage from occlusion of locomotion contour 

The output of the color based segmentation algorithm is 
therefore a binary image where pixels with a non-zero value 
represent the leg in view. The pixels are expected to be in a 
cluster forming a blob where morphological operators 
(closing method) are applied to reduce noise. 

C. Detection of Contour and Interface 

The binary output of the color based segmentation will 
still occasionally contain noise in the form of sparse clusters 
of pixels or blobs. There is consequently a necessity to 
analyze the blobs, eliminate any false positives and 
detect/analyze the correct blob for sinkage estimation in 
subsequent steps. 

Several different methods that extract object features for 

comparison and analysis exist and many of which revolve 

around the geometric properties of low-order moments [8]. 

In the context of this paper, only basic analysis is required 

since this function is essentially used as an outlier rejection 

mechanism. Therefore a comparison of the blob’s Zeroth 

Moment (i.e. the area), is preformed where the largest value 

is assumed to be the object of interest. The general equation 

of a moment is: 
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where R is the number of Rows, C the number of columns 

and I(r,c) for a binary image is ϵ [0,1] ∀ r,c. Therefore the 

zeroth order moment A (area) of a binary image can be 

computed by: 
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The contour of the largest blob is then extracted using a 
border following method as described by Suzuki [9]. 

Since the camera field of view and the aperture of the 
region of interest are quite narrow, the deformable terrain is 
not expected to have much height and depth variations 
within this area. It is therefore safe to assume that the 
deformable terrain is roughly flat at the ROI.  The interface 
between the sand and the wheel is determined by the distance 
of each contour point from the top of the image. The furthest 
3% of contour pixels from the top of the image are 
considered to be the interface or the extremities of the leg. 

 

Figure 4.  Single Wheel-Leg Test Bed setup: (a) regolith filled rig, (b) 

moving carriage, (c) translation linear bearings, (d) motor and timing belt 

D. Sinkage Determination 

The sinkage is calculated by measuring the level of 
occlusion on the leg caused by the deformable terrain. Since 
the camera frame and the wheel frame are rigidly attached 
while in the case of a legged wheel, the angle of each leg is 
known from the wheel encoder, the sinkage calculation 
becomes is a simple template subtraction. 

The actual sinkage is a comparison between the lowest 

point from the top of the image of a non-occluded leg 

template at a given angle of rotation and the lowest point 

from the top of the image of an occluded leg at the same 

angle (Fig. 3). 

IV. EXPERIMENTAL RESULTS 

Tests were carried out in a Single Wheel-Leg Test Bed 

(SWLTB) to evaluate the performance of the proposed 

vision-based sinkage algorithm and to validate the sinkage 

detection produced. 

A.  Apparatus Description 

The SWLTB setup and its main components are shown in 
Fig. 4. It consists of a wooden rectangular rig (a), where 
granular regolith is contained, and an aluminum frame that 
supports a moving carriage (b). Translation of the carriage is 
attained by means of two linear bearings (c), a motor and a 
timing belt (d).  

The wheel-leg, its motor and the related sensors are fixed 
to a support structure, shown in Fig. 5. The structure sinks 
freely thanks to two linear bearings (a). A linear position 
transducer (b) measures vertical displacement of the wheel-
leg relative to the carriage and a pulley permits applying 
counterbalance normal loads using dead weights (c). An 
absolute angular encoder on the output shaft of the wheel-leg 
motor (d) provides measurements of the angular position of 
the wheel-leg with 0.1 degrees of resolution. A USB camera 
(e) is mounted on the structure so that the area where the legs 
sink into the regolith is centered inside its field of view.  

B. Experimental Preparation and Procedure 

Two of the legs of the wheel-leg, shown in Fig. 6, are 
wrapped with blue tape up to a 75mm sinkage level and a 
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1mm black and white stripe ruler was attached for manual 
sinkage validation. Special feet were manufactured in blue 
material for both legs. For the tests, a Martian regolith 
simulant available at Surrey Space Centre (SSC-2) is used in 
the experiments. The regolith consists of fine Garnet sand, 
with particle sizes ranging from 45 to 90 µm. 

Before every test the regolith is raked to homogenize it 
and regenerate disturbed soil, maintaining a consistent 
configuration throughout all the tests. The soil is then leveled 
in order to maintain a constant height within the millimeter 
for the signal from the sinkage transducer to be reliable. 
During the tests, a microcontroller takes readings from the 
wheel-leg encoder and the carriage sinkage transducer. A 
C++ script running on a laptop queries these values from the 
microcontroller, captures images from the USB camera and 
synchronizes the data with a millisecond timestamp. 

C. Experimental Configurations 

Experiments were carried out using the SWLTB to test 
for three main factors that make vision based algorithms fail. 
These factors are namely: poor lighting, blurring, and 
background noise. In our case, background noise is 
described as objects within the ROI that could interfere with 
our predictions such as rocks or shadows. A total of four 
experiments were conducted where the normal load on the 
wheel was 3.5kg for one pair of experiments and 1kg for the 
other pair. In each pair an experiment was conducted with 
normal laboratory lighting conditions and the other with poor 
lighting conditions.  The luminance of normal lighting was 
measured to be between 300-400 Lux within the test-bed 
whereas the luminance was varying between 10-50 Lux for 
poor lighting. In all four experiments dark rocks were laid 
out behind the wheel’s path. Figures 8, 9, and 10 show 
processed images from various stages of the algorithm 
including (1) the input image with the detected interface line 
overlaid, (2) the color segmented binary image, (3) the 
masked binary image and (4) the ROI of the input image.  

 

Figure 5.  Wheel-leg support structure: (a) sinkage linear bearings, (b) 

linear transducer, (c) counterbalance normal loads, (d) motor output shaft 

absolute encoder, (e) USB camera 

The normal laboratory lighting conditions seen in Fig. 8 
demonstrate that the algorithm is capable of filtering 
interfering background objects with similar intensity contrast 
to the leg. Likewise the detection is accurately demonstrated 
in poor lighting conditions even though such conditions have 
caused a tint of blue into the majority of the image frame as 
seen in Fig. 9(2). And although the blue tinged pixels are 
picked up by the algorithm they are filtered out as the 
algorithm selects only the largest blob in the ROI. Finally 
Fig. 10 demonstrates the detection in a scenario where all the 
performance impacting factors exist including blurring. 

Figures 11-14 are the product of processing the image 
sequences of all four experiments and comparing the sinkage 
detections with the measured leg sinkage from the linear 
position transducer where L1 and L2 denote data of the first 
and second blue legs in the sequence. Generally, the trend of 
the algorithm predictions is in good agreement with our 
measured ground truths and our detected rate of sinkage also 
follows that of the measured data. There exists a pair of 
deflection points while the leg sinks into the sand and 
another when the leg exits. This is due to minor friction 
exhibited from the linear bearings Fig. 6(a) which is picked 
up by the position transducer. This is equally demonstrated 
from our algorithms’ detections. Also note that the first leg 
sinks less into the sand than the second due to the friction 
within the linear bearings. Detection of such sudden changes 
in sinkage rates is gaining substantial interest in the planetary 
exploration community which allows the identification of 
non-geometric hazards such as duricrust formations over 
highly deformable terrains. This phenomenon is what has 
caused the MER rover Spirit to become entrenched in late 
2009.  

The detection errors attributed to the conducted 
experiments are presented in Table 1. Since the detected 
sinkage fluctuates, 5-point centered moving averages were 
computed to smooth the data and used to compute the 
average errors. Peak errors are ones where the difference 
between the moving average detections and ground truth 
measurements are highest for a particular time stamp. It is 
clear from the errors that the algorithm’s accuracy is rather 
high even though some of the operational conditions at 
which the detections took place were far from ideal (10-50 
Lux) given that planetary rovers in Mars only operate during 
mid-day (300+ Lux). In fact the highest average error of 

 

Figure 6.  Asguard Wheel-Leg from DFKI [3] with blue legs and feet 

4678



  

22.1% was detected for the first blue leg during poor lighting 
conditions due to the leg being further away from the light 
source than the second leg (see Fig. 14) and thus close to the 
cameras’ minimum operating luminosity of around 10Lux. 
As the wheel moved closer to the light source the sinkage of 
the second leg was detected with an average accuracy of 
7.4% 

E. Computational Performance 

The algorithm was implemented in C++ and utilizes the 
OpenCV library to ensure that the performance is optimized. 
The algorithm was run on a virtual machine Linux distribut-
ion with a single 2GHz

1
 virtual CPU core and 512Mb of 

virtual RAM. The CPU time of the virtual core was throttled 
down to simulate various CPU speeds as found on On-Board 
Computers (OBC) of explorations rovers.  The speeds are: 
200MHz, 500Mhz, 700Mhz, 1Ghz, and 2Ghz and the 
corresponding frame rate of our algorithm is shown in Fig. 7. 
It is worth noting that the MER rovers had an OBC with 
200MHz and that the Raspberry Pi (an inexpensive 
computer) has a CPU speed of 700Mhz, both of which 
would be capable of dynamically assessing the sinkage with 
our proposed algorithm. 

V. CONCLUSION 

A generic vision based sinkage detection solution for 
detecting the sinkage of any type of locomotion systems of 
exploration rovers has been presented. Color space 
segmentation is used on a ROI within the image frame and 
the largest blob is selected for sinkage analysis. Experim- 
ental results show the robustness of successful detections 
even in noisy and blurry situations or even in poor lighting 
conditions. The performance of the algorithm was tested for 

 

Figure 7.  Algorithm frame rate for various CPU speeds 

TABLE I.  VISION BASED DETECTION ERROR (% OF GROUND TRUTH)  

Exp 

No. 

Leg 1. Error Leg 2. Error 

Avr [%] Max [%] Avr [%] Max [%] 

1. 6.7 19.6 5.9 22.1 

2. 9.3 34.4 6.9 27.9 

3. 9.0 21.0 9.5 33.8 

4. 22.1 55.5 7.4 19.9 

Table 1. Avr = 5-point centered moving averages. Max =  max difference 

between moving average detections & ground-truth measurements.  

 
1 The host computer was a Dell XPS with an Intel Core i7-2630QM 

CPU @ 2.00GHz. 

 

Figure 8.  Processed image from the proposed vision based Algorithm for 

the normal operating conditions scinario. The luminance value was between 

300-400 Lux. 

 

Figure 9.  Processed image from the proposed vision based Algorithm for 

the poor lighting conditions scinario. Luminance = 10-50 Lux. 

 

Figure 10.  Processed image from the proposed vision based Algorithm for 

the poor lighting conditions and blurring scinario. Luminance = 10-50 Lux. 
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Figure 11.  Exp.1 - Measured and Detected leg sinkage. Normal load = 

3.5kg, luminance = 300-400 Lux, and wheel speed = 7cm/s  

 

Figure 12.  Exp.2 - Measured and predicted leg sinkage. Normal load = 

3.5kg, luminance = 10-50 Lux, and wheel speed = 7cm/s  

 

various CPU speeds to demonstrate its ability to dynamically 
assess sinkages. Finally the algorithm achieves a high level 
of accuracy when the luminance level is higher than 10Lux 
which is usually the case for exploration rovers as they are 
dependent on solar power. 

Future work will focus on further improving the accuracy 
through template matching and subtraction as well as 
introducing a dynamic masking algorithm which would allow 
for a tighter ROI that moves along with the wheel/leg this 
would also mean that the detection range of the sinking leg 
would increase and that the sinkage detection of two 
simultaneously sinking legs would also be possible. 
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