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Abstract— This paper presents a method for finding the
largest, connected, smooth surface in noisy depth images. The
formulation of the fitting in a Sample Consensus approach
allows the use of RANSAC (or any other similar estimator), and
makes the method tolerant to low percentage of inliers in the
input. Therefore it can be used to simultaneously segment and
model the surface of interest. This is important in applications
like analyzing physical properties of carbon-fiber-reinforced
polymer (CFRP) structures using depth cameras.

Employing bivariate polynomials for modeling turns out to
be advantageous, allowing to capture the variations along the
two principle directions on the surface. However, fitting them
efficiently using RANSAC is not straightforward. We present
the necessary pre- and post-processing, distance and normal
direction checks, and degree optimization (lowering the order
of the polynomial), and evaluate how these improve results.
Finally, to improve the initial estimate provided by RANSAC
and to stabilize the results, an Expectation Maximization (EM)
strategy is employed to converge to the best solution.

The method was tested on high-quality data and as well on
real-world scenes captured by a RGB-D camera.

I. INTRODUCTION

Carbon-fiber-reinforced polymer (CFRP) structures are
promising materials for light-weight production by providing
good material characteristics at a low weight. CFRP struc-
tures are composite structures and therefore feature very
diverse material properties. A possibility to estimate those
properties is to induce a known motion on the material and
visually observe the behavior of it. This leads to the chal-
lenge of obtaining a three-dimensional map of the structure,
segmenting it from the background, and at the same time
finding a mathematical model describing this structure.

Obtaining a three-dimensional image of a CFRP structure
is complex because of several reasons: A CFRP element
typically possesses a dark, glossy, fabric-like surface with
regular patterns. This makes it hard for passive sensors to find
non-ambiguous points. Another problem is that because of
the glossy surface and especially with parabolic alignments
like in our setup (Fig. 1), specular reflections can occur. The
mentioned difficulties led us to use a Microsoft Kinect RGB-
D sensor, because it is an active sensor emitting a pseudo-
random infrared laser pattern [1]. This reduces the difficulties
with the very challenging surface. Still reflections creating
blind spots on the surface and the limited precision of a
Kinect sensor of several millimeters [2] can be a problem.

In our setup the CFRP element is attached to two KUKA
KR210 robots (as shown in Figure 1) and three-dimensional
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data is acquired by a Microsoft Kinect observing the struc-
ture. Bivariate polynomials, describing the depth map of the
CFRP surface at each pixel, are especially useful in this case,
as different order of variations can be specified (or found)
along the horizontal and vertical directions.

Fig. 1. Top: setup of the experiment. Bottom: for each deformation of
the surface (left), the surface is identified in the scan, and a polynomial
approximation is computed (right). The yellow points are sampled from the
estimated surface model and the corresponding inliers are green.

Similar challenges like described before can come up also
in different settings, where the segmentation and modelling
of smooth surfaces has to be performed simultaneously. This
is the case when high noise or spurious points are present
in a scan, or when out of multiple arbitrary smooth surfaces
the largest needs to be found and modeled.

Our approach to this problem is an algorithm based
on Expectation Maximization (EM) which is initialized by
Random Sample Consensus (RANSAC) [3]. RANSAC is
used widely in the field of object recognition/segmentation
and model fitting. It has the advantages of obtaining good
model estimates with very noisy data, neglecting the outliers.
The basic approach is to sample as little data as minimally
needed to calculate a model that fits the sampled data. Then
the distance of every data point to the estimated model is
calculated. If the distance is within a certain threshold, the
data point is considered an inlier. These steps are repeated
until the best model is found with a given probability of suc-
cess, i.e. the one that maximizes the number of inliers. The
probabilistic estimate of the necessary number of iterations
ensures fast runtimes, adapting to the actual percentage of
the true inliers in the point cloud by taking the best estimate

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4228



so far as a lower bound. In the end, the method returns the
best model coefficients and the list of inliers that supports it.

Since the models are estimated based on a limited number
of points, the final model can be refined further by making a
least-squares optimization of the distance of the model to the
found inliers. Complementary to this, EM algorithms start off
with an initial estimate of the unknown solution (i.e. the set
of inliers), then iteratively compute the best matching model
that explains the data, as well as the data that matches the
model, until convergence. Typically this is formulated in a
probabilistic way, maximizing the log-likelihood of the data
given the model, but both EM and RANSAC have many
versions, maximizing discrete as well as continuous metrics.
Since EM can converge into local maxima, various meta-
heuristics can be used. We opted to initialize it with the
result of RANSAC. This allows for an efficient computation,
guided by the user given probability of success.

For fitting geometric models, RANSAC-like algorithms
employ simple shapes, for which the point-to-surface dis-
tance is easily computable [4]. Increased accuracy can be
achieved if also (estimated) surface normals are considered
and checked. However, this is more difficult in the case of
polynomials, where finding the exact orthogonal projection
can be costly, and simple approximations might be too in-
accurate. Moreover, the coefficients that explain the samples
best might not always be the most optimal. Large high-order
terms make the surface rapidly take extreme values outside
the sampled region, producing false inliers, so high orders
should be avoided. We present solutions to these problems
that are efficient to compute and work well in practice.

Overall, the main novelties of this paper are:
• a sampling based identification of the largest smooth

surface that is robust to a large percent of outliers;
• optimizing the model coefficients through EM, such that

lower order terms are encouraged;
• methods for inlier detection through approximating the

point-to-polynomial distance and comparing the esti-
mated point normal with the model normal.

The next chapter describes the related approaches and
motivates our choice for the proposed solution.

II. RELATED WORK
Fitting of simple geometric shapes is a widely used

technique, especially in the related task of object model
reconstruction. In [5], an exhaustive nonlinear optimization is
employed for reconstructing boxes, cylindrical and spherical
items. This approach is relatively slow, thus often RANSAC
is preferred [6]. RANSAC and modifications of it (e.g. [7])
have broad applications for model fitting of lines [8], planes
[4], [9], circles [9], spheres [4], cylinders [4], [10] and many
other regular geometries, with open source implementations
available in the Point Cloud Library (PCL) [11].

An alternative approach is Hough voting, which has been
also used to fit simple shapes likes cylinders [12] or planar
patches in [13]. However, the downside is that the parameter
space’s size needs to be relatively small. In the case of
polynomials, the number of parameters can be very large,

in our application scenario we used over 30. Moreover, the
range of values needs to be typically limited as well. These
limitations do not hold in the case of RANSAC approaches.

For the modeling of smooth surface patches often spline
structures are used. In [14] a frame from the Kinect is
segmented into parts using normal-based clustering, and the
patches are modeled using b-splines (NURBS with equal
weights for the control points). This however requires an
initial segmentation, and the modeling itself is depending on
the control points. Specifically, it is not possible to limit the
degree of variation in different directions.

Another way of describing surfaces is superquadrics, as
used to model segmented objects [15]. While superquadrics
can be fit to point clouds, they are closed surfaces, and,
unlike polynomial surfaces, can not model arbitrary shapes.

Fitting polynomials locally to point clouds is performed in
the moving least squares (MLS) method as in [16]. There, the
goal is not to distinguish the real surface from background
and noise, but to find a (weighted) least squares fit to all the
points in a local neighborhood. Nonetheless, the fitting and
normal estimation part is similar to the one employed in this
work, but we use it in the RANSAC’s fitting step and the
least squares optimization part.

All in all, the method proposed in this paper offers nec-
essary advantages for solving the problem of simultaneously
identifying and modelling smooth surfaces in noisy data.

III. ALGORITHM

The algorithm can be divided in several subprocesses ac-
cording to Figure 2. As a first step the input data point cloud
gets smoothed and normals of the points are estimated, see
III-A for details. After that a RANSAC step is performed, in
which possible inliers and outliers are calculated according to
their angular and euclidean distances to a parallel estimated
model, see III-B and Figure 5. After a possible model is
found in the RANSAC procedure, an optimal solution in
a least-square sense is sought (III-C). Because the highest
order polynomial model is not essentially the best model, an
order optimization is performed hereafter, where the order
of the polynomial is iteratively reduced and the number of
inliers are calculated after every step (III-D) according to the
process in Figure 6. After this step a model fitting the data
is found and the data is segmented into inliers and outliers.

As a final step, this solution can be again optimized
according to III-C. This is the outer loop in Figure 2, which
is an EM loop, that gets repeated until the model converges.

A. Smoothing

Since Kinect data is noisy, and partially influenced also by
the visual markers on the surface (see Figure 3), an initial
smoothing step is necessary. This allows us to use a lower
inlier distance threshold and to obtain better surface normal
estimates, thus improving the results.

The MLS-based surface reconstruction proved to be very
useful for smoothing large, noisy, real-world datasets [16].
By deriving the polynomial, accurate surface normals can be
computed for each point. As in our case, the larger the order
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Fig. 2. Flow chart of the algorithm.

Fig. 3. Left: RGB image showing the location of the markers. Right:
overlaid raw (red) and smoothed (green) point clouds, showing the depth
noise and the deviations between the marked, and uncovered surface.

Fig. 4. Comparison of the degree 2 MLS smoothing (blue), and plane-
based (i.e. degree 0) smoothing. Plane-based smoothing was first applied
using a search radius of 3 cm (dark yellow in the left image) and then of
5 cm (green in the right image). The same scene as in Figure 1 is used.

of the polynomial, the more closely it can follow the surface.
However, in the case of Kinect data we observed a wave-like
noise pattern, sometimes above, other times below the real
surface. This can be seen on the floor in Figure 3, but also
on the CFRP structure’s surface.

As even a second order MLS reconstruction will follow
this pattern, as seen in Figure 4, we perform an even simpler
(and therefore faster) smoothing by simply projecting each
point onto the least squares plane that describes its local
neighborhood. This corresponds basically to fitting a plane
(polynomial of degree 1) to the local neighborhood, as in
MLS, but estimating the height map on it with a constant
(degree 0). If the weighting of the points is skipped, this
is always 0, so it can be omitted. As shown in Figure 4 a
relatively large radius for finding nearest neighbors needs to
be used in order to get rid of the wave-like pattern.

This heavy smoothing is not a problem in our case,
since our goal is to approximate the whole surface with a
smooth polynomial. The high-curvature region (closest to the
ground) of the CFRP structure got smoothed out slightly, but
offsetting it only by around 1 cm.

B. RANSAC-based initialization

The initial step of the RANSAC algorithm is to choose
random sample points to estimate the model. With this

sample points a possible model is computed according to III-
B.1. For this model the distance between every sample point
and the model is computed. This distance computation can
be divided in an euclidean distance and an angular distance
of the normal vectors of the sample point and the normal of
the corresponding point on the model function, see III-B.2.

If the euclidean distance is smaller than a certain threshold
and the angle between the two normals is also under a second
threshold, the sample point is considered as an inlier and
added to the consensus set. After this inlier/outlier selection
is done for every sample point, a new set of randomly chosen
points are used to estimate a new model function and the
inlier/outlier selection process is repeated. If more inliers are
found than in the previous iterations, a better model function
is apparently found and this function and the corresponding
inliers are stored as the best found model so far.

This steps get repeated until a model is found with a
certain predefined probability.

1) Model estimation: We use a bivariate polynomial,

f(x, y) =

n,m∑
i,j=0

ai,jx
iyj , (1)

which has (n+1) · (m+1) unknowns, i.e. the polynomial’s
coefficients ai,j . These can be calculated from:

Ax = b

with A =

 x01y
0
1 x01y

1
1 . . . xn1y

m
1

...
...

. . .
...

x0ky
0
k x0ky

1
1 . . . xnky

m
k


and b =

[
z1 . . . zk

]T
and x =

[
a0,0 . . . an,m

]T
(2)

Here A is the coefficient matrix of the linear system,
consisting of known x- and y-values of k sample points,
the right-hand side b accordingly consists of the z-values of
the points. From the linear system in 2 we obtain a solution
x for a minimum amount of (n+1) · (m+1) sample points.
If there are more than the minimal amount of sample points
used, the linear system is overdetermined and therefore an
optimal solution in a least-squares sense can be calculated.

2) Distance to model estimation: To evaluate if a point
is considered an outlier or an inlier for a given model, two
quantities can be used, the euclidean distance of the point to
the model function and the angle between the normal vector
of the point and the normal vector on the surface.
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Fig. 5. Flow chart of the RANSAC model estimation.

a) Euclidean distance: The euclidean distance is the
distance of the point P with the intersection point of its
normal −→np to the bivariate polynomial function: x

y
z

 = −→p + r−→np (3)

where x, y and z are points on the polynomial. This is: x
y
z

 =

 xp
yp
zp

+ r

 nx
ny
nz

 (4)

and with equation 1 it yields:
n,m∑
i,j=0

ai,j(xp + rnx)
i(yp + rny)

j = zp + rnz (5)

which is a function with only one unknown, the distance r.
We can treat the point’s position (r = 0) as an initial

guess and then explore its neighborhood to detect a sign
change. The calculation of the minimal distance of a point
to polynomial, which would be a nonlinear, two dimensional
minimization is therefore reduced to a 1D root finding.

b) Normal angle comparision: The function f(x, y) =
z in equation 1 can be written implicitly:

g(x, y, z) = f(x, y)− z = 0 (6)

For the normal of a point on the given implicit model
function g(x, y, z) we can write:

−→nf =

 gx
gy
gz

 =

 ∂f
∂x
∂f
∂y

−1

 =
−→
tx ×

−→
ty (7)

In equation 7
−→
tx and

−→
ty are the tangents in x- and in y-

direction. The normal −→np of a sample point is computed by
principal component analysis decomposition in a fixed radius
around this point during the smoothing step in section III-A.
The angle between the two normal vectors is then calculated:

α = arccos
−→np−→nf
|−→np||−→nf |

(8)

C. Optimization

After the last RANSAC iteration a set of inliers is
available. The found model can be optimized analog to
equation 2 by replacing the randomly choosen sample points
with the found inliers. This yields to a coefficent matrix of
j × ((n + 1)(m + 1)). This overdetermined system can be
solved by standard least square methods.

D. Order Optimization

The highest order of a polynomial function doesn’t have
to be necessarily the one which fits the data set the best. In
order to check for lower order terms, the order in x and y is
iteratively reduced and the resulting reduced model function
is tested against the full data set. After each reduction step
an euclidean clustering is executed and the number of inliers
is counted. In case an higher amount of inliers is found, the
current model is stored as the best-fitting so far. This process
is repeated until the order of 0 is reached in x and y. See
Figure 6 for an overview of the algorithm.

E. Expectation Maximization

Unlike in the case of simple geometric shapes [6], [8],
[4], [9], [10] a single optimization step is not enough, even
with the selection of the best polynomial order. Because
the polynomial tries to match the current inliers as well as
possible, outside the region covered by the inlier cluster it
tends to increase/decrease in value rapidly. This means that
after an optimization step the number of inliers increases
somewhat, but not necessarily close to the maximal value.

This is why the iterative EM steps need to be performed,
as presented in Figure 2. Thereby, the current model is used
to get the largest inlier cluster, which in turn is used in the
model optimization step. The process is repeated until the
inlier count increases. In some cases the first optimization
step did not improve over the RANSAC result, therefore the
model coefficients were used directly as the initial model.

IV. EXPERIMENTS

Having described the algorithm, in the following we
present results for high-quality (synthetic) and CFRP data.
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A. High-Quality Data

To test the algorithm with low-noise data, experiments
were conducted with the Stanford Bunny dataset [17] and the
cturtle.pcd dataset of the Point Cloud Library test data [11].
In these datasets the noise level is very low and they consist
only of a single surface, therefore all the points should be
considered inliers. The resulting errors of the fitted model
and the percentage of the found inliers are presented in
Table I and Table II. Figure 7 shows a screenshot of the
estimated model function and its inliers for the bunny.

TABLE I
RMS ERRORS AT DIFFERENT STEPS FOR HIGH QUALITY DATA

Model RANSAC optim. order optim. EM
bunny 0.0079415 0.0038188 0.0038188 0.0087256
cturtle 0.0032041 0.0025000 0.0025983 0.0025925

TABLE II
INLIER PERCENTAGES AT DIFFERENT STEPS FOR HIGH QUALITY DATA

Model RANSAC optim. order optim. EM
bunny 93% 93% 93% 93%
cturtle 97% 99.9% 100% 100%

Figure 8 (left) shows the result of the order optimization
for the cturtle.pcd dataset. It shows that the fitting performs
very poorly for orders lower than 2, whereas the best fit
is achieved with a order of 2 in x and y. Because of the
smooth/noiseless surface, orders of 2 and above perform very
well. This makes sense, as the surface is almost spherical. In
the case of the bunny the highest order (5, 5) was the most
optimal, and the method would have probably benefited if
even higher orders would have been allowed.

B. CFRP Structures

During a continuous movement of the CFRP structure
point clouds of the structure are obtained by a Kinect sensor.
For every timeframe of the Kinect recording, the algorithm
presented in section III is applied. Figure 9 shows the average
root mean square errors for the found inliers for several
Kinect frames at every step of the algorithm, and Figure 10
shows the average amount of inliers found for every step.
Note that the RMS error can get bigger when more inliers are
found, because we want to maximize the amount of inliers,
independent of their distance to the model (as long as they
match the distance and normal angle thresholds).

Fig. 7. Results of the fit for the Stanford bunny dataset showing the found
inliers vs outliers (left) and the resulting model fitting the data (right).

Fig. 8. Order Optimization results. Left: cturtle. Right: CFRP. Horizontal
axis shows the order of the y-component, while the vertical axis shows the
order of the x-component. 100% represents the maximum number of inliers
(in the case of the cturtle.pcd this represents all the points, while in the
CFRP scene it is roughly 50% of all points). Note, for better visualization,
values are truncated after the first decimal place.

Figure 11 shows a screenshot of the fitted polynomials
and the found inliers at different timesteps, Figure 8 (right)
shows the result of the order optimization step. The fitting
performs best for the highest order in x, and an order of 1
in y. This is because the CFRP is suspended on two bars,
making the surface linear along y most of the time.

V. DISCUSSION

The experimental results show the advantages of the
proposed method, highlighting the added advantage of each
of its components. The number of inliers on the smooth poly-
nomial surface gets maximized, all respecting the distance
and normal angle thresholds.

The main parameters of the method are the order of the
polynomial, the inlier distance and normal angle thresholds,
and the probability of success to be used by RANSAC. The
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probability of success influences the number of iterations
and depends highly of the number of sampled points. In our
case we would like a relatively small number of RANSAC
iterations, because around half of the points are inliers, so a
good model should be found relatively quickly. Since we
sample the minimum of 36 points to estimate 5th order
bivariate polynomials, the probability of success had to
be very low in order to avoid excessively large runtimes.
However, even at such low values the precision and recall of
the method was good enough, as summarized in Table III.

TABLE III
PRECISION AND RECALL VALUES

5.0E-014 1.0E-013 1.5E-013 2.0E-013
precision 90.70% 92.40% 91.44% 92.26%
recall 94.46% 88.71% 93.78% 93.88%

Alternative methods would be to apply a different seg-
mentation method and to perform a least-squares fit to the
largest/closest segment, or to model it using a spline. The
advantage of polynomials over splines was already discussed
in the Related Work section, as well the option to use the
Hough transform for segmentation. Therefore, in this section
we evaluate alternative segmentation methods.

First, though, a small note on the presence on markers on
the surface. Avoiding the segmentation step would require
a marker-based identification of the CFRP structure. This
was attempted by placing the visual tags onto the surface,
however their detection was not trivial. Because of motion
blur, occlusions, and the non-planar surface, this method

Fig. 11. Inliers for some of the fitted polynomial surface models.

failed to give robust results. Image processing methods face
the problem that the surface is rather glossy, as shown in
Figure 12. The visual segmentation method from [18] was
tested, with the results shown in the bottom row of Figure 12,
but the results were also not satisfying. Therefore, a 3D (or
depth image based) approach is necessary.

The simplest 3D segmentation would be euclidean cluster-
ing, selecting the largest (or closest) connected component.
This approach would obviously fail if there are objects
connected to the surface. In our application scenario this
could be the robots, but in other scenarios things can get even
more complicated. We considered two potentially working
approaches that operate on the 3D data: boundary-based
segmentation and normal-based segmentation. Representa-
tive results are shown in Figure 13.

Fig. 13. Left: normal-based segmentation, displaying clusters in random
color (with very small clusters deleted). Right: boundary-based segmenta-
tion, with a seed point in the center of the image. Please note that the red
speckle in the middle is in the foreground, not part of the surface. Again,
the same depth image as in Figure 1 is used. See text for details.

Detection of boundaries was performed as described
in [19], and region growing performed, starting with a point
in the depth image’s center and adding points to the cluster
until boundary points are not encountered. Due to the missing
data points in the depth image however, some parts of
the surface appear to be full of holes, stopping the region
growing prematurely, as it can be seen in Figure 13. If the
boundary estimation’s search radius was increased in order to
not produce boundaries inside the surface, the results reduced
to those of a simple euclidean clustering. The detection
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Fig. 12. A sequence of frames showing the reflectiveness of the CFRP surface, which complicated image-based segmentation. The best results using [18]
were obtained using the parameters sigma = 0.5, k = 500, min = 20, so those were used for generating the results in the bottom row.

of high-curvature boundaries could be added, but that also
does not guarantee a meaningful segmentation. Moreover,
the large variation in depth also poses problems, as the great
changes in density influence the results of both boundary
detection and curvature estimation.

Additionally, the segmentation methods alone do not pro-
duce a model, so polynomial fitting, order optimization and
the EM steps have to be applied nonetheless.

VI. CONCLUSIONS
In this paper we introduced a novel approach to robustly

estimate two-dimensional polynomial model functions. This
algorithm consists of a sample consensus step, which was
used to initialize an Expectation-Maximization loop. It was
shown that the method performed very well in the case of
high-qualitative synthetic data and in the case of noisy CFRP
structure data acquired by a Kinect sensor.

The latter case is a very challenging scenario because of
the regular, dark and glossy surface of a CFRP element and
reflections which can result from that. It was shown that the
presented technique is robust against such complications.

The presented approach can be transferred to all model
fitting applications which can be modeled as bivariate poly-
nomials and expands the possibilities of sample consensus
fitting of regular structures. Apart from this necessity, which
is valid for all smooth surfaces, no previous knowledge
of the surface is required. On the other hand, if there
is information on the surface, a predefined order for the
bivariate polynomial can be introduced. This would avoid the
order optimization and speed up the calculation significantly.

The code will be made available in PCL after publication.
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