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Abstract— Force-position control through one or multiple
robots, or fingers, typically assumes a rigid endpoint without
rolling nor slipping. However, there are some interesting tasks
where rolling is involved, such as turning a knob (object is
pivoting at a fixed rotational axis) or rolling a wheel (object
rotational axis is moving). In such a case, rigid endpoint force
control becomes very difficult if not impossible, even for us
humans. This stems from two facts, firstly, infinitesimally small
rigid point does not yield a tangent force, therefore it is very
difficult to control it indirectly; and secondly, the pair robot-
object stands for a highly non-linear constrained underactuated
dynamical systems. In this paper, we aim at exploring rolling of
a rigid dynamic circular object with hemispherical deformable
fingertip, then with area, not point, contact. The dynamic model
and a control scheme are presented inspired in previous works,
but regulation of normal and tangential forces, as well as
position and orientation of the object are synthesized. In par-
ticular, tangential force control proves instrumental to regulate
posture, and displacement of the object with a simple transpose
Jacobian Cartesian PDF+g control. Regulation of rolling angle
and displacement with stable normal and tangential forces
are obtained without force sensing, neither any model of the
deformation nor any dynamic parameter of the object. To
entertain these control objectives, a redundant configuration is
required so as to yield local regulation, based on the stability-
in-the-manifold criteria, whose dimension is greater than the
operational space. Illustrative simulations are discussed that
provide insight into the closed-loop numerical performance, and
finally, remarks on the structure and potential applications are
addressed.

I. INTRODUCTION

The problem of force control with rigid point contact,

[10], [11], establishes enormous limitations to exert force

onto a deformable environment clearly because it is not

designed for deformable area contact, let alone for manipula-

tion under rolling constraints, [1], [2]. As an alternative, soft

end-effectors have been proposed, [3], [4], to deal explicitly,

essentially, with deformation at contact. Variable contact

area arises when soft end-effectors or soft fingertips are

considered, then appear a variable deformation at contact,

which brings issues yet to unveil for complex applications

regarding modeling and control design, in particular when it

is assumed that deformation is unknown, [5]. This leads to,

and sounds intuitive for, rolling, either at contact between

end-effector and rigid object or between manipulated rigid

object and environment, [6]. Despite this compelling argu-

ment for dexterous manipulation, the study of position-force
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control of soft fingertips, the first contact models, and control

design are very recent [5], [7], yet, so far, manipulation

with soft fingertip is still a basic research problem, including

how to deal with environmental kinematic uncertainties, [8].

However, for rigid infinitesimally small contact, tangential

force is not explicitly modeled in the dynamics of the

system, which is a primary source of problem when rolling

is involved.

Contact mechanics at deformable area shows that normal

and tangential forces arise in 2D, either with radial, [9],

or parallel deformation, [7], models. That is, end-effector

deformation brings into object dynamics a tangential force

variable that can be controlled to deal with rolling, and

then to treat and prevent slippage and sliding phenomena at

contact. Handling rolling is a commonly accepted measure of

dexterity in robotic hands, nevertheless, tangent force control

has not really been explored for rolling a dynamic object

through a deformable fingertip. In this case, assuming a

hemispherical deformable fingertip, end-effector rolls onto

the rigid dynamic circular object to give rise to a rolling

constraint. Consequently, the control of deformable fingertip

surpasses the limitations of classical point contact-based

force control, [10], [11]. Moreover, a more subtle inspection

on this suggests that deformation is a key characteristics for

dexterity of robot arms, which cannot be taken for granted

by simply applying known controllers developed for contact

point with tangent friction. This claim is substantiated by

the fact that not only the tangential forces are not dissipative

ones as the tangent friction is, but tangent force must be

controlled to keep watch of rolling and compensation of

gradient of environmental potential energy. In this regard,

a different approach is explored in [8] to compensate the

uncertainties of kinematic of the environment.

In this paper, it is assumed hemispherical shape of the

deformable fingertip of a planar redundant robot arm in

contact to a dynamical circular object, and a controller is

proposed for the regulation of position, orientation, tangential

and normal forces. The coupled system stands for an under-

actuated constrained differential algebraic system, [13]. The

controller is a transpose Jacobian-based Cartesian PDF + g

scheme, [12] (hereby acronym PDF stands for the usual PD

control term plus a Force control term, and g is gravity

vector) that does not require any knowledge of deformation,

neither normal nor tangential force. Subsequently, two cases

are studied, when the rigid object is constrained at its axis

and when it is constrained to roll on the floor. Finally,

representative simulation studies illustrate the performance

under various operational conditions.
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II. MODELING AND CONTROL OF A CIRCULAR OBJECT

PINNED AT A PIVOT POINT

A. Kinematic Constraint and Force Model

Consider a redundant planar (2D) robot manipulator

equipped with hemispherical soft fingertip with 3 degrees of

freedom (DoF) in contact to a circular dynamic rigid object,

which is pivoting at O0, see Fig. 1. It is assumed initial
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Fig. 1. Kinematic parameters of the circular object pivoting around O0,
where O is the origin of the world reference frame, Oe = (xe,ye) is the
center position of the base of the deformable soft fingertip of radius r.
Furthermore, q = [q1,q2,q3 ]

T stands for the generalized angular position
coordinate, R is the radius of circular object and li is the length of each
link i.

contact between the hemispherical lossless elastic fingertip

and the rigid circular object. Then, the maximum radial

deformation ∆x of the tip arises when the force is applied

along the line that connects Oo with Oe, hence it can be

computed as follows

∆x = r+R−R0

R0 = (x0 − xe)cos(θ )− (y0 − ye)sin(θ ) (1)

In this way, force can be reasonably modeled as the square

of the maximum radial deformation ∆x of the fingertip, as it

has been characterized and validated in experimental testing,

[15], such that:

f (∆x) = k∆x2, (2)

where k > 0 stands for the stiffness depending on the soft

material of the hemispherical fingertip. It is this shape

that allows omnidirectional rolling onto the object, while a

contact (ellipsoid) area is conformed to produce tangential

forces as well as high contact friction force, which can be

used to prevent slipping. These two forces stand for key

characteristics for an improved manipulation, [4], [16], [7].

In order to guarantee that contact between the object and

fingertip is maintained for all time, there arises a velocity

constraint given by Rθ̇ = −(r−∆x(t))φ̇ , [2], which can be

written as as follows,

Ṡ = Rθ̇ +(r−∆x(t))φ̇ = 0 (3)

where φ = θ − qT e and e = [1,−1,−1]T . However, notice

that (3) is not a non-holonomic constraint because it is

integrable, whose vector-valued solution in fact stands for

the following rolling holonomic constraint,

S = Rθ +[r−∆x(t)]φ −C0(t)≡ 0, (4)

where C0(t) = Rθ (t0)+[r−∆x(t)]φ(t0) represents the initial

condition at contact. Thus, the configuration space M is

conformed by the state of the pair robot-object given by

z = (q,θ ) ∈ R4 and ż that complies with two constraints

(S = 0, Ṡ = 0) ∈ R2. In this manner, a 6 dimensional primary

constrained manifold arises as follows

M6 = {(z, ż) : S = 0, Ṡ = 0}

B. Constrained Dynamic Model

Let the constrained Lagrangian be Lc = Lu + ST λ , where

Lu = K − P stands for the standard (unconstrained) La-

grangian, and λ for the Lagrangian multiplier, where K and P

are the kinetic and potential energy, respectively. Each energy

terms are composed of the summation of robot and object

components, more precisely K = 1/2q̇T H(q)q̇+1/2Iθ̇ 2, for

H(q) and I the inertial positive definite (matrix) of the robot

and the object inertia, respectively, and P = Pg(q)+Pc(∆x).
Term Pg(q) models the generalized energy induced by the

Earth gravitational field and Pd(∆x) stands the potential

elastic deformation of the fingertip. Applying the variational

principle, there arises the equation of motion of the robot

manipulator as follows

∫ t2

t1

[

δLu + ST λ δq−uT δq
]

dt = 0

for u the generalized exogenous input forces. According to

the Euler-Lagrange modeling formalism, one obtains

d

dt

[

∂L

∂ q̇

]

−
∂L

∂q
+

∂ST

∂q
λ = u (5)

Accordingly, (5) becomes1

H(q)q̈+C(q, q̇)q̇+ gr =u−λ JS (6)

Iθ̈ + fY = uθ −λ (R+ r−∆x) (7)

where gr(q) = g(q) + gc, for g(q) = ∂Pg(q)/∂q and

gc = ∂Pc(∆x)/∂∆x = f JT (q)rX . Term JS = J(q)T rY − (r −
∆x)e, rX = [cos(θ ),−sin(θ )]T , rY = [sin(θ ),cos(θ )]T and

C(q, q̇) ∈ R3×3 represents the matrix of centrifugal and

Coriolis forces. The non-square Jacobian matrix of the ma-

nipulator J(q)∈R3×2 is evaluated at (xe,ye), scalar Y =(xe−
xo)sin(θ ) + (ye − y0)cos(θ ), and u ∈ R3 is the exogenous

control input applied to each link of the robot manipulator.

Notice that in the formulation (6)-(7) is completed with the

holonomic constraint (4), for uθ = 0. System (6)-(7) yields

an under actuated differential algebraic systems of equations

of index 2, or DAE-2, [13]2.

We find useful to express it in a vector-matrix equation as

follows

Hz̈+Cż+G+BΛ = uz (8)

1Notice that nor joint neither object dissipative friction affine in velocity
are included, but those can be modeled without altering the result of this
paper.

2Equivalently to the notion of relative degree, where (4) is required to be
derived twice to appear u.

2473



where

H = diag(H(q), I), (9)

C = diag(C(q, q̇),0), (10)

G = [g(q),0]T , (11)

uz = [u,0]T , (12)

z = [qT ,θ ]T (13)

Λ = [ f ,λ ]T , (14)

B =

[

J(q)T rX JS

Y (R+ r−∆x)

]

, (15)

Surprisingly, [9], the integral of inner product between żT

and (8) shows the passivity properties of the underactuated

system (8), more precisely,

∫ t

0
(żT uz)dτ = E(t)−E(0)≥−E(0), (16)

in virtue of d
dt

S = q̇T ∂
∂q

S+ θ̇ ∂
∂θ S = 0, where E(t) = K +P.

Thus, the passivity condition is satisfied in open loop3.

Precisely this fact motivates [5], [9] to design a simple

regulator, where damping injection is used to shape the one

dimensional basic manifold of stability M1 ⊆ M6, however

zeroing the tangent force.

C. Control Design

Let the control law be

u =−Kvq̇+ fdJ(q)T rX +λdJS + g(q) (17)

where λd = β
R+r−∆x

∆θ , and β ,α,Kv are positive feedback

gains. Notice that by assumption the robot is in contact

regime at any initial condition with ∆x > 0, thus R+ r > ∆x,

therefore (17) is well posed. Now, we have the following

result.

Theorem 1. Consider the robot dynamics (6) in closed

loop with control law (17). For small error on initial con-

ditions, if the non-degeneracy condition of the following

interaction matrix

D =

[

JT (q)rX JS 03×1

ω (R+ r−∆x) β

]

, (18)

is satisfied for all time, then the convergence to the following

basic manifold

M1 = {(z, ż = 0) : S = 0, Ṡ = 0,∆ f = 0,∆θ = 0}

establishes the locally asymptotically convergence of

(∆ f ,∆θ ,∆θ ) → (0,0,0), with all closed-loop signals

bounded.

Proof: Let a bounded region Ω = {z| ∆x =

√

f

k
,z ∈

M3,q2 ∈]0,π [,q3 ∈]0,π [} where ∆x > 0,

√

f

k
≤ r, θ ∈

3It becomes dissipative if friction terms were present, as it is usually the
case in practice.

]
π

4
,−

π

4
[ and the Jacobian of the robot manipulator is well-

defined. Now, substituting (17) in (8), we obtain

Hz̈+Cż+DΛ f = F (19)

S = 0 (20)

where

F =

[

−Kvq̇

0

]

(21)

for Λ f = [∆ f ,∆λ ,∆θ ]T , ∆ f = f − fd , ∆λ = λ − β
R+r−∆x

∆θ .

For stability analysis purposes, a passivity analysis suggests

to consider the following energy-based quadratic function

V1(z) =
1

2
q̇T H(q)q̇+

1

2
Iθ̇ 2 +P∆ f +

1

2
β ∆x2

that its time derivative along the system (19) becomes

V̇1(z) =−q̇T Kvq̇+ fdY θ̇ (22)

Since V1 does not qualify as a Lyapunov function in the

8-dimensional space (z, ż), or in the primary constrained

manifold M6. Then, stability in the sense of Lyapunov cannot

be concluded, however, certainty, V1 is useful to analyse

the convergence properties of the autonomous system (19).

Applying the maximum invariance set to (22), at V̇1(z) = 0,

it leads to (q̇, θ̇ ) = (0,0) ⇒ (q̈, θ̈ ) = (0,0), which means

that there exists a maximum connected set, henceforth, (19)

becomes

DΛ f = 0 (23)

Thus, if exists a 3×3 sub-determinant that is not zero, it is

easy to prove that matrix D is non-degenerate. Then, locally

the solution of (19) is uniquely locally Λ f → 0.

III. MODELING AND CONTROL OF A CIRCULAR OBJECT

CONSTRAINED BY A RIGID SURFACE

A. Kinematic Constraint

Consider a rigid circular object rolling onto a rigid surface,

as if it were a wheel, as depicted in Fig. 2. In this case, the

rotational object axis is free to move along the plane, whose
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Fig. 2. Circular object manipulation over a rigid surface.

object translational velocity, which depends on its angular

velocity, can be modeled simply as ẋp = RΘ̇. This gives rise

to the following holonomic constraint

Sx = RΘ− xp+Cθ = 0 (24)

for Cθ the initial condition.
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B. Constrained Dynamic Model

Let the constrained Lagrangian be

Lc = Lu + ST λ1 + ST
x λx (25)

where K =
1

2
q̇T H(q)q̇+

1

2
Iθ 2 +

1

2
Mẋ2, P = Pg(q)+Pc(∆y)

and λx as the Lagrangian multiplier representing physically

the opposition force to the movement of the object onto the

surface. Applying the variational principle to (25), and using

the Euler-Lagrange formalism, we have that the dynamical

equations of the system in fact constitutes an under actuated

DAE-2 system as follows, that is

H(q)q̈+C(q, q̇)q̇+ g(q)+ fxJT (q)rX

+λ1

[

JT (q)rY − (r−∆x)e
]

= u, (26)

Mẍp = −λx (27)

Iθ̈ + fxY +λ1(R+ r−∆x) = λxR (28)

Sx = 0 (29)

where λ1 models the tangential force arising from the rolling

contact constraint defined in (4). Notice that (26) models

robot dynamics, (27) and (28) model translational and rota-

tional object dynamics, respectively, and finally (29) yields

the solution manifold as a holonomic constraint, that relates

xp and θ by a constant, see (24). Thus, we can choose either

xp or θ as a generalized coordinate such that (27)-(28) can

be written, in virtue of (24),

H(q)q̈+C(q, q̇)q̇+ g(q)+ fxJT (q)rX

+λ1

[

JT (q)rY − (r−∆x)e
]

= u, (30)

(MR2 + I)θ̈ + fxY +λ1(R+ r−∆x) = 0, (31)

Sx = 0 (32)

At this point, the control problem is to design u such that

the triplet (∆ fx,∆xp,∆λx) → (0.0.0) asymptotically when

deformation, contact area and contact force are unknown.

C. Control Design

Let the following control law be

u =−Kxq̇+ fdJ(q)T rX +λ1dJS − g(q) (33)

where Kx, βx > 0 are positive feedback gains, fd > 0,

λxd =
βx

R+r−∆x
∆xp is the desired value for λ1, JS = JT (q)rY −

(r − ∆x)e and ∆xp = x− xpd stands for the error position,

with x and xpd the real and desired position, respectively.

Substituting (33) into (30), one obtains

H(q)q̈+C(q, q̇)q̇+Kxq̇ =−∆ fxJT (q)rX −∆λxJS (34)

(MR2 + I)θ̈ =−∆ fxY −∆λx(R+ r−∆x)− fdY −βx∆xp (35)

where ∆ fx = fx − fxd , ∆λx = λx − λxd . We have now the

following result.

Theorem 2. Consider the under actuated dynamics of the

pair robot-object given in (30)-(31), subject to (32), in closed

loop with control law (33). A stability on the basic manifold

is obtained if the initial conditions start near of the desired

equilibrium point (zx,zxd) under assumption that interaction

matrix Dx ∈ R4×4

Dx =

[

JT (q)rX JS 03×1

Y (R+ r−∆x) βx

]

, (36)

is non-degenerate. Then, the convergence of ∆ fx → 0, ∆xp →
0 and ∆λx → 0 is guaranteed locally asymptotically.

Proof: The passivity balance of (34) and (35) consid-

ering żx = [q̇, θ̇ ]T as the output, shows up that

V̇x =−q̇T Kxq̇− fdY θ̇ (37)

where Vx = K + Pc(∆x) +
1

2
β ∆x2

p. Notice that V2 does not

qualify as a Lyapunov function because it does not fulfill

two axioms for that purposes ( V2(0) 6= 0 and the dependency

of all the state of (34)), then no stability in the sense of

Lyapunov can be concluded. In any case, since (34) is an

autonomous system, the maximum invariance set shows that

V̇x = 0 only at (q̇, θ̇ ) = (0,0) ⇒ (q̈, θ̈ ) = (0,0), giving rise

to the basic constrained manifold, by using (34) and (35),

DxΛx = 0 (38)

where Λx = [∆ fx,∆λx,∆xp]
T , for the interaction matrix Dx ∈

R4×4. Clearly, if interaction matrix Dx is non-degenerate and

under the assumption of small error in initial conditions,

system trajectories converge locally to the basic manifold

M1 = {(zx, żx = 0) : Sx = 0,∆ fx = 0,∆xp = 0}

where fx → fd , xp → xpd , λx → λxd ⇒ 0.

IV. SIMULATION

A. The Simulator

A digital simulator implements a stiff numerical solver

on Matlab 7.14, under a 1ms of sampling time, with a

Constrained Stabilization Method (CSM) [17]. The physical

parameters of the robot manipulator are shown in Table I

where li, mi and Ii are the length, mass and the inertia

moment of the link, respectively. The parameters of the

object are: M = 0.1[Kg], I = 5.67× 10−6[kgm2] and R =
0.022[m], representing mass, moment of inertia and radius,

respectively. Moreover, the hemispherical finger parameters

k = 500[N/m2], and r = 0.02[m] are the stiffness of the soft

material and the radius, respectively.

Table I. Physical parameters of the robot
(l1, l2, l3) (0.05,0.04,0.03) [m]

(lc1, lc2, lc3) (0.025,0.02,0.015) [cm]

(m1,m2,m3) (0.05,0.03,0.02) [Kg]

(I11I22I33) (14.167,6.25,3)× 10−6 [kgm2]

Initial conditions are such that the fingertip is in contact to

the object, consistent to the DAE-2 formulation at t = t0, and

then ∆x > 0, f (t0) > 0. Two scenarios are considered now,

depending on the constraint of the object, either its axis is

pinned at a pivot point or free to move along the plane x, as

if the object moves in the floor.
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Fig. 3. Case 1: Joint position and velocity of the robot manipulator
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Fig. 4. Case 1: Displacement of rolling angle can be seen through how
the center position of the base of the deformable soft finger-tip is moving,
with the phase plane (xe,ye) is shown in the bottom.

B. Case 1: Circular Object Pinned at a Pivot Point

1) Simulation conditions: The object is pinned at its

rotation axis, and the objective is to roll the circular object

to desired angle θd = 0.5[rad] from θ (t0) = 0.7[rad], that

is a precision rolling angle of 11.46 deg, while applying a

desired force of fd = 1[N]. The robot start motionless, with
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Fig. 5. Case 1: Convergence of normal and tangential forces. Notice that
the shape of these forces are, as expected, highly correlated to deformation
and angle transient, see Fig. 6.
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Fig. 6. Case 1: Soft finger-tip deformation (or penetration along its
maximum radial deformation), top, and rolling angle convergence, bottom.

an initial angular position of q(0) = [0.5;−0.6,−0.6]T [rad],
for diag(Kv) = 1.0 ∗ I3×3, β = 25.

2) Simulation results: Figure (3) shows smooth conver-

gence of joint coordinates to the desired constant value,

with a settling time of joint velocities to zero, in a very

short time, about 4sec. Notice that Fig. 4 represents the soft

finger-tip rolling onto the object surface to reach the desired

angle while simultaneously is converging to the tangential

and normal desired forces, see Fig 5. Finally, Fig. 6 show

the penetration along the maximum deformation with a fast

settling toward the desired angle. In accordance with these

results, firstly the robot moves the object to the desired angle

while a desired force is applied to avoid any movement.

At the same time, the center position of the base of the

deformable soft finger-tip is moving.
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Fig. 7. Case 2: Joint position and velocities, the latter showing effort
because the passive dynamic object is under actuated, as expected.

C. Case 2: Circular Object Constrained by a Rigid Surface

1) Simulation conditions: The fingertip manipulate the

object that moves freely onto the floor. The objective is to

roll the circular object to desired position xd = 0.028[mt] with

a desired force fd = 3[N] applied to the object. The robot

and object start motionless, with an initial angular position

of q(0) = [1.2;−0.6,−0.5]T [rad] and the initial and desired

angle is defined as θd = 0.7[rad] from θ (t0) = 0.6[rad].

2) Simulation results: As in the previous case, the move-

ment of the center position of the base of the deformable

soft finger-tip allows to roll the object onto the rigid surface,

Fig 8. As Theorem 2 establishes, regulation of f and λ
is obtained, see Fig. 9. Notice the effect of the tangential

force in this more complex task, because now it contributes

to rolling as well as preventing slipping. Finally, Fig. 10

shows the position error which is near to zero and the angle

performance.

V. FINAL REMARKS

Several concrete remarks are in order now:

• When deformation at end-effector is considered, it en-

ables to manipulate dexterously a circular object in

rolling tasks. In this paper, we extend previous judicious

observations of [9] and [18], to show that stable rolling

is possible with one finger robot with a simple regulator.

The regulator structure is particularly simple in view of

the complex non-linear under-actuated DAE-2 structure

of the system. It stems essentially from the fact that

passivity property, typical of robot manipulators in open

loop, is remarkably preserved for this case, an funda-

mental property that plays a crucial role as intuitively

expected and analyzed in the stability analysis, [5].

• Area contact enlarges the convex hull for easier in-

equality constraints of motion planning, [20], however it

deserves a more detailed discussion whether the variable

area contact is required for a more efficient planning.
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Fig. 8. Case 2: Smooth convergence to the regulation point by the
deformable soft fingertip which is interpreted also as the hemispherical
fingertip is rolling, with the phase plane (xe,ye) shown in the bottom.

• Under-actuation of the object is resolved similar to stan-

dard case of robotic hands, nonetheless the paradigm

of virtual control can also be used, popular for under-

actuated quadrotors. In this case, normal and tangent

forces can be declared as control inputs of the under-

actuated object. As such, the physical (real) controller

guarantees convergence to the virtual controllers so as to

the actuated robot dynamics is surrogated to the under-

actuated object dynamics. A subject that remains open

in the literature.

• The potential impact of deformable fingertips to handle

unilateral constraints and impacts with lesser complex-

ity, as well as dealing with stable transition from/to

free- to/from constrained-motion regimes, also for safe

interaction, are open subjects. All these seem feasible

because kinetic energy is converted into potential energy

at deformation, [19], which under some conditions may

lead to preserve analyticity of the ODE formulations.

• Two illustrative scenarios are studied in this paper, fixed

and moving rotational dynamic object. The interplay

of tangential force with rolling angle plays a relevant

role to regulate stably posture since the desired tangent

force depends on angle error or displacement error.

Simulations are conceptually parametrized for a small

robot and small rolling angles, though similar results
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Fig. 9. Case 2: Normal force converges in about 10s while the tangential
forces converges in few seconds to prevent slipage of the freely moving
dynamic object. For the same reason, it shows a very small high frequency
value coming from its corresponding position error along the tangent
direction, see bottom of Fig. 10.

can be obtained for larger robots and larger object.

• Our proposal can be extended easily to other difficult

tasks. Superior view of Fig. 1, from ~z perspective

(~z pointing outward the plane (~x,~y) where Fig. 1 is

depicted) can be interpreted similar to opening a door

by pushing along the radial axis, as if touching a slender

section of the circular object. Also, Figure 2 in 3D can

be seen as if rolling a tube, however in this case it is

clear that a non-holonomic Pfaffian-type constraint will

be enforced, which can be addressed similar to [18].
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