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Semantic Mapping and Navigation: A Bayesian Approach

Dong Wook Ko, Chuho Yi, and Il Hong Suh, Senior Member, IEEE

Abstract— We propose Bayesian approaches for semantic
mapping, active localization and local navigation with afford-
able vision sensors. We develop Bayesian model of egocentric
semantic map which consists of spatial object relationships
and spatial node relationships. Our topological-semantic-metric
(TSM) map has characteristic that a node is one of the com-
ponents of a general topological map that contains information
about spatial relationships. In localization part, view dependent
place recognition, reorientation and active search are used for
robot localization. A robot estimates its location by Bayesian
filtering which leverages spatial relationships among observed
objects. Then a robot can infer the head direction to reach a
goal in the semantic map. In navigation part, a robot perceives
navigable space with Kinect sensor and then moves to goal
location while preserving reference head direction. If obstacles
are founded in front, then a robot changes the head direction
to avoid them. After avoiding obstacles, a robot performs active
localization and finds new head direction to goal location. Our
Bayesian navigation program provides how a robot should select
either an action for following line of moving direction or action
for avoiding obstacles. We show that a mobile robot successfully
navigates from starting position to goal node while avoiding
obstacles by our proposed semantic navigation system with
TSM map.

I. INTRODUCTION

It is important for a robot to navigate effectively and
accurately from current location to destination by using a
memorized map and observed data [1]. When a robot tries
to fulfill its mission, a robot must have adaptive capacities
to cope with unexpected obstacles and to plan optimal path
in map [2]. So, map building is essential for navigation.
Various mapping approaches have been proposed to repre-
sent environments in the robotics. A robot requires precise
map to use information for navigation as shown in Fig.1.
Probabilistic Roadmaps (PRM) [3] are a commonly used
class of algorithms for robot navigation tasks. However, most
PRM approaches rely on the assumption that the planner
knows the locations of all obstacles in the environment. In
other words, it needs precise map that includes all obstacles.
To build a precise map, expensive sensors are required
such as laser scanner. In case of human, there will be
no trouble in navigating without accurate information and
exact map. Human navigation relies on local landmarks
and personal directions to navigate and visualize a pathway.
They remember a few landmarks that constitute the space
such as a specific structure and distinct objects, and they
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avigation Task

Fig. 1. Discrepancy of representations for space between robot and human.

reconstruct the spatial knowledge using spatial relationships
among objects as shown in Fig.1. Then they utilize the spatial
knowledge again for navigation [4]. There are discrepancies
in representations of space between human and robot. Indeed,
human navigation processes are still open questions in cogni-
tive science [5]. Therefore, it will be helpful if we understand
human navigation better to model a robot navigation better.

We focus on human-like semantic navigation to be ap-
plied to mobile robot navigation. The problem of navigation
task can be decomposed into the following three questions:
“Where am 1?7, “Where am I going?” and “How should I
get there?” [6] [7]. First question is localization problem.
Humans look around to know where they are. Similar to
the way of humans, active localization has been applied to
robot localization [8] [9]. The second and third questions
are specifying a goal and planning a path, respectively.
The spatial relations among objects are used for semantic
mapping. These spatial relationships can deduce the direction
to go to the goal place. Such human-like semantic navigation
tasks can be very compact and distinctive. To support these
navigation tasks, we develop Bayesian models of semantic
mapping, active localization and local navigation with afford-
able vision sensor. In semantic mapping, our semantic map
inspired by the human navigation paradigm is represented
by a symbolic description. A semantic map represented by
Bayesian model has been developed for spatial relationships
among trained objects [10]. Similar to the works by both
Blanco in [11] and LAGADIC team in [12], our method uses
local-metric maps and combines topological information to
build a global map. In contrast, observed distances, bearings
for object are represented egocentrically by semantic metrics
[10].

To navigate by using our semantic map, novel navigation
strategies are needed. Human can go to goal location by
identifying both local navigable space and direction toward
the goal and by recalling previously learned landmarks. We
propose human-like semantic navigation strategies for mobile
robots: view-dependent place recognition, active localization,
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Fig. 2. Principles of Human-like semantic navigation

reorientation, path planning and local navigation. The pro-
cess of human-like semantic navigation as shown in Fig.2 is
summarized as follows: 1) a robot estimates the probability
distribution of current location using view-dependent place
recognition strategies, active searching and reorientation rule.
2) a robot finds next nearest node to reach goal location
in semantic map. 3) After getting to know where to go
next, a robot infers its head direction to reach a goal. We
define this reference head direction between next nearest sub-
goal node and current location as line of moving direction
(LoMD). Then, a robot moves to next nearest sub-goal
node while keeping LoMD. If obstacles are found in front
along the line of moving direction, then a robot changes its
moving direction enough to avoid obstacle. After avoiding
obstacles, a robot performs active localization and finds new
head direction to goal location. A Bayesian Program (BP)
[13] is designed for building probabilistic models of local
navigation. This BP decides whether the robot follows LoMD
or avoids obstacles. Using these strategies as shown in Fig.2,
a robot can go anywhere by using semantic map and local
navigation.

II. WHAT IS A TOPOLOGICAL-SEMANTIC-METRIC MAP?

Our topological-semantic-metric(TSM) map consists of
spatial object relationships and spatial node relationships.
In a topological-semantic metric map, a node is one of
the components of a general topological map that contains
information about spatial object relationships. TSM map can
be considered as a hybrid map combining topological map
with semantic metric map. A topological map is represented
by connections between nodes, and a semantic-metric map
is represented by spatial context among objects rather than
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Fig. 3. The process of creating the semantic map

a numerical representation. Node relationship is represented
as spatial relationship between the nodes, where physical
path between the nodes is not taken into consideration. The
spatial node relationships are represented by the approximate
distance and bearing from one node to another. On the other
hand, It is noted that spatial relationships among available
objects at a node have to be invariant with respect to robot
location. For this, there will be created a local coordinate
system at a node with reference to objects observed at the
node. This is identified as a local coordinate system at the
time when a robot measures the distance and bearing from
the center of the camera’s axis position when viewing a
recognized object in front of it.

The process of creating the map is summarized as follows:
As shown in Fig.3, (1) when a robot starts, topological-
semantic metric map is empty, and no new local coordinate
system is generated. (2) When a robot finds the object
that a robot knows from landmark DB, a robot creates
a local coordinate. If the observed object did not exist
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Fig. 4. Graphical model of Bayesian semantic mapping and localization.

in a previous map, a new node is defined and a local
coordinate system is created. (3) A robot creates spatial
object relationships about the observed objects around it.
If no other objects are observed, then the semantic-metric
map building is complete with the current node. (4) A
robot moves around the new object to measure distance
and bearing. If the object did not appear on a previous
map, a new node is generated, as depicted by the new
local coordinate system. (5) Spatial node relationships are
created from the previous node to the current node. A set of
semantic relations employed in the local semantic metric map
are summarized as follows: A set of semantics for spatial
node relationships containing distance and bearing is denoted
by sf and s¥. Each distance relationship is represented
by one of a set of distance symbols, that is, s = {
1 step, 2 step, ..., k step}. k step(N1,N2)
means that the location of node 1 is k steps from the
location of node 2. The n-n bearing relationship denoted by
s¥ = {front, left front, left, left rear,
rear, right rear, right, right front} isthe
bearing of the node relative to the node. front (1, 2)
means that the location of node 1 is in front of node
2. On the other hand, the node-to-object (n-o) distance
relationship denoted by s? is the distance of the object
from a robot. Each distance relationship is represented
by one of a set of distance symbols, that is, s2 = {
nearby, near, far}. Here, nearby (01, N1) means
that the location of object 1 is nearby the location of the
node or robot 1. The n-o bearing relationship denoted by
s8¢ = {front, left front, left, left rear,
rear, right rear, right, right front} isthe
bearing of the object relative to a robot. front (01,
N1) means that the location of object 1 is in front of
the node or robot 2. The o0-o bearing relationship denoted
by sg {left far, left near, left nearby,
right nearby, right near, right far} is the
relationship among objects. left far (01, 02) means
the location of object 1 is left and far from the location of
object 2.

Fig. 4 shows a graphical model of semantic mapping
and localization model. Control u; and observation z; are
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the observed variables. o is object, s; is spatial object
relationships that are distance and bearing to objects and
bearing between objects transformed by the symbolizing
function for the spatial relationship. Here, robot locations
Q) and /() are connected between topological edges as /W,
The final robot location €2; and map M can be expressed as
follows:

p(Qt7 M|0t7 Sty Zts ut)

1
:p(Qt|Ot7Stvztyut)p(M|Qt70t7Staztyut) M

where p(Q|ot, st, 2, up) is the estimated path and
p(M|Q4, 01, St, 2, ut) is the estimated semantic map.

III. SEMANTIC NAVIGATION

Three step procedures are repeated for semantic naviga-
tion. At first step, a robot estimates its location using by
Bayesian filtering with spatial relationship among observed
objects above mentioned section 2. Reorientation rules, view-
dependent place recognition and active localization are used
for robot localization. Second step, a robot finds an opti-
mal path (node to node) in TSM map with spatial node
relationships. After getting to know where to go next, a
robot performs the local navigation in third step. In local
navigation step, a robot infers the head direction to reach a
goal from semantic map. When a robot moves to sub-goal
node according to reference head direction, a robot should be
able to perceive whether the space toward the head direction
is navigable space or not. If obstacles are founded in front
of reference head direction, then the robot changes its head
direction to avoid them. We define this head direction to
avoid them as navigable direction.

A. Localization in TSM map

First question (Where am 1?) have usually led to model
which allows a robot to localize itself. To answer the
first question, we use three strategies of human naviga-
tion. Reorientation rules, view-dependent place recognition
and active search are used for robot localization by using
symbolic inference. Reorientation means that the relative
bearings of landmarks are determined automatically when
a robot observes at least one remembered landmark between
relationships. When a robot observes memorized landmark
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with spatial relationships, reorientation applies the associ-
ated relationships of the relative change as defined by the
reorientation rules based on a robot movement. To determine
the robot’s current location, a robot estimates egocentric
distances and bearings using reorientation rules of spatial
relationship. Next, a robot will choose the action for more
precise localization. A robot determines actions to find
other landmarks, which are spatially related to the perceived
landmark. If a robot fails to observe landmarks, it can still
infer its next action plan using spatial relationships. Then,
a robot updates its location by using view-dependent place
recognition. As mentioned section 2, we used likelihood
of object similarity, spatial relationship, and motion model.
A robot estimates the posterior distribution of its location
sequentially by Bayesian filtering.

B. Path Planning

A robot can select easily optimal path (node to node)
represented by semantic metric distance. In path planning,
a robot finds sequential node path to reach goal location
in TSM map. For example, TSM map has spatial node
relationship with set of distance symbols /sf = {1 step,
2 step,..., k step} among nodes. A robot can find
optimal node path using this node relation. After finding
a next nearest goal node, a robot extracts semantic-metric
distance and bearing in TSM map. Then, a robot converts
symbolic representation to numerical form by desymbolizing
function. As previously stated, we defined LoMD between
current location and sub-goal node. We converts this LoMD
from “left front” to normal distribution of bearing as distri-
bution of LoMD in Fig.9 (d). So, the mean of distribution of
LoMD will be reference head direction to go to next nearest
goal node.
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- Five pertinent variables:
Lomd, Ny, Ny, Act, Vel
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P(Lomd |m;pcqinavi) =Uniform
P(Ng|miocainavi) =Uniform
P(Ng|miocainavi) =Uniform
P([Act = avoidance] | N, Ttocaimavi) = Sigmoidg g (Ny)

Descrjption
Separation

Program

P(Vel|Lomd, Ng, Ny, [Act = avoidance), T1ocainavi)
= P(Vel|Ng, Ng, T gvoidance)

- P(Vel|lLomd, N5, Ny, [Act = follow LoMD], Tjocqinavi)
= P(VellLomd, Tt 010w Lomp)

L Identification:
No learning

Question:
P(Vel|Lomd, N, Ng, Tiocainavi)

Fig. 6. Bayesian program for local navigation

C. Local Navigation

Vector Field Histogram (VFH) is a real time motion
planning algorithm proposed by [14]. VFH is currently one
of the most popular local planners used in mobile robotics.
The VFH utilizes a statistical representation of robot’s
environment through the so called histogram grid, and
therefore place great emphasis on dealing with uncertainty
from sensor and modeling errors. However the change of
the environment can not be reflected well and the movement
of mobile obstacle is not considered. We propose local
navigation model. After planning to optimal path to reach
a goal location, a robot finds line of moving direction
(LoMD) between next nearest sub-goal node and current
location node. Because our semantic map has spatial node
relationship with set of bearing relationship denoted by
s¥ = {front, left front, left, left rear,
rear, right rear, right, right front}, a
robot can easily select LoMD by desymbolizing function.
If obstacles are found in front along the line of moving
direction, then change the moving direction enough to avoid
obstacle. We need two composed simple reactive behaviors
(Follow LoMD, Avoidance) for local navigation. We require
an action command to switch from “Follow LoMD” to
“Avoidance”. Bayesian program [13] is used for building
probabilistic models and for solving decision and inference
problem on local navigation model.

The Bayesian program for local navigation is given in
Fig.6. In the first specification step, we choose five pertinent
variables Lomd, Ns, Nd, Act and Vel for Bayesian model
of local navigation. They are described below.

e Lomd is a variable that represents bearing of moving
direction between next nearest sub-goal node and cur-



rent location. Using TSM map and active localization,
a robot can extract bearing for moving direction.

e Ns and Nd represent the navigable space and direction
to move respectively. In order to extract these sensory
variables, we use an approach that directly computes
the normal vector over the neighboring pixels in x
and y image space with a Kinect sensor [15]. The red
points are results of extraction of all horizontal plane
segments by local surface normal in Fig.5. Using these
plane segments, One dimensional polar histogram that
is constructed around a robot’s momentary location is
acquired. Each sector in the polar histogram contains
a value representing the polar obstacle density in that
direction. Navigable space must be enough to large to
avoid obstacle. Ns is a variable the represents width of
navigable space, Nd is a variable of navigable direction.

e Act is a variable for action command to switch from
“Follow LoMD” to “Avoidance”.

e Vel is a variable that represents its rotation and trans-
lation speed.

In the second specification step, we give a decomposition
of the joint distribution. We assume that the sensory variables
Ns, Nd and extracted Lomd are independent from one
another. If the navigable space is enough to move, we want
a robot to move toward line of moving direction to next
nearest sub-goal node. If the navigable space is not enough
to move, we want a robot to change the moving direction
to avoid obstacle. Hence, we consider that Act should only
depend on Ns. Finally, Vel must depend on the other four
variables. Our choices lead to the following decomposition.

p(Lomd, Ns, Nd, Act, Vel|T— LocalNavi)
= p(Lomd|T—LocaiNavi) X P(N8|T—LocalNavi)
Xp(Nd|T—LocaiNavi) X p(Act|N's, T—LocaiNavi)
xp(Vel|Lomd, Ns, Nd, Act, T— LocalNavi)
(2)

We define the parametric forms. We have no a prior:
knowledge about either the Ns and Nd or the Lomd.
Consequently, we state:

p(Lomd|7r7LocalNam',) = Uniform
p(Ns‘TrfLocalNavi) = Um'form

3
p(Nd‘TrfLocalNavi) = Um'form

“Follow
Act

Act is a command variable to switch from
LoMD” to “Avoidance”. This means that when
Avoidance a robot should behave according to the de-
scription p(Vel|Ns, Nd, T—jocaiNavi), and when Act =
followLoM D, a robot should behave according to the
description p(Vel|Lomd, T—jocalNavi). We state:

p(Vel|Lomd, Ns, Nd, [Act = Avoidance], ™= LocalNavi)
= p(V6Z|N57 Nd7 71'_Avoidance)
p(Vel|Lomd, Ns, Nd,[Act = FollowLoM D], T—LocalNavi)

= p(Vel|Lomd, 7= FoltowLoM D)

“
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We want a smooth transition from “Follow LoMD” to
“Avoidance”. Hence, we finally state:

p([Act = Avoidance]|Ns, T— LocaiNavi)

= Sigmoid, g(Ns)

p([Act = FollowLoM D)|N 8, T— LocalNavi)
=1—p([Act = Avoidance]|Ns, ™= LocalNavi)

&)

While the mobile robot navigates from current location to
next nearest sub-goal node, we don’t know in advance when
it should avoid obstacles or when it should go toward LoMD.
We will use the following question where Act is unknown:

p(Vel|L0md, NS, Nd, 7T_Locathwi)
= Zam‘, p(Vela Act\Lomd7 NS, Nda 7T_LocalNam')

Finally, developing for the two possible value of Act , we
obtain:

p(Vel|Lomd, Ns, Nd, T— LocalNavi)
= p([Act = Avoidance]|N s, T— LocalNavi)
xp(Vel|Ns, Nd, T— avoidance)
+p([Act = FollowLoM D]|N s, ™ LocalNavi)
xp(Vel|Lomd, ™= FoliowsLoMD)

(6)

)

If navigable space(Ns) is enough to large(INs=100),
p([Act FollowLoM D)|N s, T LocalNavi) = 1 and
p([Act Avoidance]|Ns, T— LocaiNavi) = 0, a robot
uses pure “Follow LoMD”. The probability distributions are
obtained by proposed probabilistic model. If the obstacle is
on the left, a robot needs to turn right to avoid it. This is
what happens when a robot is close to the obstacle. When a
robot is further from the obstacle, a robot moves following
LoMD.

IV. EXPERIMENTS

We demonstrate our human-like semantic navigation
system in a corridor using the proposed semantic map.
We attached some pictures on the wall. It will be ob-
jects(Landmarks) in TSM map. As long as the nodes are
determined, a robot can automatically detect landmarks and
extract spatial context among detected landmarks and nodes,
such as node to landmarks and node to node. After building
a TSM map, we verified the practicality of the human-
like semantic navigation through experiments in indoor en-
vironments, a corridor, using a vision system. Experimental
environment are described below.

o Robot platform: Pioneer 3DX

o Camera: Logitech Pro Webcam C910 for object recog-

nition.

« Kinect for detecting navigable space

o Control module: Aria + Microsoft Visual Studio 2008

running in Windows.
o Semantic map building and Navigation system: Matlab
2010 running in Windows.

o Environment type: Corridor (14 x 26.5m)

o Landmark: 30 pictures attached to a wall. A robot knows
landmarks from database .
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A. Semantic Mapping

As shown in Fig.7(a), some pictures were attached to
the wall. Pictures in experiment to improve recognition
efficiency are used for vision recognition module (SURF
[16]). The vision system often produced false results. False
positives are significantly more problematic than false neg-
atives in semantic-knowledge instantiation and reasoning.
Noisy sensor such as false positives and false negatives
should be filtered for robust robot knowledge acquisition.
We used the robust knowledge acquisition rules [17] by
estimating confidence of the perception results. A robot
detects objects (Lm0, Lm2, Lm3) as shown in Fig.7(a). A
robot detects a set of correspondence points (SURF) to rec-
ognize object. After recognizing visual landmarks (objects),
a robot builds a vision-based metric map. To build a map
with a single camera, we use the concept of bearing-only
landmark initialization [18]. Two or more measurements are
required to estimate the location of landmarks. The location
of landmarks is represented in a Gaussian distribution using
motion information from odometry and bearing data from the
camera. Using this vision-based metric map and symbolizing
functions in which metric data distance and bearing are
converted semantic metric distance and bearing respectively,
we extract spatial relationships among landmarks and nodes.
A partial maps built by the proposed method are shown in
Fig.7(c). After travelling around the fourth floor (14 x 26.5m)
of the IT.BT building at Hanyang university, a robot built the
topological-semantic-metric map as shown in Fig.8.

B. Semantic Navigation

These semantic map provides symbolic data that consist
of linguistic representation of objects and their spatial re-
lationships. To navigate using symbolic description in real
environment, other information is needed. A robot extracts
navigable space and direction with kinect sensor, and recog-
nizes memorized landmarks with a camera to localize itself in
semantic map, and infers line of moving direction(LoMD) to
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move next sub-goal in semantic map. Probabilistic method-
ologies offer possible solutions to the incompleteness and un-
certainty problems encountered when programming a robot.
We designed probabilistic model for semantic navigation as
stated above in section III. A robot finds obstacle on its left
front, and line of moving direction on its front in Fig. 9
(a). In this situation, the width of navigable space is less
than o = 60, and p([Act = Avoidance]|Ns, T— LocaiNavi)
is more than p([Act = FollowLoM D||NS, ™= LocalNavi)-
So, we can choose Act = Awoidance. Distribution of
p(Vel|Lomd, 7= poliowsLormp) 18 shown Fig.9 (d). The re-
sult of combination p(Vel|Lomd, Ns, Nd, T LocalNavi) 1S
shown in Fig.9 (f). According to our proposed method, a
robot turn right to avoid obstacle. Because obstacle is on
its front, Vel about rotation will be going up. Transition
speed simply increases in proportion to Ns for experi-
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ment. Another result are shown in Fig.10. In this situa-
tion, the width of navigable space is more than o = 60,
and p([Act = Avoidance]|Ns,T— LocaiNavi) 18 less than
p([Act = FollowLoM D)|N$,T—LocalNavi)- SO, We can
choose Act = FollowsLoM D. In this situation, a robot
will keep going following LoMD. We conduct a simple test
to determine whether the mobile robot could navigate from
a starting point to goal node. After a few tries, we verified
that the mobile robot could navigate successfully with a
semantic map and human-like semantic navigation strategies.
The mobile robot could travel from its current position to
anywhere using just simple visual perception like human.

V. CONCLUSION

In this paper, we proposed probabilistic model for TSM
mapping and semantic navigation by using Bayesian ap-
proach. Although the accuracy of localization is relatively
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low in metric manner, a robot can build TSM map and easily
localize itself by reasoning action. Additionally, the semantic
map can be one of world model by which robots can infer
knowledge. In order to navigate using symbolic description,
we proposed the human-like semantic navigation. For the
proposed method, we design the probabilistic model with
information of navigable space, semantic knowledge, action
commend. We verified the proposed method through exper-
iment.
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