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Open-loop stochastic optimal control of a passive noise-rejection
variable stiffness actuator: application to unstable tasks

Bastien Berret, I Yung and Francesco Nori

Abstract— In this paper we propose a methodology to control
a novel class of actuators that we called passive noise rejection
variable stiffness actuators (pnrVSA). Differently from nowa-
days classical VSA designs, this novel class of actuators mimics
the human musculoskeletal ability to increase noise rejection
without relying on feedback. To fully highlight the potentialities
behind these actuators we consider movement planning under
two constraints: (1) absence of feedback, i.e. purely open-loop
planning'; (2) uncertain dynamic model. Under these con-
straints, movement planning can be formalized as an open-loop
stochastic optimal control. Due to the lack of classical methods
forcing the open-loop nature of the computed solution, we used
here a slight modification of available methodologies based on
importance sampling of trajectories using forward diffusion
processes. Simulations show that the proposed algorithm can
be effectively used to plan open-loop movements with pnrVSA.
In particular, two different scenarios are considered: the control
of a single joint pnrVSA and the control of a two degrees of
freedom planar arm equipped with antagonist pnrVSAs at each
joint. In both cases, movement has to be planned in presence
of uncertain dynamics for unstable tasks. It is shown that
open-loop stochastic optimal control can modulate the intrinsic
stiffness of the system to cope with both instability and noise.

Index Terms— open-loop stochastic optimal control, noise
rejection, variable stiffness actuator, unstable task

I. INTRODUCTION

Designing and controlling robots with rigid actuators is an
idealization that becomes limiting for some tasks or appli-
cations. In the field of robotics, current interest in variable
stiffness actuators (i.e. actuators with adjustable rigidity) has
been mainly concentrated on safety, interaction and mechan-
ical robustness. Nowadays there is enough evidence support-
ing the idea that humans exploit muscle co-activation (which
is related to rigidity regulation) to cope with sensorimotor
delays and noise in presence of instabilities [1]. This aspect
has been weakly explored in robotics and the current article
tries to explore its potential by showing (in a stochastic
scenario) that certain types of variable stiffness actuators can
cope with instabilities in an open-loop manner (i.e. without
relying on feedback). The finding that monkeys actually
specify the intrinsic musculoskeletal impedance even when
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'A more realistic scenario would consider a mixture of open-loop and
closed-loop control but in this paper we stress on the first to fully understand
the features behind pnrVSA.

978-1-4673-6357-0/13/$31.00 ©2013 IEEE

deafferented [2], further reinforced the idea that stiffness
regulation is indeed a crucial movement feature that (in
biological systems) is not realized with explicit feedback
loops. Heavily relying on feedback in artificial agents (such
as humanoid robots) might not be a viable strategy especially
considering the growing amount of sensors (e.g. below the
traditional ones: whole-body distributed tactile sensors [3],
whole-body distributed force/torque sensors [4], whole-body
distributed gyros and accelerometers [5]) which are currently
available and have to be centrally acquired/processed to
perform complex actions. Along this direction we recently
proposed [6] a coupling between variable stiffness actuation
(VSA, e.g. [7]) and open-loop (e.g. [8]) stochastic optimal
control (SOC; e.g. [9], [10]) as an attractive framework
to circumvent problems related to temporal latencies in
transmissions or noisy state estimations related to feedback
control.

In this paper we further proceed along this line of research.
The original contribution of this paper is the derivation
of a complete framework to efficiently control pnrVSA in
a stochastic optimal control context. First, we present a
simple algorithm to compute open-loop controllers from
the formulation of generic stochastic optimal control (SOC)
problems. Quite a number of solutions exist for closed-loop
stochastic planning [11]-[13]; here we use a recent approach
called path-integral SOC to construct controllers that cope
with an issue which is often neglected for practical’> and
technical® reasons: the absence of feedback (i.e. pure open-
loop planning). The effectiveness of the framework is shown
in the context of unstable tasks, for which coping with
uncertainties without explicitly relying on feedback is very
challenging.

The paper is organized as follows. Section II-II-B de-
scribes the class of variable stiffness actuators considered
in this paper and gives its dynamical model. Section II-II-C
presents our modification of classical closed-loop approaches
to deal with open-loop planning. Section II-II-D discusses the
considered tasks, a single joint and a two degrees of freedom
planar arm both controlled under stochastic and unstable
conditions. Section III presents the simulation results and
proves that the proposed VSA actuator model can deal in

2Robots nowadays rely on fast feedback loops with delays and latencies
of approximately 1ms; it makes therefore no sense to force solutions
which do not take into account this efficient feedback. Our motivation is
slightly different and therefore the request of open-loop solutions becomes
a necessity.

3To our knowledge, focus on open-loop control is difficult in this kind of
literature mainly because the Hamilton-Jacobi-Bellman equation naturally
leads to a feedback solution.
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Fig. 1. Variable stiffness actuator with passive noise rejection. The variable
61 and 62 are the motor angles, the variable g is the joint angle. The
constants 6] and ¢/ are fixed angles of reference.

open-loop with the extreme tasks considered. Finally Section
IV draws the conclusion.

II. METHODS
A. Framework and rationale

This work relies on several conceptual considerations
that are important to describe. First, throughout this paper,
we shall consider a variable stiffness actuator allowing to
emulate the human-like property of muscle co-contraction
in order to reject disturbances. This VSA device has been
already described thoroughly in [14]-[16] and thus only a
brief description of it will be given in Section II-B. The
relevance of such property for VSA can be exemplified in
the context of unknown dynamics/environment, for which
uncertainty is often model mathematically as noise. All
physical and biological systems are actually affected by such
a noise to some extent. We argue here that one fundamental
advantage of VSA is to cope with all unpredictable fluctua-
tions affecting such a stochastic control system. Additionally,
we will voluntarily prevent us from using feedback control
in order to emphasize that VSA can play the role of an
immediate feedback via adequate co-contraction. We choose
this extreme scenario to prove the possible usefulness of
noise-rejection VSA in the context of stochastic dynamics.
Therefore, we will focus on open-loop stochastic control.
Since co-contraction usually costs energy, an additional goal
is to minimize energy consumption and to automatically
find the minimal stiffness required to perform the task.
Thus, the controller must optimally trade-off stiffness and
compliance depending on the task and the noise magnitude.
For all these reasons, our framework will be the one of
open-loop stochastic optimal control. The chosen approach
will be reviewed in Section II-C. Finally, all the above-
mentioned ideas will be emphasized in the case of unstable
tasks, i.e. tasks in which noise can make the system diverge
very rapidly if feedback is delayed. The reference case that
motivated most of this work is presented in [1]. Section II-D
will present the unstable tasks we consider here.

B. Variable stiffness actuator

Here we consider the variable stiffness actuator that we
previously developed in [14]-[16] and that we named pas-
sive noise rejection variable stiffness actuator: pnrVSA. A
thorough discussion of various classes of VSA is out of the

Fig. 2. Variable stiffness actuator with passive noise rejection. A picture
of the first prototype.

scope of this article, but one crucial difference in the chosen
VSA design is its ability to “passively reject noise” via co-
contraction. See for instance [17] for a similar class of VSA,
yet lacking this property. Here, for one joint, the actuation
system is constituted of 4 non-linear flexible transmission
elements, two of which being connected to a fixed reference.
Figure 1 sketches the pnrVSA considered in this paper.

Assuming cubic springs for simplicity, the dynamical
system can be derived from Lagrangian mechanics, and are
as follows:

1§ = k(01— q)* + ka2 — q)* — b0 +7,
Lo, = kl(Q*91)3+k/1(9/1*91)*519.1 +7, (1)
1292 = kz(q — 92)3 + ké(eé — 02) — bgez + T2.

Remarkably, in this formulation there is no direct control
on g which is anyway the variable to be controlled. The
quantity 7 is only used to represent the external interaction
with the environment. The internal driving torques, which
are antagonist, are denoted by 7; and 79. Their combined
action is used to indirectly control ¢ via the net torque
74 = k1(61 — q)® + ka(02 — ¢)® which in a sense represents
the internal torque acting on g. Remarkably the quantity
Ky = —01,/0q = 3(k1(61 — q)® + k(62 — g)*) can be
used to represent the stiffness of the variable g due the
internal torques. The fact that this stiffness can be tuned
with the variables #; and 6, accounts for the possibility to
reject disturbances by ‘“co-contracting” the two antagonist
actuators.

When dealing with a multi-joint system, each joint is
equipped with such pnrVSA system. In the present work we
neglect bi-articular actuators whose role will be investigated
in future studies. In our simulations, we will consider a 2-
joint planar arm equipped with two pnrVSA, as depicted in
Figure 3.

Still considering cubic springs, the complete system dy-
namics writes as:

M(q)q = (Tl — T2 + Text — C(q7 q))7
™ = ki1(8i1 — 4i)® + ki2(0i2 — 4:)?, .

LijOi; = kij(ai = 0i5)° + k3 (07; — 0i)° = bij0i; + Fij,
i = 1,2

The first row represents a standard rigid body dynamics
(with the mass matrix M and the Coriolis/centripetal/friction
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Fig. 3. 2-dof arm equipped with antagonist pnrVSAs and illustration of
the unstable task considered in Subsection II-D.

term C), the second row represents the torques caused by the
spring elongations and the last row represents the internal
actuation dynamics of the spring contraction. Importantly, the
stiffness of variable g; will be expressed as K, = 3k;1 (61—
@) + 3kio(0i2 — q;)? for i = 1,2.

It is straightforward to write these dynamical systems in
state space and to see that they fall in the class of system
considered in Subsection II-C.

C. Open-loop stochastic optimal control

In all the reported simulations, we consider stochastic non-
linear control-affine systems:

dx = a(x(t), t)dt+B(x(t), t)u(x(t), t)dt+C(x, t)dw, (2)

where the variable w denotes a standard m-dimensional
Brownian motion, x(¢) € R™ is the state of the system and
u(x,t) € R™ is the control (at this point, the control is
a function of both the time and the state). The controlled
stochastic differential Equation (2) is defined in the sense of
Ito’s integral. In the following, we will often omit explicit
dependencies on x or t to simplify notations.
Additionally, we consider an expected cost of the form:

ty

J(xo,to) = E[6(x(t;)) —l—/q(x,t) + %uTRudt], 3)

in which the source state x( and initial time ¢y are assumed
to be known and fixed.

Equations (2)-(3) form a quite general class of stochastic
optimal control (SOC) problems, whose optimal control u
can be expressed as u = —R1BTV,J(x,t), where the
optimal cost-to-go function J satisfies the stochastic version
of the Hamilton-Jacobi-Bellman equation:

—Jy = m&n[q + %uTRu +(a+Bu)" S+ %tr(CCTJxx)].
“)

It is now well-known (see [11]-[13]) that this partial
differential equation can be made linear if we rewrite it in
terms of the desirability function ¢ = exp(—+.J) and if we
further assume that C = BV AR~! for some chosen A. It
can be then shown that the optimal control can be expressed
at each state/time as a path integral [11], [18], that can be

approximated via importance sampling methods. This is in
this framework that the PI* algorithm was developed [13].
Here we use a pretty similar algorithm, though we will not
make use of the dynamic movement primitives. Although the
optimal control is theoretically a feedback control law, the
algorithm is designed such as to find an open-loop control
policy. In order to present the numerical algorithm used to
derive open-loop controls, we now consider a discrete-time
representation of Eq. (2):

Xi+1 = X4 -+ aidt -+ Bluldt + \/%Ciq, (5)
with ¢, = N(0,1,,) (centered and normalized Gaussian

noise) and with ¢; = A(0,1,,) (centered and normalized
Gaussian noise) and dt = —, T' = t; — to, x; = x(idt + to)

n
with ¢ € [0,n]. We denote a path starting at state x; by
T = (Xiy ooy X))

Algorithm 1 Main steps of the path integral SOC algorithm
used in simulations.
1) Initialize u = (ug, ..., Up_1).
2) Sample K paths Tgk) starting from x( using Eq. 5
(forward sampling using the guided diffusion)
3) For all i = 0..n— 1, compute the control update du; =

K
Z P(‘rl(-k))uL (Tl(-k)) given:
k=1

n—1
¢ S(r) = o)+ Sou] B eV
n—1 =
3 Bjujdt)] + ZQ§k)dt] (generalized cost)
=i

exp ( — %S(T(-k)))

?

e P(riY) = —
> exp (= 385(+)
k=1

(probability of

a path)

. uL(TEk)) = R’lBiTHi_lez(-k)\/(ﬂ and H; =
Bj.R*IBjT (local control induced by noise in-
stance)

4) Update u; using w;dt < M;u;dt + du;, with M; =
R™'BH;'B,.

5) Reiterate from step 2 and continue until convergence
or maximum number of iterations

Justifications for the above algorithm can be found in [11]
and [13].

D. Unstable tasks

We shall illustrate the effectiveness of pnrVSA for unsta-
ble tasks. The first task is a simple proof-of-concept example
involving a single-joint system evolving a divergent force
field as inspired by [1]. The second task is a multi-joint arm
that is pushing against a wall with its endpoint. This more
complex example can be viewed as a simplified modeling
of screw driving, which is a typical daily life unstable task.
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Note that all simulations will be conducted in the framework
of open-loop stochastic optimal control.

The first task thus involves stabilizing one joint in a diver-
gent force-field environment and in open-loop. In state space,
setting x = (q, 01, 62, ¢, 6, 92)T we can rewrite the system
given by Eq. (1) in the control-affine form given by Eq. 2.
We consider a state-dependent cost ¢(x) = q(x) = x7 Qx,
with Q = diag(10°,0,0,103,103,10%), which essentially
penalizes deviations of the variable ¢ from zero. We set
A = 0.1. The initial and final configurations were defined as
x(ty) = (0.5,0,0,0,0) " and x(0) = (0,—0.5,0.5,0,0,0) "
and the task duration was ¢y = 1s. The nonlinear trans-
mission elements (i.e. cubic springs) were characterized by
the following parameters: I = I, = 0.1, k; = k[ = 2 and
b =0b = 2, ¢t = 1,2. The ground position was set to
0] = 65 = 0. Note that we also added a cost to penalize
unrealistic behaviors, such as having a spring crossing the
reference into the term ¢(x).

For the simulations we chose a step size dt = 0.01s. We
used K = 1000 samples at each update for a total of 200
main iterations. We checked that the number of iterations was
large enough to get a stabilized solution (a posteriori). The
task was made more challenging by introducing a specific
force field acting on the end-effector composed of a divergent
torque and a constant one: 7 = Kgyq + 7, with Kgy = 5
N.m/rad and 7. = —5 N.m. The goal of the task was to move
from the initial state to a final end-effector resting position
(the choice of 61(tf) and 65(tf) being free and found
automatically) using an open-loop control and minimizing
the amount of control effort.

The second task is a simplification of screw driving and
was illustrated in Figure 3. The properties of 2-dof arm
are based on human-like measures: [; = 0.3m, Iy =
0.4m, m; = 1.4kg, my = 1.1kg, center of mass positions
lcy = 0.11m, lc; = 0.16m, and moment of inertia of
each joint is computed by m;lc?. The friction of internal
motors are chosen to reduce the oscillation in the system,
bi1 = bia = by = byy = 4Nm/sec and the inertia
of the motors are assumed to be 2 Nm/sec?. The springs
stiffness are k11 = k1o = kot = koo = 10 Nm/rad The
wall reaction force enters into the dynamics via a term
Text = JJ (d) Aphysicai- The task is defined such as to push
against the wall with a constant force equal to 10 N in the y-
axis and this constraint is added to the state-dependent cost,
along with the constraint of maintaining the end-effector at
the position x = 0.3 and y = 0.4. The goal is to maintain
this arm configuration for two seconds in open-loop and by
minimizing the amount of control energy in order to find
the minimal level of co-contraction. Instability in this case
results from the fact that pushing against the wall with a
constant normal force causes unwanted tangential dragging
when the link is not normal to the wall itself.

ITI. RESULTS
A. Open-loop single-joint stabilization in an unstable task

Before describing the simulation results, we should stress
that minimizing the control energy makes perfectly sense
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Fig. 4. Control of the pnrVSA in an unstable task. 1st row: position
and speed of the end-effector. 2nd row: Intrinsic rotational stiffness and
feedforward torque applying to the end-effector. 3rd row: Displacements of
the internal motors. Red: R = 0.1 X Id2x2, Blue: R = 0.01 x Idax2
(higher noise entering into the system and cheaper control cost). The mean
trajectories across 50 trials are depicted (shaded areas are standard errors).
Note that Tq = k1 (91 — q)3 -+ k’Q(eQ — q)3 and Kq = 3(]{:1 (91 — q)2 -+
ko (02 — q)2).

for pnrVSA because a large stiffness implies a large control
energy which turns into passive noise-rejection property: this
is not available in other VSA designs. This feature is similar
to the large metabolic energy expenditure associated with
co-contraction of human muscles, which thus motivates the
design of “just stiff enough” control laws. The fact that
we stick to open-loop control laws is just to illustrate the
properties of pnrVSA for such an extreme case, but this does
not prevent the use of feedback laws or model predictive
control in real applications. The simulation results presented
below can just be improved by using feedback laws.

Note that in the method we used the relationship C' =
BV AR~ is required, and therefore we have a link between
the control cost and the noise magnitude. In Figure 4 we
tested different levels of noise affecting the system by
changing R. A decrease of R results in an increase of the
noise magnitude, but also reduces the control cost, thus
reinforcing the relative weight of state-dependent costs. In
other words, the more the noise the more co-contraction is
allowed at equivalent control-cost. Another way to vary the
noise but without affecting the cost is to vary A directly.
Similar behaviors can be observed, the main observation
being that the intrinsic stiffness of the system is signifi-
cantly increased when uncertainty and/or instability increase.
This low-dimensional example illustrates the possibility to
perform challenging tasks in open-loop, while this would
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not be possible without the pnrVSA. This also show that
the controller can adapt the degree of uncertainty/noise by
adjusting the stiffness optimally.

The second task is the case of an 2-dof arm equipped
with our pnrVSA pushing against a wall. In this case, we
set R = Idyx4 and X\ = 1, thus fixing the noise covariance
matrix via the above-mentioned equation for C. The results
of depicted in Figure 5.

The simulations showed that the task could be approx-
imately performed in open-loop with a minimal level of
stiffness of the system despite the additive noise acting on the
system. Of course, a greater accuracy could be achieved if we
used feedback control as well. Nevertheless, our framework
provides good reasons to optimally set stiffness of such
systems in order to optimally reject noise disturbances and
ensure a reasonable behavior even in open-loop.

IV. CONCLUSION

Recently, a number of novel actuator designs with vari-
able passive properties have been proposed. One of the
proposed designs (pnrVIA; [15]) allows for simultaneous
control [16] of passive stiffness and passive noise rejection.
The specific features of this new actuator principle calls
for novel models for movement planning: in this paper we
proposed open-loop stochastic optimal control. Given the
lack of available algorithms for numerically solving this class
of problems, the paper relied on a slight modification of
available methodologies. The proposed methodology falls
into a class which relies on stochastic sampling of diffusion
processes to approximate path integrals. To our knowledge,
focus on open-loop control is unique in this kind of literature,
mainly because the Hamilton-Jacobi-Bellman equation nat-
urally leads to a feedback solution. The proposed algorithm
has been used for open-loop movement and stiffness planning
with pnrVSA. Experiments have shown that the idea of open-
loop controllers nicely fits with the proposed numerical sim-
ulation, where unstable and uncertain tasks were performed
by exploiting the nice property of a class of VSA actuators,
nominally the ability to change the system passive stiffness
and noise rejection by actuators co-activation (and therefore
without relying on sensory feedback). The development of
such actuators providing intrinsic and immediate feedback
via co-contraction stresses the need for developing more
specific methods of open-loop stochastic optimal control.
This could be done in the spirit of the present work, by
making use of an infinite-dimensional Pontryagin Maximum
Principle [8] or by using the Stochastic Maximum Principle
[19].
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Fig. 5. Control of a 2-dof arm equipped with pnrVSA during an unstable task (pushing against a wall). With low stiffness, a diverging behavior was
initially observed after 2 seconds. By setting adequately the joint stiffness thanks to co-activation of the antagonist actuators, divergence can be annihilated
and the pushing force can be approximately maintained. Note that the goal of keeping a constant pushing force of 10 N is weighted with the goal of
preserving the end-effector position at the original location.
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