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Abstract— Crafting a proper assistance policy is a difficult
endeavour but essential for the development of robotic assis-
tants. Indeed, assistance is a complex issue that depends not
only on the task-at-hand, but also on the state of the user,
environment and competing objectives. As a way forward, this
paper proposes learning the task of assistance through obser-
vation; an approach we term Learning Assistance by Demon-
stration (LAD). Our methodology is a subclass of Learning-
by-Demonstration (LbD), yet directly addresses difficult issues
associated with proper assistance such as when and how to
appropriately assist. To learn assistive policies, we develop a
probabilistic model that explicitly captures these elements and
provide efficient, online, training methods. Experimental results
on smart mobility assistance — using both simulation and
a real-world smart wheelchair platform — demonstrate the
effectiveness of our approach; the LAD model quickly learns
when to assist (achieving an AUC score of 0.95 after only one
demonstration) and improves with additional examples. Results
show that this translates into better task-performance; our
LAD-enabled smart wheelchair improved participant driving
performance (measured in lap seconds) by 20.6s (a speedup of
137%), after a single teacher demonstration.

I. INTRODUCTION

Over the years, the robotics research community has pro-
pelled the development of the intelligent robot assistant, mak-
ing important scientific and technological advances that have
resulted in (among many other examples) smart wheelchairs
that predict user intent [1] and robotic laparoscopic camera
assistants that help doctors perform complex surgery [2].
That said, robotic assistants have yet to achieve widespread
use and remain largely confined to laboratory and other
controlled environments.

One reason for this lack of expansion into real-world
settings is that proper assistance (by human or robot) is
challenging. By its nature, assistance is contextual, dependant
not only on the current task, but also on the state of the user,
the environment and the assistant’s capabilities. Furthermore,
competing goals may demand different degrees of assistance.
In educational settings for example, the primary goal is long-
term user development rather than short-term task completion
[3]. Although it may be possible to derive assistive policies
from “first principles”, it requires an inordinate amount of
prior knowledge to be integrated into a robotic system.

In this paper, we adopt a novel perspective on the problem,
approaching it from a Learning-by-Demonstration (LbD) [4],
[5] standpoint. As compared to developing policies by hand,
LbD methods derive policies from teacher demonstrations.
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Fig. 1. Learning-Assistance-by-Demonstration (LAD) System Overview.
Our model learns both when and how to assist iteratively from an assistant
(demonstrator) helping a user accomplish a task. In this work, we apply our
method to the problem of assisted smart mobility and present results using
the ARTY smart wheelchair platform.

In a similar fashion, we aim to derive assistive policies by
observing an assistant; an approach we term as Learning
Assistance by Demonstration (LAD).

Framing assistive learning in this way allows us to retain
many of the benefits associated with LbD; for complex
tasks, demonstration is often more intuitive than hand-coding
specific behaviours, allowing non-roboticists to participate in
policy development [4].

In addition, LAD augments LbD by focussing on the
assistive element. Current LbD systems are task-centred in
that they focus on deriving a policy for completing the
demonstrated task with or without a human-in-the-loop. For
example, to teach a smart wheelchair to navigate, we would
provide it with driving demonstrations to derive a “how-
to-drive” policy (e.g., [6]). When the smart wheelchair is
assisting a user, the robot faces the difficult decisions of not
only how best to assist but also when it is appropriate to
intercede. One potential solution is to infer the user’s intent
from (noisy) observations [7], [8], using the learned policies
and failure models. In contrast, LAD is a direct approach.
Instead of deriving a policy for “how-to-drive”, we extract a
policy for “how-to-help-a-user-drive”.

A natural follow-up question is how to learn assistive
policies from demonstrations? As a solution, we contribute
a probabilistic model and provide efficient training algo-
rithms. Described in Section III, our model is trainable
online during the demonstration process (which facilitates
interactive teaching) and more importantly, places emphasis
on capturing both when and how to appropriately assist.
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To demonstrate the feasibility of the LAD approach and
our associated model, we focus on the problem of smart as-
sisted mobility. Section IV describes experiments performed
using a simulated robot and Section V extends this discussion
to real-world experiments on the ARTY smart wheelchair
platform [9], [10] with human participants. Finally, Section
VI concludes the paper by highlighting research questions
arising from this work.

II. LEARNING ASSISTANCE BY DEMONSTRATION:
PROBLEM STATEMENT

In this section, we formally introduce LAD and detail
its elements and distinguishing features. To help guide this
discussion, Fig. 1 illustrates an overview of our system.

Recall that we are principally interested in robots that learn
how to assist humans accomplish tasks through observation
of an assistant. For simplicity, let us consider a scenario
where there is one assistant (U

A

) helping a primary user (U
P

)
complete a primary task (T

P

)1. In effect, U
A

is engaging
in an assistive task (T

A

) and our robot’s goal is to extract
an assistive policy, i.e., a mapping from states x

t

2 X
to assistive actions a

t

2 A, denoted ⇡
A

(x

t

) : X ! A.
This should be contrasted against the typical LbD approach
which is to model the primary task and obtain a task policy
⇡

P

(x

t

) : X ! U where U is the set of control actions.
To enable us to extract this policy, we have access

to (partial and noisy) observations of the state x

t

=

(x

A,t

,x
U,t

,x
E,t

) where x

A,t

, x

U,t

, x

E,t

are the state of
the assistant, the user and the environment. Note that x

A,t

represents either the assistant or the robot, depending on
whether the robot is observing or executing the policy. We
also observe the actions performed by U and A, denoted
as û

t

and ât respectively. In addition, we assume a visible
signal ˆh

t

which indicates when the assistance is given.
To make these concepts more concrete, let us consider a

specific smart wheelchair training scenario where an occupa-
tional therapist U

A

is teaching a young boy U
P

with special
needs to navigate his environment. In addition, she wishes to
train a the smart wheelchair R to assist the child when she
is not present. To do so, whenever U

P

is unable to complete
a particular sub-task or is having difficulty, U

A

engages a
“guidance-mode” where she takes control and guides U

P

appropriately with actions ât. R is able to observe these
actions as well as the states x

t

when interventions occur,
and aims to extract the policy ⇡

A

(x

t

) used by U
A

.
An important element of our approach is the recognition

that assistance may not be needed (or desired) continuously
but only at key points during the process. This is relevant
in many real-world applications where constant intervention
may interfere with task completion or competing objectives.
Using our example, if U

A

does not provide sufficient assis-
tance, the child may become frustrated with the activity. On
the other hand, if U

A

assists too much, the child learns to rely
on her assistance, which negatively impacts his long-term

1Our method can be extended to scenarios involving multiple assistants
and primary users.

development (a phenomena known as “learned helplessness”
[11]). As such, deciding when to assist is paramount. In
the next section, we discuss our probabilistic assistive model
which formally captures these elements.

III. AN ONLINE PROBABILISTIC MODEL FOR LEARNING
ASSISTANCE BY DEMONSTRATION

At a high-level, our model is a representation of an
assistant making two choices at each time-step; 1) whether
she should help and if so, 2) what she should do.

Let us begin by assuming that the assistive actions are
continuous random variables a

t

2 RD, which can represent
motor commands to an actuator for example. In addition,
we define a “null” or zero action a0 , 0 (the assistant
is not helping in the task). Our Bayesian model considers
that assistive actions a

t

are generated from an “assistance
component” or a “do-nothing component” (where the action
probability is a Dirac delta centered at a0):

p(a

t

|x
t

) = p(h
t

= 1|x
t

)N (a

t

|f(x

t

),V[f(x

t

)]) +

(1 � p(h
t

= 1|x
t

))�0(at

). (1)

A critical part of our model is the probability of assistance
(when-to-help) represented by a discrete/binary random vari-
able h

t

2 {�1, 1} conditioned on the current state x

t

. In
this work, h

t

and a

t

are modelled using a Gaussian Process
classifier (GPC) and regressor (GP) respectively:

h
t

|x
t

⇠ GPC (2)
f(x

t

) ⇠ GP (3)

Since standard GPs are computationally expensive (re-
quiring O(n3

) time for training and O(n2
) space) and we

typically prefer our robotic assistants to learn iteratively, we
used the Spatio-Temporal Online Recursive Kernel Gaussian
Process (STORK-GP) [12], a specialised sparse GP with
memory to account for temporal dependencies. In the follow-
ing subsections, we flesh out our model by giving specifics
on how our model can be trained efficiently in real-time.

A. How-to-Help with STORK-GP Regression
Because regression with GPs is more straightforward than

classification, we first introduce the “how-to-help” compo-
nent which models/generates the assistive actions, a

t

. Given
observations x

t

2 X , a GP is a set of random variables
whereby any finite subset has a joint Gaussian distribu-
tion [13]. It is specified by its mean function, m(x

t

) =

E[f(x

t

)] and its covariance function, k(x,x0
) = E[(f(x) �

m(x))(f(x

0
) � m(x

0
))].

The STORK-GP is an online GP that uses sparse ap-
proximations [14], [15] used previously for learning-by-
demonstration [16] and a recursive kernel with automatic
relevance determination (ARD). In contrast to prevailing
methods, the STORK-GP can be updated sequentially in
real-time and models temporal dependencies. Because its
internals are relatively involved and discussed elsewhere
[17], [12], we focus on describing the three main aspects
of the algorithm and provide references for readers wanting
additional detail:

3231



1) The Projected Process Approximation: For online
learning, we revise our model as observations arrive using a
Bayesian update that minimises the Kullback-Leibler diver-
gence, KL(p̂

t

||q) [14]. The GP in its “natural parameterisa-
tion” form is given by:

m
t

(x) = ↵T
t

k(x) (4)
k

t

(x,x0
) = k(x,x0

) + k(x)

T
C

t

k(x

0
) (5)

where ↵ and C are model parameterisations that are itera-
tively updated (See [14], [15]).

2) Maintaining Sparsity: Although equations (4)-(5) al-
low us to update the GP sequentially, ↵ and C grow with
each processed datum. To control the model’s growth, we
limit the number of the datapoints retained, termed the “basis
vectors” (BVs), denoted b

i

2 B. Each incoming point is
scored for “novelty” using:

�(x

t+1) = k(x

t+1,xt+1) � k

T
t+1K

�1
k

t+1 (6)

where k

t+1 = [k(b

i

,x
t+1)] and K

�1
= [k(b

i

,b
j

)] with
b

i

,b
j

2 B. If �(x

t+1) is below some threshold, ✏
�

(10

�4 in
our work), then an approximate update is performed, which
incorporates observations but does not increase the number
of BVs. To limit the maximum size or capacity of the BV
set, it often becomes necessary to delete a BV. Again, we
score each b

i

2 B and remove the lowest scoring BV using
a reduced update.

3) Recursive Spatio-Temporal Kernel: The main ingredi-
ent of a GP is the covariance function k(x,x0

). Because real-
world environments are often partially observable in nature,
the model has to make decisions and inferences based on
a history of observations. To account for this, we used the
recursive kernel:

ARD
t

(x,x0
) = exp

✓
�1

2

(x

t

� x

0
t

)

T
M(x

t

� x

0
t

)

◆

exp

✓


t�1(x,x0
) � 1

�2
⇢

◆
(7)

where M is a symmetric d ⇥ d matrix that controls the
“importance” of the inputs [12]. It is conventional that M =

diag(l)�2 where l = [l
i

]

d

i=1. Modifying the l
i

’s allows us
to control the impact that the inputs have on the predictions
(the kernel function’s responsiveness to input dimension k
is inversely related to l

k

). Moreover, unlike the commonly
used squared-exponential, this kernel accounts for temporal
dependencies where the parameter �2

⇢

controls how much the
past is “weighted”.

Finally, to perform predictions with the STORK-GP, we
compute the mean of the predicted distribution at an un-
known test point x

⇤
t

:

µ⇤ = k

t

(x

⇤
t

)

T↵
t

(8)

and variance:

�2
⇤ = k(x

⇤
t

,x⇤
t

) + k

t

(x

⇤
t

)

T
C

t

k

t

(x

⇤
t

) (9)

B. When-to-Help with STORK-GP Classification
Let us re-use the machinery developed in the previous

section by modelling the “when-to-help” random variable h
t

using another STORK-GP. Since h
t

is a binary random vari-
able, we adopt a classification perspective. In this work, we
have assumed that h

t

is visible during training, allowing us
to apply supervised training directly. In particular, whenever
assistance is offered by the demonstrator, we observe h

t

= 1

and h
t

= �1 otherwise.
To perform classification, we have used the probit model

where the predictive distribution is given by:

p(h
t

|x
t

,↵
t

,C
t

) = �

✓
h

t

µ⇤
�2
⇤

◆
(10)

where �(z) =

R
z

�1 N (z|0, 1)dz is a cumulative density
function of a standard normal distribution and µ⇤ and �2

⇤
are given by (8) and (9) respectively2.

C. From Training to Prediction and Control
By using STORK-GPs, our LAD model can be trained

online as the demonstration is being conducted. For example,
in our experiments, the when-to-help classifier is continu-
ously trained throughout the demonstration with both positive
and negative observed samples (x

t

, ˆh
t

). The how-to-help
regressor is only trained when assistance is offered (ˆh

t

= 1)
with the observed sample pairs (x

t

, ˆa
t

).
Once both models are trained, we can apply the models

directly in an assistive policy ⇡
A

(x

t

). In this work, we
applied a simple threshold W

h

and assistance (˜h
t

= 1) was
offered whenever the probability of assistance p(h

t

|x
t

) �
W

h

, where p(h
t

|x
t

) is obtained using (10). The threshold
W

h

is a user-defined parameter that controls the minimum
level of confidence before offering assistance. The assistive
control signals, ˜

a

t

, are taken as the mean prediction of the
STORK-GP regressor given by (8).

IV. SIMULATION EXPERIMENTS

To illustrate how LAD and our probabilistic model can be
applied, let us focus on the real-world problem of assisted
mobility for individuals with special needs. An estimated 61-
91% of wheelchair users (1.4 to 2.1 million people in the US)
could gain from an assistive smart wheelchair [18]. Research
in this area has produced a multitude of obstacle avoidance
algorithms and real-world platforms that help wheelchair
users avoid collisions [19], [20], [21], [22], [7], [23]. For a
more complete review of smart wheelchairs, we refer readers
to [24].

As a prelude to our real-world trials (described in Section
V), we conducted a simulation study designed to test if our
model was capable of capturing when and how to help a
wheelchair user after a minimal set of demonstrations. Our
“first-cut” scenario assumes that the user lacks a specific
fine motor control skill which inhibits his ability to make
sharp right turns. This loss is permanent and thus, assistance

2More details on classification using the sparse online GP can be found
in [14], [15].
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R1

R2
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6.2 m

Fig. 2. Driving course used in our experiments. Participants (and our
simulated robot) were tasked to drive from S to F, passing through and
making right turns at R1 and R2.

should be offered to prevent user frustration. Since the user
is otherwise capable of controlling the joystick, assistance
should withheld during soft right turns (less than 60�), left
turns and forward/backward movements to encourage the
development of wheelchair driving skills. The efficacy of our
approach was measured using the model accuracy (using the
human demonstrator signals as the “gold standard”) and the
time required to complete a lap around a driving course.

A. Simulation Experiment Setup

Based on the real-world environment shown in Fig. 2, we
created a simulated world using the Stage simulator [25]. Our
test subject was an autonomous robot driver (RD) developed
using the Robot Operating System (ROS) [26] navigation
stack. For this test, RD’s maximum forward and rotational
velocities were set at 0.7m/s and 0.5 rad/s and local obstacle
avoidance was performed using Dynamic Window Approach
(DWA) [27]. We have made our model implementation and
experimental setup freely available for download3.

We tasked RD to drive from the start point (S), through R1

and R2 and back to the finish point (F). Note that RD always
made right turns at both R1 and R2. Under normal operation,
RD was able to complete a lap in an average of 34.59s (sd:
0.356s). We induced the control limitation by scaling right
turns to a maximum of 0.15 rad/s. This simple constraint had
a drastic impact on RD’s lap performance, almost doubling
lap times to 59.11s (sd: 0.95s).

B. Assistance Demonstration

A human demonstrator4 was tasked to provide assistance
in the form of a control takeover (in the spirit of “hand-over-
hand” control used by occupational therapists) during the
right turns at R1 and R2. Demonstration was performed using

3Available on the author’s website at http://www.haroldsoh.com
and the Personal Robotics website http://www3.imperial.ac.uk/
PersonalRobotics.

4The demonstrator was the lead author in the experiments presented.

TABLE I
ASSISTIVE MODEL PARAMETERS

Parameters Value
Capacity (C) 400

Recursion Depth (⌧ ) 4
Temporal scale (�⇢) 1.1

Lengthscale (lU ) 0.1
Lengthscale (lA) 1.0
Lengthscale (lE ) 2.0

Signal Variance (�2
f ) 0.1

Noise (�2
n) 0.1 (GPC) / 0.01 (GP)

Assistance Threshold (Wh) 0.5
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(1-Demo)

Model
Assistance
(3-Demo)

Obstacle Lap Time in Seconds (Simulation)

Fig. 3. Lap times in seconds. Without assistance, the control limited robot
(RD) completes a lap in 59.1s. With human demonstrator assistance, RD is
able to complete a lap in approximately 40.5s (a speedup improvement
of 146%). With a single demonstration, our learned model is able to
improve lap times to 42.6s (139% speedup) and with three demonstrations,
our learned model achieves a performance statistically similar to a human
demonstrator (average lap time: 40.4s).

a wireless joystick controller which provided an observable
takeover signal, ˆh

t

(1 whenever assistance was provided and
-1 otherwise) and the assistive command velocities, â

t

=

(â
x,t

, â
✓,t

). During takeover, the assistive control signals
replace those sent by RD (an alternative approach would
be to augment RD’s control velocities).

C. Model Setup and Parameters

In this experiment, the (partially-observable) state of the
system was modelled as x

t

= (x

U

,x
A

,x
E

) where the
state of the robot was represented by its current velocities
x

A

= (v
x,t

, v
✓,t

) and the environmental state was captured
by forward laser scan readings (separated into M = 15

segments), x

E

= s

t

= (s1,t

, s2,t

, . . . , s
M,t

). Since we
did not employ “user-specific” sensors, we used the user’s
desired translational and rotational velocities as a proxy for
intent (an internal state), i.e., û

t

= x

U

= (u
x,t

, u
✓,t

). It is
important to note that, in the limited control state, the model
is only able to observe the scaled right turns (instead of
the full commanded rotational velocity of 0.5 rad/s). More
state complexity can be accommodated by our model but we
found this representation to be sufficient for the task. The
parameters for our probabilistic assistive model were tuned
experimentally and are shown in Table I5.

5We are currently experimenting with real-time parameter tuning using
likelihood maximization and will report results in future work.
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Fig. 4. Performance measures summarising LAD model accuracy. Our
model achieves high AUC scores (for when-to-help classification) and low
RMSE (for the how-to-help regressor), which get progressively better as
more examples are given. See text for additional details.

D. Model Accuracy

To better analyse the learning capability of our model, we
used ten supervisor demonstrations as a single dataset to train
and test our model. The model learned in an online fashion,
i.e., trained/tested at each time step during nine laps. The
final tenth lap was used for testing. Fig. 4 summarises the
performance of both the classifier and regressor averaged
over fifteen runs (with the ten supervisor demonstrations
randomly permuted).

The ROC curves obtained by varying the assistance thresh-
old, W

h

are shown in Fig. 4a. Our trained model achieves a
high true positive to false positive ratio, indicative of strong
classifier performance. This is confirmed by the median and
upper/lower quantile AUC scores over the nine training trials
and the tenth testing lap (Fig. 4b). We observed that our
model achieves a high AUC (⇡ 0.95) after only a single

demonstration. The median AUC scores are 0.9905 for the
training portion and 0.9881 for the final test trial.

Turning our attention to assistive control accuracy, we see
from Figs. 4c and 4d that the STORK-GP is able to generate
assistive actions that are very similar to those generated by
the demonstrator. The rotational command velocities have
higher RMSE as compared to the linear controls; a possible
explanation is that the help was principally rotational (and
thus more varied) in nature. Interestingly, Fig. 4d shows that
the model is able to “anticipate” when assistance should be
given — we see a rise in the model’s predicted p(h

t

) and a
decrease in the variance of p(a

t

) well before the assistance
is actually performed.

E. Lap Performance
Fig. 3 illustrates the lap times attained by RD when

assisted by a human demonstrator and by our learned as-
sistive model (over 10 independent laps). After only a single
demonstration, our model is able to improve RD’s lap time
to 42.6s; a speedup of 139% over the control limited scenario
and only an average of 2.6s behind that of the human
assistance (40.5s). After three demonstrations, the model’s
assistive performance is statistically similar to that of the
human demonstrator, reducing lap times to an average of
40.4s (Kolmogorov-Smirnov test with p = 0.4370 and test
statistic k

s

= 0.3125).

V. REAL-WORLD EXPERIMENTS WITH THE ARTY
SMART WHEELCHAIR

Based on the positive simulation results, we conducted
a real-world experiment using the ARTY smart wheelchair
(Fig. 5) [9], [10]. ARTY is a smart paediatric wheelchair
developed at the Personal Robotics Laboratory at Imperial
College London that has been successfully tested with end-
users at a children’s hospital.

More specifics about ARTY can be found in [9], but we
note here that sensory information was obtained using three
Hokuyo URG-04LX laser scanners and an inertial measure-
ment unit connected to a base computational unit running
ROS. Our assistive probabilistic model was developed in
MATLAB and run as a ROS node on a Tablet PC connected
to the base unit.

To prevent damage to the wheelchair and potential injury
to participants, simple safeguarding using a DWA variant [9]
was employed to prevent hard collisions with obstacles. This
setup also enabled us to test how our assistive model can be
used in conjunction with current obstacle avoidance methods.

A. Experimental Setup
Our real-world trials were set up similar to the simulation

experiment; the test environment was a lab office space (Fig.
2) and we invited participants to drive the wheelchair along
the specified track (from S to F) a total of four times.
Before beginning the trial, the participants were allowed to
familiarise themselves with the wheelchair by driving around
the experimental route until they felt comfortable with its
operation.
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Fig. 6. Lap times in seconds for all twelve participants categorised by
driving mode. The learned model improved participant lap performance by
20.6s (speedup of 137%) after only a single demonstration.

During the first lap, full control was conferred, allowing
us to obtain the baseline performance of an average user.
The control limitation on right turns was applied during
the latter three laps; human demonstrator assistance was
offered during the third lap (during which the model was
simultaneously trained) and LAD model assistance was
offered during the final lap6. After each lap, the participants
were given a survey to complete indicating how much they
agreed with eleven statements7 on a 5-point Likert scale:

Survey Questions:
1) I found navigating the obstacle course with the wheelchair easy.
2) I found navigating the obstacle course frustrating.
3) I performed well on the task.
4) The task was difficult at times.
5) I found the driving assistance to be helpful.
6) The driving assistance interfered with my driving in a negative

way.
7) The driving assistance enabled me to complete the task faster.
8) I found the driving assistance to be timely.
9) The driving assistance negatively impacted my driving ability.

10) I would have completed the task easily even without the driving
assistance.

11) I liked having driving assistance for this task.

6Although the lap ordering may introduce a bias towards lower lap times
in the assistance trial, it was only possible to offer the assistance after the
model was suitably trained. Future work would look into introducing more
laps with and without assistance to correct for possible bias.

7For the first two laps where assistance was not given, surveys consisting
of only questions 1-4 were given.
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Fig. 7. Driven paths and normalised smoothed density plots illustrating
when assistance was offered by the human demonstrator and LAD model
(best viewed in colour). The modelled density is more spread out with a
greater variation in the paths accounting for the higher lap completion times.
That said, both distributions are similar illustrating the learned model is able
to capture when to appropriately assist; assistance was not offered between
R2 and F despite the user making “soft” right turns, as indicated by the
paths.

B. Empirical Results: Lap Performance
Twelve able-bodied participants (five female) ages 21-38

(mean: 27, sd: 4.91) participated in our experiment. Fig. 7
shows the paths taken by our subjects and a smoothed density
plot of when assistance was given. Both distributions are
similar, indicating that assistance was offered by our learned
model under the correct situations. Note that the model only
assisted at R1 and R2 and did not assist during the soft right
turns (as shown by the driven paths on the return lap from
R2 to F).

Fig. 6 shows the lap-times achieved by our participants
under the four aforementioned conditions. Under the baseline
condition (where right turns were normal), participants were
able to complete a lap in ⇡ 48.5s (sd: 20.0s). When right
turns were constrained, lap times increased by 62% to 76.7s
(sd: 24.8s). Although the lap times during LAD model
assistance was higher than the demonstrator performance
(mean: 44.55s, sd: 8s), it is worth noting that the model was
only trained using a single demonstration and still improved
participants lap times by an average of 20.6s to 56.1s (a
speedup of 137% over the limited control setting). This
result is similar to that achieved in simulation and we posit
that additional demonstrations would improve assistance
capability.

C. Survey Results
Based on eleven surveys completed8, the participants

found navigating the course more difficult and more frustrat-
ing (Q1 and Q2) during limited control as compared to the
other conditions (as was expected). However, the responses
during (H)uman and LAD (M)odel assistance were similar
to the baseline condition. A close examination suggests that
the participants may have been able distinguish between the
two conditions; 100% of the participants agreed or strongly
agreed that human assistance was helpful in completing the
task (Q7) versus 73% for the model assistance (the remaining

8One participant did not manage to complete the entire survey and as
such, her survey was left out of the analysis. However, her completed por-
tions did not reveal responses significantly different from other participants.
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27% were neutral to the statement). That said, a Wilcoxon
rank test did not find these differences to be statistically
significant. In general, a majority of the participants liked the
assistance (Q11 - H:63%, M:63%), finding the assistance to
be timely (Q8 - H:63%, M:73%) and helpful in completing
the task (Q5 - H:80%, M:73%).

VI. CONCLUSIONS

This work has proposed and discussed Learning Assis-
tance by Demonstration (LAD); a LbD approach to the com-
plex problem of deriving assistance policies. In addition, we
have contributed a novel probabilistic model which captures
both when and how to assist, and efficient methods for online
training. Both simulation and real-world experiments demon-
strate the efficacy of our approach; our smart wheelchair is
able to learn rapidly to provide contextual assistance where
needed, speeding up lap times by 137% � 146% (after only
one to three demonstrations).

We believe LAD to be a rich and promising area for future
exploration. From an experimental perspective, it is impor-
tant to validate the model on more complex scenarios with
the intended target population. In addition, we highlight three
interesting research questions particular to this approach:

1) How can we train the model efficiently when the
assistive signal is latent?: In this work, we have assumed
that h

t

is visible. In certain scenarios, h
t

is hidden or latent,
complicating the training process.

2) How can the model adapt to improvements on the part
of the assisted user?: A potential solution may be to com-
bine ideas from human-robot cross-training for collaborative
robots [28] with our approach.

3) Can we extract more than control from the learnt as-
sistive policies?: In this work, we have illustrated how LAD
can be applied to derive assistive control policies. However,
the learnt policy can also be used for studying how humans
assist under various circumstances, which may supplement
recent studies [29] and lead to interesting findings applicable
to the general design of assistive robots.
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