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Abstract— This paper provides an architectural description
from the software point of view of the simulator environment
developed for the AIRobots project. The scope of the project
is the realization of an aerial service robotic prototype, a
sort of robotic hand to be employed in inspection-by-contact
tasks. The simulator is then crucial in both the training of the
human operator, and as a support tool for the development
and validation of low- and high-level control algorithms. The
tasks that can be performed are not limited to free-flight
missions, but include also to the cases in which the robot has to
actively interact with the environment. The simulator relies on
Simulink and Blender, and has been designed with a modular
structure that makes software-in-the-loop and hardware-in-the-
loop simulations possible by simply replacing the different
control modules with the real controllers on the prototypes.

I. INTRODUCTION

The development of the aerial service robot prototypes
covers situations in which using directly the real vehicle
would be risky, unpractical or simply time-consuming. In
these scenarios, which include the training of the operator
and the validation of new low-level and high-level function-
alities, an advanced simulation environment has to be taken
into account, [1]. To be effective in both the design and
validation of control algorithms, the simulator environment
should appear transparent to the rest of the control archi-
tecture and to the human operator so that switching from
simulations to real flight operations should be achieved as
seamlessly as possible. This fact implies that, on one side,
the simulation environment should have the same software
interface as the real prototype and, on the other, that the
dynamical model of the aerial system and of the environment
should match as far as possible the real ones.

The simulator presented in this paper has been designed
to address a number of relevant scenarios, ranging from
simple free-flight operations, to physical interaction with a
realistic 3D reconstruction of the environment. Free-flight
operations with some prototypes of aerial service robots (e.g.,
a quadrotor, a ducted fan, or a helicopter), are the simplest
experiments possible. In this case, the simulator is helpful
for validating the dynamical model of the system, and the
performances of the low-level control law. Human Interface
Devices (HIDs), e.g. a simple joystick, are employed to
generate the reference signals for the low-level free-flight
controllers to pilot the vehicle in a virtual 3D environment,
in the same way as they are employed for real flight tests.
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Fig. 1. Typical inspection-by-contact task performed by the “double”
ducted fan.

The second and more advanced kind of experiments deals
with the validation of the high-level control and sensor fusion
algorithms. In particular, by means of an accurate 3D model
representation of the operational scenario and the correct
implementation of the sensors mounted onboard, the effec-
tiveness of high-level vision based algorithms is validated
by considering some of the characteristics of the real envi-
ronment (e.g., textures, illuminations, and so on). The high-
level sensor fusion, together with the high level supervisor,
is employed to test mission planning, obstacle avoidance and
re-planning in the selected virtual world. Finally, telemanip-
ulation algorithms are validated by integrating also haptic
devices in the simulation. This is the case presented in Fig. 1.
Here, through an accurate modelling of the environment in
which the robot has to operate, the simulator is also used to
validate low-level control algorithms able to handle physical
interaction with the environment itself. More precisely, the
aerial vehicle is equipped with a manipulator, and several
tests on position and force control algorithms for the overall
multi-body system can be easily performed. Clearly, force
and contact sensors have to be implemented in the simulation
environment. Finally, the operator can be successfully trained
in particular end-user environments. This is achieved by
integrating all the advanced functionalities discussed above
in a single application, and by paying particular attention to
the description of the environment in which the aerial service
robot is required to operate.

To be really effective in validating both the low-level and
high-level control algorithms, the simulator has been de-
signed with a modular structure [2], in which the dynamical
models of the aerial robots and of the control algorithms can
be easily integrated as separated modules. This choice makes
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software-in-the-loop and hardware-in-the-loop simulations
possible by simply replacing the different control modules
with the real controllers installed on the prototypes. This
feature is of paramount importance to actually keep the
simulation environment updated with the latest version of
the control software at no additional development cost. More-
over, it also allows to keep the control logic separated from
visual and graphics components in case of improvements or
future upgrades.

II. SOFTWARE REQUIREMENTS

Aerial service robotics is a new field of research, and
complete off-the-shelf tools able to accomplish advanced
simulations are still not available. However, at the moment
a relatively large number of open-source and commercial
softwares allows to perform advanced simulations for other
different robotic applications, such as aerial robots [3],
mobile robots [3]–[11], and robotic arms [12], [13]. The
simulator presented in this paper takes advantage from
some functionalities already available in some open-source
solutions, with the goal of actively contribute within the
international open-source robotic community. So, in this
section, the main guidelines that motivated the design of
the simulation environment, and the relation with existing
open-source tools are discussed.

A. Mandatory requirements

If compared with standard simulation tools for aerial
systems, where only free-flight is taken into account, the
proposed simulator is required to directly manage the in-
teraction between vehicle and environment. Moreover, the
simulator integrates the advanced control architecture of
the real system, including also all the components that
are necessary for advanced human-machine interaction and
high-level, vision-based control algorithms. The main and
mandatory requirements are then summarized as follows:

1) Physics: Physical simulation is crucial because one of
the main goals is to study the UAV in different operative
conditions, such as in free-flight or during the interaction
with the environment. In the latter case, it is necessary to de-
termine collisions in the 3D space, and calculate the reaction
forces to apply to the robot. In this respect, realistic friction
models and advanced contact models have to be available.
Moreover, an accurate multi-body kinematic and dynamic
description of the manipulator attached to the vehicle is
mandatory. Finally, to implement and validate the different
feedback control strategies, low-level sensors (e.g., IMU),
and high-level sensors (e.g., vision), should be available.

2) Haptic feedback: During inspection-by-contact tasks,
the vehicle approaches the surface to be inspected, gets
in contact, and then slides along it, acting thus as a sort
of operator “virtual hand.” To have a realistic feeling, the
operator will drive the vehicle using a haptic device able to
provide force feedback. Since on the physical system force
sensors are installed in specific points of the vehicle’s body,
the same kind of information have to be computed also by
simulator and sent to the haptic device to provide the operator

with the same feeling of real operation scenarios. As before,
a realistic compliant contact model of the environment must
be implemented, together with force and contact sensors able
to detect the contact forces exchanged during the interaction.

3) Video feedback: Stereoscopic cameras are installed on
the real UAV, whose output is sent both to the operator, and
to high-level vision algorithms able to estimate the speed and
the pose of the vehicle. Such cameras are present also in the
simulation environment, not only for training purposes by
sending the images to the operator console, but also to speed
up the development and testing of the vision algorithms.

4) Frame rate: The dynamical model of the vehicle re-
quires that the simulator is able read inputs and send outputs
at a frequency of about 100 Hz. The above sample time is
compatible with the dynamical properties of the closed-loop
attitude and position control subsystems that stabilize the real
prototype. Video output is allowed to have a lower sample-
rate, in fact the onboard physical cameras are able to stream
data at approximately 10-20 Hz.

B. Simulator engine limitations

Because of its development process, the control logic
is available in Matlab/Simulink model. In this respect, the
output of the control logic is an array of six values, namely
forces and torques along the UAV’s axes. This is clearly
an input of the simulator as far as the UAV subsystem is
concerned. Moreover, since aerodynamics can be easily mod-
elled in MATLAB, the dynamics of the vehicle is simulated
within Matlab/Simulink in a block that receives the resultant
forces and torques generated by the fan and the aerodynamic
control surfaces. In order to close the loop, information about
the position and pose of the UAV must be returned to the
control logic, but also to the visualization subsystem, which
is implemented in Blender and is responsible for the visual
feedback to the operator. Moreover, it is the Blender module
that takes care of the collision detections, and together with
Matlab/Simulink, is able to generate the contact forces on
the basis of a specific contact model.

The simulation engine, then, must be able to communicate
with the different components using a networked computer
environment or serial communication in order to exchange
data in a fast and reliable way. Since the whole main
simulation loop has to be performed in less than 10 ms to
attain a frequency of 100 Hz, the communication protocol
must be kept simple enough so that it doesn’t require time-
consuming parsing and elaboration. It must nevertheless be
flexible enough to allow the input of different data, for
driving the UAV, controlling appliances, starting and stopping
the simulation and so on. Moreover, all potentially time-
consuming calculations (e.g., image data acquisition and
elaboration) must be kept outside of the simulator.

C. Choice of the tools

With all the requirements in mind, the simulation environ-
ment has been developed in two main modules. The first one
requires Matlab/Simulink and is responsible of the physical
simulation of the aerial device, i.e. UAV and manipulator
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dynamics, aerodynamics and contact dynamics. As far as the
graphical part and environment interaction are concerned, our
choice has been the Blender 3D content creation suite, [14]–
[16]. Blender provides a 3D rendering framework and a game
engine that allows to interact with the 3D scene. This feature
is necessary to determine collisions and is fundamental in the
simulation of the contact. Moreover, the Blender architecture
can be expanded using the Python programming language.

In this context, the MORSE (Modular OpenRobots Simu-
lation Engine) library [8] has come in aid for our “robotics”
purposes. MORSE defines a neat architecture of components,
tailored specifically for robotics, providing abstractions for
robots, sensors and actuators. It also defines a middleware
layer that can be implemented according to the require-
ments of the deployment. With this architecture, the same
simulation can interact with ROS nodes or use proprietary
communication protocols without changing the simulation
itself, but just by switching middle-wares. Different middle-
wares can be used simultaneously to communicate with
different clients.

III. SIMULATION ENVIRONMENT

The simulation environment aims at emulating the physical
parts of the real UAV in the most realistic way possible,
while using all the same control algorithms. In particular,
the simulation environment takes care of all physics sim-
ulation aspects e.g., rigid body dynamics, collisions, aero-
dynamics and sensors output. The main components have
been implemented either in Simulink or in Blender, using
the Python language. Simulink and Blender communicate
through UDP packets, so communication has to be kept as
lean as possible. Generally speaking, the simulation of the
3D physics and the integration with the low-level control has
been developed in Simulink, while Blender is responsible for
the graphical modelling and the discrete collision detection.
The information on the contact between manipulator and
virtual environment that Blender computes are properly used
in Simulink to generate a realistic contact dynamics.

A. Aerial vehicle

Simulink is used to compute the rigid body dynamics and
the aerodynamic forces for the virtual UAV. On the other
hand, the Bullet Physics Library in Blender is devoted to the
discrete collision detection. Such combination let the simu-
lated UAV to fly and interact with the virtual environment
in a realistic way, and the retrieved data can be exported to
the controller, executed in Simulink.

A mathematical model for the rigid body dynamics can be
given by means of the so-called Newtown-Euler equations:

Mp̈ = Rf b

Jω̇ = −ω × Jω + τ b
(1)

where f b and τ b represent respectively the vector of forces
and torques applied to the vehicle expressed in the body
frame, M the vehicle total mass, J the diagonal inertia
matrix, p = (x, y, z)

T the position of the center of mass,
ω the angular velocity expressed in the body frame and R

(a) (b)

Fig. 2. Force generation scheme in the Ducted-Fan MAV: (a) drag forces,
(b) lift forces.

the rotation matrix relating the body frame with the inertial
frame.

To expose an abstract and generic torque/force layer to be
used with the different prototypes, the aerodynamic laws that
apply to the individual prototypes are implemented using a
separate Simulink block that computes the vector of applied
forces and toques as(

f b

τ b

)
= Fb(u1, u2, . . . ) (2)

i.e., as function of further manipulable control inputs ui. In
case of the ducted fan, such control inputs are the vane’s
angle of attack αi. With reference to Fig. 2, the vector of
forces f b in the body frame can be computed as

f b(α) =

 0
0

−T

+


∑8

i=1 Li(αi)
T
ib +

∑8
i=1 Di(αi)

T
ib∑8

i=1 Li(αi)
T
jb +

∑8
i=1 Di(αi)

T
jb∑8

i=1 Li(αi)
T
kb +

∑8
i=1 Di(αi)

T
kb


where T denotes the thrust force produced by means of the
propeller, while the resultant torque vector is given by

τ b(α) =

8∑
i=1

ri × Li(αi) +

8∑
i=1

ri ×Di(αi)

where, for each i ∈ {1, 2, . . . , 8},

ri =

 1
2dT sin (γi − π/4)
1
2dT cos (γi − π/4)

d


denotes the point of application of each aerodynamic pair
of lift (L) and drag (D) forces with respect to the center
of gravity of the system which coincides precisely with
the origin of the body fixed reference frame. Clearly, the
function Fb in (2) depends on the particular configuration
of the UAV. In the simulator presented in this paper, beside
the ducted fan, the aerodynamic forces of a modular ducted
fan in double configuration and of the quadrotor have been
implemented. Other model can be easily added.
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Fig. 3. Delta robot: forces at the base joints and forces at the end-effector.

B. Manipulator
The UAV is equipped with a manipulator to interact with

the environment, namely a Delta Robot, whose schematic
model with the indication of the joint torques and cor-
responding end-effector forces is reported in Fig. 3. The
dynamic model is implemented as a Simulink block, and the
control action is computed in such a way to have a desired
position and/or force at the end effector. The “kinematic”
information are then necessary in Blender to render a 3D
model of the robot. The position of the end-effector is not
directly used in Blender to manage the contact/no contact
configuration with the environment. This point is discussed
later on in Sect. III-C.3.

C. Sensors
The simulation environment substitutes the UAV’s sensors

in order to give feedback both to the operator and to the
low-level and high-level control laws. Force information
computed during the interaction are also transmitted beside
to the dynamical models of the UAV and of the manipulator,
also to the haptic devices used by the operator.

1) Inertial sensor: Information regarding the position of
objects, can be easily retrieved in Blender. The MORSE
framework provides out-of the box sensors that will retrieve
attitude, location, speed and acceleration information, thus
emulating both the IMU (Inertial Measurement Unit) and
Optitrack motion tracking information. Only attitude and lo-
cation are sent back to the control law in the Optitrack packet
so as to provide the same amount of information used in free-
flight indoor experiments. Additional speed information can
be added to simulate IMU gyroscopic information, validating
also the case in which an IMU is available on the vehicle.

2) Streaming camera output: Two camera sensors, pro-
vided by MORSE, are installed on the 3D model of the
vehicle. Each sensor provides a continuous image stream, at a
frequency which can be obtained as a fraction of the one used
to send telemetry information, such as Optitrack and IMU.
Namely, attitude and location data are sent at 100 Hz, while
camera output is streamed at 10 Hz or 20 Hz. Cameras can
be controlled in depth of field and focal length. Other non-
streaming cameras can be used in the simulation environment

Fig. 4. “Virtual” force sensor.

providing different perspectives for piloting and monitoring
purposes.

3) Force sensor: Force sensors play a crucial role when
the manipulator is in contact with the environment. Unfor-
tunately, even if the physic engine in Blender is able to
detect and simulate contacts, it is quite difficult to extract the
contact forces, that have to be used in the Simulink model
as inputs for the dynamical model of both the UAV and the
manipulator. Moreover, it is not completely clear the contact
model that Blender implements. For these reasons, a simple
“virtual” force sensor has been implemented, and its rationale
can be better understood by referring to Fig. 4.

The Blender model is equipped with a small mass (i.e.,
the grey small sphere in the picture), that is moving under
the effect of a force. Such force is computed in Simulink
as the result of a simple PD control law that, when there is
no contact, is able to send to zero (in steady state) the error
between position of the mass and position of the end-effector
of the manipulator. As a consequence, when the manipulator
is not in contact with the environment, the position of the
end-effector (in Simulink), and the position of this mass (in
Blender) are almost the same. Maximum error and transient
response are determined by the operator behavior and can be
properly changed by acting on the PD parameters.

In case the manipulator end-effector gets in contact with
the environment, the motion of the mass is constrained, since
Blender is able to detect the contact. The error between
position of the mass and desired set-point for the end-effect
increases, and it can be used to compute the contact forces on
the basis of a specified contact model. Such contact forces
are computed in Simulink and are a further input for the
blocks that model the manipulator and the UAV. In this way,
we have freed Blender from the computation of the contact
forces. This task has been left to Simulink, with a clear
advantage in terms of numerical stability and “control” of
the contact dynamics.

D. Model of the environment

Blender provides a very complete GUI that allows mod-
elling of complex 3D scenarios. Meshes (3D objects shapes)
can be imported from different standard CAD formats, and
realistic textures can be applied to the surfaces. Complex
objects, like the UAV with all the sensors and actuators,
can be easily shared among different scenes. Most of the
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Fig. 5. A typical operative environment.

Fig. 6. Components involved in the simulation.

3D modelling is done using the 3D GUI editor, but it
can also be fully programmed in Python, allowing run-time
modifications of the environment or other parameters during
the simulation. An example is reported in Fig. 5.

IV. SOFTWARE INTEGRATION

The simulation environment is designed to substitute parts
of the real vehicle and its sensors, while maintaining other
software and hardware components (e.g., the low-level con-
trol and Human-Machine-Interface), that are exactly the same
used in the real flights. As such, the simulation environment
must communicate with these components in the same way
that the real vehicle does. The main integration points are
with the low-level control, with the supervisory control
and with other possible ROS nodes. Each component must
communicate to the others using preferably UDP datagrams
over the network. By the nature of this schema, also reported
in Fig. 6, it is possible to distribute the computation and the
control laws over multiple computational units, up to achiev-
ing a true remote-controlled application over the internet.

Since low-level control algorithms relay on Simulink,
the same data packets commonly used for the laboratory
Optitrack installation are used to export attitude and position
values of the virtual UAV. This lead to a 1-to-1 replication
of the physical testing environment that speeds up the
development phase. Torques and forces from the environment
and the control laws are applied to the rigid body and then

new values for attitude and position are computed via direct
integration of the dynamical equation.

As far as the integration with the supervisory control
is concerned, the simulator allows the operator to set a
number of way-points in order for the high-level control
law to compute a path for the vehicle. In this situation, the
environment model should be similar to the one of the end-
user application, so that the operator is able also to employ
the simulator to plan the trajectory for the real inspection.
The simulator can also be used as a benchmark to have a
3D view of real-flight trajectories, so that the operator can
evaluate the actual mission with respect to the one planned
before.

Finally, additional high-level functionalities can be inte-
grated using an off-the-shelf middleware, and in particular
ROS, able to provide a publish-subscribe communication
paradigm. The integration with ROS happens by defining
suitable ROS nodes having on one side a public ROS
interface and, on the other, the ability to communicate over
the UDP network with the simulator interface.

V. FORCE CONTROL EXPERIMENT

To test the effectiveness of the proposed simulator en-
vironment, hereafter we detail an experiment in which the
ducted fan prototype is required to enter into contact with a
vertical surface and to apply a certain force. To succeed in
this complex task, the goal of the control design is twofold.
On one hand, the controller should be able to stabilize a
given free-flight configuration maintaining the end-effector
in a desired vertical and lateral position. This feature can be
employed, for instance, to move the tool installed on the end-
effector close to the area to be inspected before entering into
contact with the surface. On the other hand, the control law
should be designed to perform docking maneuvers, namely
it should be able to stabilize the aerial manipulator while
applying certain forces to the vertical surface by means of the
end-effector. This last feature is required to actually perform
the inspection-by-contact operations.

Motivated by the effectiveness of the energy-based ap-
proaches, in applications pertaining physical interaction be-
tween robots and the environment, an impedance controller
[17] is proposed to meet the two above control goals at
once. In particular, the stability of a desired equilibrium point
is obtained by shaping the energy function of the system
to have a desired minimum (energy-shaping), and then by
dissipating energy to asymptotically converge to it (damping-
injection). More details on this point can be found in [18].

A crucial point to implement this controller in the sim-
ulation environment is to measure the contact forces with
the vertical surface so as the dynamics of the vehicle can
be actually influenced by the physical interaction with the
environment. To achieve this goal, the force sensor described
in Section III-C.3 has been employed. The forces measured
in Simulink during the experiment has been depicted in
Figure 7. When the system reaches the equilibrium, this force
represents both the force applied to the environment and the
reaction force applied back to the manipulator and then to
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Fig. 7. The force measured by the force sensor during a physical interaction
with a vertical surface.
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Fig. 8. The position of the vehicle during a physical interaction with a
vertical surface.

the vehicle. The position of the system during the overall
simulation has been depicted in Figure 8 while the attitude
of the vehicle is given in Figure 9. As a consequence of the
under-actuated nature of the ducted-fan dynamics, the pitch
angle of the system has to tilt in order to apply the desired
force to the surface.

VI. CONCLUSION

In this work a simulator environment suitable to model
aerial robots physically interacting with the environment has
been presented. The simulator has been designed in order
both to train a human operator and to test and validate
the control algorithms before real flight experiments. Both
the software architecture and the main components allowing
to obtain accurate mathematical modeling of the specific
scenario have been presented. Future improvements will be
focused primarily on an improved aerodynamic model of the
vehicles to capture phenomena such as ground effect or other
aerodynamic disturbances arising when the system is flying
close to obstacles or the surfaces to be inspected.
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