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Abstract— Cooperative swarms of robots with cameras can
provide stereo and multi-view vision. They are robust against
failures and introduce diversity in the case of poor conditions.
Cameras are used both for data acquisition and navigation.
Additional sensors also play a role in the SLAM tasks (Si-
multaneously Localization and Mapping). The independent
mobility of the robots/cameras leads to a situation in which the
common field-of-view (FOV) of cameras changes continuously.
The present paper addresses the task of acquiring and track-
ing the cameras FOVs. State-of-the-art FOV characterization
techniques count feature points or do image segmentation.
These methods are often not accurate or complex. We propose
an adaptive common FOV detection method based on fuzzy
plane clustering. The performance of the method is shown to
be invariant under baseline scaling. An autonomous grouping
algorithm is further proposed with respect to both distance of
robots and overlapping FOV of cameras.

I. INTRODUCTION

Autonomous robotic exploration missions usually rely on

several sensors such as IMUs, laser scanners and cameras to

navigate the robots. Camera subsystems provide a high level

of details about the environment. They thus play a significant

role in GPS denied environments or extra-terrestrial planets.

VSLAM (Visual Simultaneously Localization and Mapping)

techniques have shown promising performance for navigation

and mapping without knowledge of both the environment and

the robot’s position. VSLAM uses images from stereo or

monocular cameras to determine the coordinates of feature

points as well as the location and attitude of the camera

[1][2].

In order to increase the system robustness against hazards

in the mission, e.g. getting stuck in a sandy area, and to

improve the efficiency of exploration, the use of robotic

swarms has been proposed [3][4]. The swarms are composed

of autonomous units, such as rovers or quadrocopters, for

example. The use of swarm, which move and adjust their

attitude independently raises issues in the fusion of the data,
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however. The overlapping regions of distinct cameras vary

over time. The common field-of-view (FOV) must be charac-

terized, so that common features from different robots can be

matched efficiently as a function of time. This is significant

in both localization and mapping. The grouping of robots is

motivated by improving the observability and efficiency. The

common FOV must be known so that cameras with signifi-

cant overlap of their FOV can be grouped. Snavely’s state-

of-the-art FOV detection approach [5] is based on counting

matching feature points. Bruckner et al. [6] improved the

approach by releasing the constraints on the correctness of

the feature matching so that it is more robust to outliers

and matching errors. Zou and Tan utilized such approaches

in robotic swarm exploration, and proposed a state-of-the-

art method to group, split, and merge robots according to

the number of common features [7]. The result outperforms

the intuitive grouping strategy according to robot distances

whenever cameras are involved. The spatial distribution of

the features are usually inhomogeneous and sparse. Their

counting is not much related to the size of the FOV. Addi-

tionally, the baseline used for the triangulation of features is

not accurately known. Thus, the FOV characterization should

not be sensitive to errors in the baseline. Defining such a

characterization is the main aim of the present paper.

In Section II, we develop a reliable characterization of the

FOV of two cameras. It characterizes the regions seen by

several cameras. The method is based on the adaptive fuzzy

clustering of planes. We show that the resulting algorithm

is invariant under changes in the baseline length. The FOV

detection scheme is the basis for an autonomous grouping

algorithm developed in Section III. It utilizes spectral clus-

tering technique, in which the associated metric includes the

common area. In Section IV, we provide simulation results

for both the FOV detection algorithm and the grouping strat-

egy. Both algorithms outperform state-of-the-art approaches.

II. ADAPTIVE COMMON FIELD-OF-VIEW DETECTION

The automatic detection of overlapping regions in images

of a scene taken by several cameras is difficult, even if

the positions and orientations of the cameras are known.

The overlapping region is both a function of the angle and

distance of the object plane, as illustrated in Fig. 1.

In many environments, the assumption that most feature

points are distributed on nearly planar surfaces or facets is

valid. In some environments, the majority of features is close

to a plane, e.g. in the exploration of foreign planets. This

property is used in navigation, as in work of Xiao et al. [8]

and Zhou et al. [9], and provides reasonable results, if a

large number of feature points can be detected. The method
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Fig. 1: Depth Impact on Common Field-of-View

proposed in the present paper does not require the features

to be on a plane anymore - they can be on a multitude of

planes that are automatically determined, and outliers might

even be far away from those planes.

Without loss of generality, we consider stereo vision with

two cameras which are mounted on two distinct robots in a

swarm with time-varying baseline. With known initialization,

the attitude changes of the cameras can be tracked by IMUs,

so it is acceptable to assume that the orientation of both

cameras is known. Similarly the baseline length can be

tracked. This allows to triangulate the matched feature points

from both views to obtain 3D coordinates. The accuracy of

the baseline measurement does not affect the performance of

the common FOV algorithm, as shall be seen below.

In the following sections, we use both Cartesian coordi-

nates describing points in Euclidian space R and homoge-

neous coordinates describing points in projective space P.

The latter have an additional scale coordinate compared with

the Cartesian coordinates with same space dimension. In this

paper, the 2-norm of a vector is denoted by ‖ · ‖2, and 〈·, ·〉
denotes the inner product of two vectors.

A. Adaptive Fussy Plane Clustering

Assume that n matched feature points with triangulated

3D coordinates P1,P2, ...,Pn ∈ R
3 are the only geometric

information about the environment. Then hard clustering

defines an initial allocation of the 3D points to K clusters

by minimizing the overall distances between data points

and centers of the clusters. This allocates every point to a

unique cluster. Alternatively, fuzzy clustering defines a level

of membership uik ∈ [0,1] of point i in cluster k [10]. The

center Gk ∈ R
3 of cluster k is defined by

Gk =
∑

n
i=1(uik)

mPi

∑
n
i=1(uik)m

. (1)

and the weights are obtained by minimizing the weighted

squared distance from those centers:

n

∑
i=1

K

∑
k=1

(uik)
m‖Pi −Gk‖

2
2. (2)

The exponent m is called fuzzifier. It characterizes the

extent of overlap among different clusters. When m ≤ 1,
the optimization becomes equivalent to hard clustering. The

cluster centers Gk and membership levels uik can be calcu-

lated iteratively [10]. This defines the initialization of the

algorithm.

The points in the individual clusters should be in a plane.

In order to determine that, one defines the cluster covariance

matrix for the k-th cluster by

Fk =
∑

n
i=1(Pi −Gk)(uik)

m(Pi −Gk)
T

∑
n
i=1(uik)m

. (3)

The eigenvalues λ1k ≤ λ2k ≤ λ3k of Fk determine the shape of

the cluster prototype. In the present context, the prototypes

should be planes, i.e. λ1k ∼ 0. In the case that λ1k/λ2k is

larger than a threshold, the cluster is disregarded.

The allocation of points to clusters was rather arbitrary so

far. In the present paper, a large number of cluster prototypes

is used. The task is thus to merge clusters that are associated

with the same plane. In a first step, we define a metric

for measuring the distance from the planes associated with

cluster k. Let e1k be the normalized first eigenvector of Fk,
then this measure is

hik = |〈e1k,Pi −Gk〉|
2. (4)

In order to handle noise and outliers, we introduce a 0-

cluster. With these definition the weights are re-computed

by minimizing:

n

∑
i=1

K

∑
k=1

(uik)
m‖hik‖

2
2 +

n

∑
i=1

(uio)
mδ 2. (5)

The rightmost summand makes the clustering process robust.

If the distances of point Pi to all the other cluster prototypes

are large compared to δ , its membership level uio to the

outlier cluster is high, so that it does not affect the calculation

of the inlier prototypes.

Next clusters are compared: two clusters k1 and k2 are

merged whenever the fuzzy inclusion similarity measure

χk1k2
between them exceeds a threshold, which is normally

chosen to be 1/(K −1) [11], i.e. when

χk1k2
=

∑
n
i=1 min(uik1

,uik2
)

min(∑n
i=1 uik1

,∑n
i=1 uik2

)
>

1

K −1
. (6)

The set of new clusters leads to a new computation of the

centers Gk according to Equation (1) and of the cluster

covariance matrix Fk according to Equation (3) and to

another iteration of the algorithms. The iteration ends, after

the first iteration without merging.

The eigenvectors e2k and e3k describe the plane γk associ-

ated with the k-th cluster after merging. This is the basis for

computing the common field of view. Let K′ be number of

such planes.

B. Common Field-of-View Detection

The field of view of a camera is obtained by computing the

first intersection of rays with the K′ planes. Thus projecting

the visible region of one camera on the K′ planes and then

on the image plane of another camera yields their common

FOV.
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The visible region of Camera 1 on the detected planes is

defined both by the intersections of the planes and the crop

due to the limits of the camera’s CCD. For each plane i

with plane equation γi ∈ P
3, we first calculate the ray of the

projection of the four points from Camera 1 with that plane:

P1c(ρ) =C+
1 v1c +ρO1 (7)

where C1 denotes the camera matrix, (·)+ the pseudoinverse

of the matrix, v1c the location of a corner point on image

plane, and O1 ∈ P
3 is the 3D coordinates of the camera

projection center. By solving γT
i P1c(ρ) = 0, we determine

the intersection points of the rays with the i-th visible plane.

This describes a polygon with four vertices for each plane.

Determining the visible part of the surfaces inscribed in these

polygons, creates a facetted surface delimited by another

polygon. This latter polygon describes the limits of the field

of view. The common field of view is obtained by back-

projecting the vertices of the latter polygon onto the image

plane of Camera 2.

If there are multiple planes, i.e. K′ > 1, any line li j, which

denotes the intersection line between plane γi and γ j, is an

FOV border for those planes. The actual FOV is obtained by

combining the FOVs of all planes.

C. Verification of Baseline-scale Invariance

An important property of our common FOV detection

approach is that it is invariant under camera baseline scaling.

Without loss of generality we simplify the problem by

choosing a global frame with Camera 1 at the origin and its

orientation aligned with the local frame of that camera. As a

result, the camera matrix of Camera 1 is C1 = K1[R1,O1] =
K1[I,0], in which K1 denotes the intrinsic camera matrix,

R1 ∈R
3×3 the rotation matrix between camera and the world

frame, and O1 ∈ R
3 the location of the camera projection

center. The second camera is translated by t ∈R
3, and rotated

by R ∈R
3×3. Its camera matrix is C2 = K2[R2,O2] = K2[R, t].

The vector t = O2 − O1 is the baseline between the two

cameras. With the definition Λ = diag(1,1,1,w), scaling of

the baseline length by a factor w changes the camera matrix

C2 to C′
2 = K2[R,wt] =C2Λ.

Assuming that a 3D point with homogeneous coordinates

P = [X ,Y,Z,1]T ∈ P
3 is projected on the image planes of

both cameras with coordinates v1 = [x1,y1,1]
T ∈ P

2 and v2 =
[x2,y2,1]

T ∈ P
2 respectively, implies that v1 =C1P,v2 =C2P.

Utilizing the cross-product constraints that v1 × (C1P) = 0

and v2×(C2P) = 0, the unknown 3D coordinates of the point

can be triangulated with the 2D coordinates on the two image

planes by solving the normal equation

AP =









x1(c
3
1)

T − (c1
1)

T

y1(c
3
1)

T − (c2
1)

T

x2(c
3
2)

T − (c1
2)

T

y2(c
3
2)

T − (c2
2)

T









P = 0 (8)

in which (c j
i )

T denotes the j-th row of the camera matrix Ci.

Replacing the baseline by the scaled baseline, implies

replacing the terms in Eqn. (8) by rows C′
1 =C1Λ =C1,C

′
2 =

C2Λ which leads to the equation

A′P = AΛP = 0. (9)

As a result, if P = [X ,Y,Z,1]T solves Eqn. (8), Eqn. (9)

has the solution Pw = Λ−1P = [X ,Y,Z,1/w]T . Therefore,

the impact of scaling the baseline length by w is that the

triangulated coordinates of the feature points are scaled

by 1/w. The corresponding Cartesian coordinates have the

relation rw = [wX ,wY,wZ]T = wr.

If we compute a plane equation with three non-collinear

points from that plane, the Cartesian coordinates of which

are triangulated as r1w,r2w and r3w ∈R
3 with the same scaled

baseline, the plane can be determined by

γw =

[

(r1w − r2w)× (r2w − r3w)
−rT

3w(r1w × r2w)

]

∈ P
3. (10)

We can normalize the plane as γw = [uT ,1]T . From riw =
wri, i = 1,2,3 it follows that γw = Λγ , where γ is the original

plane equation calculated with points coordinates r1,r2 and

r3.

For point v1 = [x1,y1,1]
T on the image plane of Camera

1, the back projection results in a ray

P(ρ) =C+
1 v1 +ρ[0,0,0,1]T (11)

in which ρ is the scalar factor for the parameterized line

equation. According to Eqn. (13), the ray intersects plane γ

at

Pb =

[

K+
1 v1

−uT K+
1 v1

]

∈ P
3 (12)

γT Pb = [uT ,1][(K+
1 v1)

T ,ρ]T = 0. (13)

Similarly the ray intersects the plane γw at Pbw =
[(K+

1 v1)
T ,−uT K+

1 v1/w]T = Λ−1Pb. Here Pb is the original

point coordinates while Pbw is the corresponding point on

the plane calculated with scaled baseline. The projection of

Pb on the image plane of Camera 2 yields v2 =C2Pb, while

Pbw is projected to

v2w =C′
2Pbw =C2ΛΛ−1Pb = v2. (14)

Therefore, the planes induce the same homography between

the two cameras for different baseline scales.

The result indicates that our plane-based common field-of-

view detection algorithm is invariant under baseline scaling

if and only if we back-project the planes using the same

baseline parameters that are utilized to triangulate the feature

points. Under this assumption, the method is thus robust

against baseline length measurement error.

III. AUTONOMOUS ROBOTIC GROUPING EXPLOITING

COMMON FIELD-OF-VIEW

In swarm exploration, robots are normally divided into

groups to increase the efficiency of exploration and to reduce

the communication needs. The groups are evolving over

time due to the movement of the autonomous vehicles. The

distance of the robots is normally the dominant consideration

in grouping. This is motivated by optimizing intra-group
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communications and to ease collision avoidance. However,

the overlapping FOV of the cameras is essential for swarm

VSLAM and is not considered in most cases. Zou and

Tan exploit the number of common feature points in their

grouping strategy [7]. This is often not a good measure of

the overlap of FOVs, however. The grouping metric proposed

below is relying on both common FOV and Euclidean

distance. It is obtained from the above adaptive common

FOV detection method.

A. Similarity Metric based on Field-of-View and Distance

Assume that N robots are to be divided into M groups

according to a grouping metric, and that the position of the

robots ri = [Xi,Yi,Zi]
T for i = 1,2, ...,N, can be estimated by

SLAM, a state-of-the-art choice of a grouping metric di j is

based on distance [12]:

di j = exp

(

−
‖ri − r j‖

2
2

σ2

)

(15)

with σ being a parameter describing the decay rate of the

metric as a function of distance. Close robots are grouped

when σ is large. In practice, σ is often chosen as being the

standard deviation of the distance among vehicles.

In order to include common FOV in the grouping strategy,

we redefine the grouping metric by:

si j = α · (qi +q j)/2+(1−α) ·di j (16)

with qi = Noi/Npi, q j = No j/Np j being the ratios of the

pixel numbers in the overlapping regions and the total pixel

number of image i and j, respectively. The parameter 0 ≤
α ≤ 1 allows to tune the relative importance of distance and

FOV in the grouping strategy. The grouping metric fulfills

0 ≤ si j ≤ 1 and sii = 1.

B. Autonomous Robots Grouping Using Adaptive Similarity

The grouping metric in Eqn. (16), defines an undirected

graph G. Let r1,r2, ...,rN be the positions of N robots, and

let them be the vertices of the graph, then connect every

vertex-pair i, j ∈ {1,2, ...,N} by an edge with weight si j. This

is a completely connected graph. The M-grouping problem

transforms to a graph cut problem that separates the vertices

into M disjoint graphs in which the total weight of the

remaining edges is maximized. The graph cut problem is

NP-hard. Fortunately, excellent suboptimal solutions can be

found by using the graph properties and invariants of graph-

based matrices. Spectral clustering algorithms such as the

Jordan-Weiss algorithm [12] provide good solutions to the

M-grouping problem. Spectral clustering uses the property of

graph Laplacian matrices that the number of zero eigenvalues

in the Laplacian is the number of connected components in

the graph. The Jordan-Weiss algorithm clusters the eigen-

vectors corresponding to the M largest eigenvalues of the

normalized graph Laplacian matrix, which strengthens the

cluster property compared with the original data points.

In practice, the group number M is usually determined

according to the exploration strategy. Nevertheless, if there

is a demand to adaptively decide the group number, various

criterion can be used to estimate the optimal group number

Mopt . One option of determining Mopt is to maximize the

mean intra-group connectivity by

Mopt = argmax
M

1

M

M

∑
i=1

λ2,i,M, M = 2, ...,Mmax (17)

where λ2,i,M denotes the algebraic connectivity (or Fiedler

value) of the i-th cluster, which is the second smallest

eigenvalue of the graph Laplacian of a connected graph. A

large Fiedler value implies that the connections among the

vertices of the graph are strong, while small Fiedler values

indicate that many vertices are connected only by links with

a small total weight.

IV. SIMULATION RESULTS

A. Simulations of Common Field-of-View Detection

We tested the common FOV detection algorithm from

Section II with several rather different pairs of stereo images.

The performance was rather similar in all cases. Thus we

choose three typical scenario to illustrate the results. The

first scenario is a wall with items on the shelf. The second

scenario is the corner of a floor and walls. The third scenario

uses a pair of stereo images from the NASA Mars rover

Sojourner. For the feature extraction, SURF detector and

descriptor [13] are used for all three scenarios. RANSAC

(RANdom SAmple Consensus) [14] is implemented to re-

duce the number of outliers, so that the comparison is fair

to the approaches in [5] and [6]. The results are illustrated

in Fig. 2, 3, and 4.

Fig. 2: Common FOV Detection - Wall

Fig. 3: Common FOV Detection - Floor

Fig. 4: Common FOV Detection - Mars
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Fig. 5: Perspective of Scenario 1

The highlighted part in the images are the detected com-

mon FOV. Yellow dots show the matched feature points.

The simulation results indicate that our overlapping detection

algorithm performs very well in a wide variety of scenarios.

TABLE I: Common Field-of-View Detection Result

Detected Plane # Inlier Points Overlapped Pixel

Wall 1 30 45.25%

Floor 2 37 91.28%

Mars 1 24 73.50%

Table I compares the values of the overlapping similarity

metrics defined by feature point numbers and overlapped

pixel numbers. In the ”Wall” scenario, 30 feature points are

associated with an overlap of 45 percent. On Mars, 24 feature

points are associated with an overlap of 70 percent. This

shows that the number of matched feature points is not a

good measure for the common FOV.

B. Simulations of Autonomous Grouping Algorithm

The autonomous grouping algorithm is simulated in two

scenarios. Scenario 1 contains five cameras with different

positions and orientations that distributes as Fig. 5.

The robots are grouped using the grouping metric and

algorithm introduced in Section III. Assuming that the robots

are required to be divided into two groups, different results

are obtained when α is varied, see Table II. For small values

of α , the distance is the dominant, as expected.

TABLE II: Scenario 1 Grouping Result with M = 2

Adaptive Factor Result Group 1 Result Group 2

0 ≤ α ≤ 0.4 {1,2} {3,4,5}
0.5 ≤ α ≤ 1 {1,2,3} {4,5}

Fig. 6 illustrates the cameras distribution in Scenario 2.

To make the condition more clear, we fix the height of all

the robots in the scenario.

Fig. 6: Perspective of Scenario 2

Again we cluster the cameras into two distinct groups

according to the adaptive similarity metric for various α
values. The grouping result is provided in Table III.

TABLE III: Scenario 2 Grouping Result with M = 2

Adaptive Factor Result Group 1 Result Group 2

0 ≤ α ≤ 0.3 {1,2,3,7} {4,5,6,8,9,10}
α = 0.4 {1,2,3,6,7,8} {4,5,9,10}
α = 0.5 {1,2,6,7,8} {3,4,5,9,10}
α = 0.6 {1,6,7} {2,3,4,5,8,9,10}

0.7 ≤ α ≤ 1 {1,6} {2,3,4,5,7,8,9,10}

The increase of α results in a larger impact of common

FOV among cameras in the final grouping strategy. To

better illustrate it, we plot the average intra-group common

FOV and average intra-group distance measure di j with

respect to the incremental adaptive factor α in Fig. 7. It

can be concluded from the curve that for very small α ,

the autonomous vehicles with short distance are clustered

together. However, the common FOV inside the groups are

extremely small. By setting the adaptive factor to a suitable

value, the autonomous grouping algorithm results in a good

trade-off between the robots distance and the common FOV

of the cameras. The same conclusion can be drawn for other

value of M as well.

The simulation results in Fig. 8 illustrate the variation

of the autonomous grouping in a dynamic situation. In the

scenario, a swarm element moves along the x-axis while the

other elements keep static. The number of the clusters is

determined adaptively using the method described in Section

III-B. In the simulation, α = 0.5, which indicates the distance

and the common FOV are treated with equal significance.

From Fig. 8 we can observe that in the six snapshots the

grouping outcome varies as the swarm element moves, and

the clusters are marked with different colors. As the swarm

element splits from the red group in (d), 4 clusters are adapt-

ed autonomously, and the moving element is clustered into
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Fig. 7: Average Intra-group Measures of Scenario 2 over α

an independent group. When it further approaches the blue

cluster, the moving vehicle is merged into the group. The

simulation results indicate reliable grouping performance,

and the advantage of using a joint metric of distance and

common FOV can be observed. If only the common FOV

is considered, the situation in (c), (d) and (e) would be the

same, which is intuitively not as reasonable as our results.

V. CONCLUSIONS

In typical environments, feature points can be clustered

into planes. These planes are the basis for determining the

overlapping Field-of-View (FOV) of pairs of cameras by

projection onto and back-projection from those planes. If the

same baseline is used for determining the three-dimensional

coordinates of the feature points and in the back-projection,

the method is invariant with respect to baseline errors. This

implies a good level of robustness. The proposed FOV-

estimation method outperforms other methods, like those

based on counting feature points. It can furthermore be

exploited for grouping robots in a swarm in order to achieve

a grouping that allows combining images from members of

the group to navigate or to explore the environment.
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Fig. 8: Splitting and Merging of a Moving Vehicle

[8] J. Xiao, J. Zhang, J. Zhang, H. Zhang, and H. Hildre, “Fast plane
detection for slam from noisy range images in both structured and
unstructured environments,” in Mechatronics and Automation (ICMA),

2011 International Conference on, Aug. 2011, pp. 1768–1773.

[9] J. Zhou and B. Li, “Homography-based ground detection for a mobile
robot platform using a single camera,” in Robotics and Automation,

2006. ICRA 2006. Proceedings 2006 IEEE International Conference

on, May, 2006, pp. 4100–4105.

[10] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy
covariance matrix,” in Decision and Control including the 17th Sym-

posium on Adaptive Processes, 1978 IEEE Conference on, vol. 17.
IEEE, 1978, pp. 761–766.

[11] U. Kaymak and M. Setnes, “Fuzzy clustering with volume prototypes
and adaptive cluster merging,” Fuzzy Systems, IEEE Transactions on,
vol. 10, no. 6, pp. 705–712, Dec 2002.

[12] A. Y. Ng, M. I. Jordan, Y. Weiss, et al., “On spectral clustering: Anal-
ysis and an algorithm,” Advances in neural information processing

systems, vol. 2, pp. 849–856, 2002.

[13] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” Computer Vision–ECCV 2006, pp. 404–417, 2006.

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

5564


