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Abstract— Relocalisation in 6D is relevant to a variety of
Robotics applications and in particular to agile cameras explor-
ing a 3D environment. While the use of geometry has commonly
helped to validate appearance as a back-end process in several
relocalisation systems before, we are interested in using 3D
information to assist fast pose relocalisation computation as
part of a front-end task. Our approach rapidly searches for a
reduced number of visual descriptors, previously observed and
stored in a database, that can be used to effectively compute
the camera pose corresponding to the current view. We guide
the search by means of constructing validated candidate sets
using a 3D test involving the depth information obtained with
an RGB-D camera (e.g. stereo of with structured light). Our
experiments demonstrate that this process returns a compact
quality set that works better for the pose estimation stage than
when using a typical Nearest-Neighbor search over appearance
only. The improvements are observed in terms of percentage of
relocalised frames and speed, where the latter goes up to two
orders of magnitude w.r.t. the conventional search.

I. THE IMPORTANCE OF RELOCALISATION

The ability to know the relative pose of a platform w.r.t.
a previously observed scene is an essential competence for
several robotic tasks. Known as relocalisation, this ability
is commonly used to perform loop closure in mapping to
manage drift, but it also has the potential to be applicable
for scene-guided object search or location-based context and
activity recognition.

Nowadays, maps can be obtained from a variety of sensors
and structure recovery methods, for example, by using sonar
or laser [1], [2], by using single cameras without additional
odometry [3], and more recently, depth cameras using stereo
[5] or structured light [6], [4]. From the point of view of the
structure recovery and concentrating in those systems using
cameras, maps can be built in a metric or topological fashion
with variations of the Kalman filter [3], [7], Particle filters
[8], Visual Odometry [9] or simply treated as a collection of
images [10], [12].

In this varied landscape and depending on the application,
relocalisation can be addressed as an image-retrieval task
[31] which returns the most similar image to a query image.
The latter corresponds to the image of the camera pose to
be relocalised. The query image is sought in an indexed
database of images collected during exploration (training)
time. If a camera position is attached to every image in
the database then a rough relocalised position could also be
infered. On the other hand and from a geometric point of
view, relocalisation can also be seen as the problem of finding
a set of visual point descriptors in a database that matches a
set of descriptors extracted from salient points in the query
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Fig. 1.
various scenarios, including for a fast moving quadrotor platform.

Examples of quality feature sets obtained by our algorithm for

image. If each matched descriptor is linked to a 3D scene
point then the three-point pose algorithm plus RANSAC is
frequently used to recover the camera’s 6D pose. Note that
a method such as RANSAC is required to deal with outliers
derived from false positive matches. This geometric-driven
approach, which offers high quality pose estimates, is the
one of interest in this paper.

Having a bare list of descriptors stored in a database is
impractical for a search that employs a Nearest-Neigbour
(NN) comparison procedure to find the best set of matches.
This is addressed in, for example, bag-of-words approaches
where similar descriptors can be grouped together in the
same bin (‘visual word’) thus we only need to compare
against those descriptors in the relevant bins. However,
depending on how descriptors are grouped, bins may still
contain a large number of descriptors, hence the NN search
may be expensive and also prone to mismatches [28].

In this paper we propose a fast and relatively simple
approach using a geometric 3D test that helps to reduce the
number of descriptor comparisons needed within bins and
independently of the procedure chosen to create such bins.
Our goal is not only to reduce the number of unnecessary
comparisons, but also to identify a set of quality matched
descriptors whose 3D positions can be used effectively within
RANSAC in order to recover 6D pose.

Our approach monotonically constructs chains of feature
matches starting by finding an anchor point using visual
appearance and informed by Inverse Document Frequency
(IDF) analysis, but in a novel way by combining it with
the geometrical information available between the stored
descriptors. This assessment qualifies new elements of the
chain of descriptors if the 3D distance w.r.t. the anchor point
is within a tolerance margin when compared with the data
coming from an RGB-D (or stereo) camera.
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Fig. 2. Schematic example illustrating our approach: (a) 3D distance dg in between salient points can be calculated using the depth image, this distance
becomes a reference distance utilized to prune descriptors; (b) Top view of 3D Points in the map, blue points correspond to those associated to the
descriptors retrieved from the hash table Q. A retrieved descriptor is ruled out for comparison if the distance in between its associated 3D point and the

3D anchor point (in yellow) is dissimilar to dr (note the red dash lines).

Figure 2 illustrates our iterative method where a first
anchor point has been found. This anchor point is related
to the 3D position of a descriptor in the database that has
been matched with the descriptor of a salient point in the
query image. Note that the 3D position of this salient point
w.r.t. the camera’s optical centre can be calculated from the
depth image. This can also be done for a second salient
point and thus, the 3D distance in between these two salient
points can be used as a reference distance dr. Therefore,
those descriptors in the bin associated to the second salient
point, whose distance is outside a tolerance margin of dr are
pruned. The surviving descriptors are used for comparison.
This process can be repeated for further salient points within
a bin (or visual word) of descriptors associated to it. A small
chain of features is constructed in this way and then passed
for further RANSAC validation.

Experiments show that, by implementing our approach, the
number of descriptor comparisons is significantly reduced.
Moreover, the resulting set of matched descriptors is of
better quality since we observe how a smaller number of
matched descriptors is still enough to produce successful
relocalisations.

The rest of the paper has been organised as follows:
section II describes related work; section III describes the
framework used to build our approach; section IV presents
a full detailed version of our algorithm while section V
describes our experiments in the context of frame to frame
relocalisation. Final remarks are discussed in section VI.

II. RELATED WORK

First approaches addressing the relocalisation problem
such as that of Williams et.al. [19], [16] suggests to look at it
as a classification problem where visual descriptors, in their
case simple image patches, are recognized using randomized
trees trained on-line. However, the main drawbacks in this
approach is the large memory footprint which does not scale
well with the number of visual descriptors.

Klein et.al. [29] notices that relocalisation can be done
very simply in the context of a key-frame base SLAM. He
suggests to use a sub-sampled version of the query image
(40 x 30 pixels) and compare it against all the sub-sampled
versions of stored key frames in the map. Those 3D points
related to the matched key frame are activated together with
camera tracking using the key frame’s camera pose as initial

pose to be refined by the tracker. The method is effective
when the camera is close to any key-frame pose, however,
it would be expected to fail otherwise.

Eade and Drummond [15] borrowed the concept of visual
bag-of-words widely used in the image-retrieval field [31],
and that has been successfully used for non-metric loop
closure [30]. They use this concept within a multi-node graph
SLAM approach to deal with loop closure and relocalisation
within the same framework. Nodes are ranked using the
Term Frequency-Inverse Document Frequency (TF-IDF) of
the visual words in each node in order to retrieve those k
most likely nodes. A refined relocalised pose is obtained
by matching each set of descriptors within the node against
extracted descriptors in the query image.

One of the critical parts when using a bag-of-words
approach is the construction of the visual vocabulary which
intends to quantise similar descriptors into the same bin. For
instance, [15] uses a conventional k-means algorithm where
over 3000 clusters are found among mapped descriptors. It
has been observed that the retrieval task benefits from having
a large visual vocabulary [32]. However, producing a large
vocabulary with k-means is not only slow, but any update
attempting to increase the vocabulary can be expensive. In
order to cope with the latter, some works [32], [28] propose
to use a hierarchical k-means which provides a more efficient
training while providing a large vocabulary in the form of a
tree with k branches. Each node of the tree is seen as a word
within the so called ’visual vocabulary tree’.

In contrast to the above, Chekhlov et.al. [14] propose
a relocalisation method that uses a hashing technique to
quantise descriptors instead of using any k-means algorithm.
To achieve this, any mapped visual feature contains two types
of descriptors: a coarse descriptor which consists of three
Haar coefficients [25], and a Histogram of Gradients (HoG)
descriptor [7]. The coarse descriptor is soft quantised in order
to provide an index within a 3D hash table where each bin
stores all those HoG descriptors with same Haar descriptor.
A hash table is good for non-stop, real-time updating of
the “vocabulary” as each one of these bins corresponds to
a visual word in the visual vocabulary sense. In the above
cases either using visual words or hash tables and depending
on the quantisation parameters, every word may have many
thousands of descriptors associated to them.
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While our method is equally applicable to the other
quantisation strategies such as bags of words or trees, in this
paper we are interested in the relocalisation method proposed
in [7] for two main reasons: (1) clustering or indexing of
features can be carried out on-line at very low cost and
alongside mapping; (2) updating the number of visual words
only involves updating the indexes obtained from quantising
the Haar descriptor, hence, it can be done in linear time
in the total number of HoG descriptors stored in the hash
table. Furthermore, we also chose this approach to address
its inconvenience, which is that bins in the table may contain
a large number of HoG descriptors since the separation is
not performed in the HoG descriptor space, but at the coarse
descriptor space, which is highly redundant.

Experiments in further sections demonstrate that when
the bins contain descriptors in the order of thousands,
Chekhlov’s relocalisation method is just too slow. However,
this gives us the opportunity to demonstrate that our proposed
3D test can rapidly and effectively prune descriptors in the
activated bins, thus not only avoiding comparisons, which
allows important time savings, but also producing a pool of
high quality descriptors whose validated 3D geometry allows
successful relocalisation, even when only few matched de-
scriptors are passed to the pose estimation consensus stage.

Methods similar in aims to ours include that of Cadena
et.al. [23] where a bag of visual words is combined with
a Conditional Random Filed (CRF) to validate geometric
matching in between the retrieved images and the query
image. This concept resembles our goal of seeking to verify
3D geometry consistency. However, that method is gener-
ally slow due to the overhead induced by the CRFs, and
authors report performances of 1 fps. Recently, Gee and
Mayol [33] reported a system that builds a 3D model of
the scene using RGB-D imagery and when relocalisation
is needed, the system builds synthetic sub-sampled views
around the camera trajectory. This samples are used in a
general regression method to recover the camera pose of
the query image. However it is only demonstrated for small
workspaces.

III. APPEARANCE-DRIVEN RELOCALISATION

We first briefly describe the relocalisation method we use
here as baseline to build and showcase our proposed 3D-
enhanced method. We thus refer to this baseline approach as
appearance-driven. The system is described in more detail in
[14]. It is based on visual features consisting of both: coarse
descriptors, to access a hash quantization table, and finer
descriptors using Histograms of Gradients (HoG) organized
on a scale-stack to offer scale invariance'. These features
are assumed to have been mapped during exploration time.
As discussed before, the map could have been created in
a number of ways and in fact, we have tested with maps
created with standard SLAM or simple visual odometry.

During mapping, the hash table Q is filled out with every
HoG descriptor plus its 3D position in the world. These

'We use 20 scales from 0.4 to 2.4 times the size of the original patch.
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descriptors are indexed into the table by using the coarse
descriptor h based on Haar coefficients [25] extracted from
the same image patches used to calculate the HoG descrip-
tors. For the latter, an image patch is split into quadrants
(zx, zy,yz,yy), although Haar coefficients are calculated
for zz,yy and xy only. These three coefficients describe
the rough appearance of the patch in those quadrants. See
[14] for full details. The three coefficients are quantised to
generate three indexes (i,7, k) which give access to a bin
in Q. Those HoG descriptors with same coarse descriptor
h = (i,7,k) are allocated into the same bin. This means
that Q(h) = Q(4,4,k) = {d1,ds,...} contains a list of
descriptors whose associated coarse descriptor? is also h. To
avoid confusion in the notation, we assume that the descriptor
d; has a link to its mapped 3D position in the world, which
often we will refer to as p;.

At relocalisation time, salient points s; are detected in
the query image using the FAST corner detector [34]. Then
image patches of size 11x 11, centred at s;, are extracted. For
each patch, coarse Haar coefficients h; are computed. Each
h; takes us to a bin Q(h;) containing HoG descriptors. if
|Q(h;)] > 0, a HoG descriptor d,; is extracted from the
patch centred at s; in the query image. Let d;5 € Q(h;) be
the best descriptor matching d;, which is obtained using a
simple 1-NN procedure. If a match is found then we pair s;
with the respective 3D position of d;p, which we call p;p
and add it to a list of 2D-3D pairs L = L U {(s;, pin)}-
Once all the possible matches have been found, L is passed
to a three-point pose algorithm plus RANSAC in order to
perform a consensus and find the best camera pose that
minimizes image distances in between camera projections
of descriptors’ 3D positions and their associated image
coordinates. The pose with the biggest number of inliers is
return as the relocalised pose.

IV. QUALITY MATCHES USING 3D DATA

In this work we are interested in exploiting the 3D
information that a depth camera provides in order to prune
descriptors to compare against within a relocalisation proce-
dure. Seeking to match a descriptor against a large list of
descriptors using 1-NN is not efficient and it may become
prohibitive. We could organise these descriptors using a
hierarchical tree for a more efficient search [32] but we
will still have to deal with false positives in appearance. We
empirically demonstrate that descriptors based on appearance
can be rapidly pruned by means of validating their 3D
geometric consistency even if they are not organized in any
other structure beyond a simple hash table.

We specifically show that matches returned once 3D
validation has been adopted, are quality matches less likely
to be false positives.

We assume that a hash table Q has been filled out as
explained in section III. Thus, having a query image, with
RGB and Depth data, where relocalisation is to be attempted,

2Note that each scaled patch produces a different HoG descriptor but also
a different coarse descriptor and thus they may be allocated to different bins
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our algorithm aims at constructing a quality chain (list) C
of 2D-3D pairs in the following manner and within a time
limit parameter:

1) For a salient point s, on the RGB image compute
its coarse descriptor h, (see section IIl) to access
the corresponding bin in the quantization table. If
|Q(h,)| > 0 then compute the descriptor d,, on the
query image centred at s, and find its best match in
Q(hy,). If found, let d,5 € Q(h,) be the Best match
such that we initialise the chain as C = {(sq, PaB)}
(anchor point), where p,p is the 3D point associated
to d,p. Otherwise, choose another salient point and
repeat 1.

2) Choose another salient point s; on the RGB image,
calculate its coarse descriptor h; and get to Q(hy). If
|Q(hy)| = 0 then repeat step 2.

3) Calculate the reference 3D distance dg in between the
salient points s, and s; (see figure 2a) with the help
of the query depth image.

4) Find which pairwise 3D distances between p,p and
descriptors in Q(hy) are bigger than a threshold €, i.e:
let py; the associated 3D point of the descriptor dy; €
Q(hb), if |di8f(pa3,pb) — dR| > ep then mark dy;
as an ’invalid’ descriptor3. Otherwise, the descriptor is
marked as valid. If all the descriptors d;; € Q(hy)
have been marked as invalid then go to step 2.

5) From the RGB query image calculate the HoG descrip-
tor d, centred at sp. Then compare dgj, to each “valid’
descriptor dp; € Q(hy). If no match is found then go to
step 2. Otherwise, let dpp be the ’best match’ whose
3D position ppp is paired and added to the quality
chain: C = CU {(sp, pvB)}

6) If |C| > csize then return C and exit, otherwise go to
step 2.

Note that the key step in the above procedure is the prun-
ing of ’invalid’ descriptors without having to perform any
descriptor comparison at all but only the 3D distance check.
This avoids unnecessary descriptor comparisons, saves com-
putational effort and therefore time. The former is crucial
especially when descriptor comparison involves comparisons
of 128D vectors using the L; or Lo norms.

If C is not empty then the above procedure will have
monotonically constructed a chain of quality 2D-3D pairs.
To retrieve the full 6D pose, we carry out a consensus
procedure using the three-point pose algorithm and RANSAC
over C. Note that even when we deem C to contain quality
matches, still there is a possibility that a mismatch occurs.
Therefore the consensus helps to minimize the impact of
those mismatches while estimating the camera pose with the
most number of inliers.

From the above, our hypothesis, which is confirmed later
by our experiments, is that the chain C does not have to
be large (only about 10-15 elements) for robust 6D pose

3Here dist(x,y) stands for 3D euclidian distance in between 3D points
x and y.

estimation. The procedure directly constructs feature chains
that are much smaller than those in similarly inspired stereo-
assisted localisation methods e.g. [22], [23] which further
require training and minimization stages. Our approach aims
for a bottom-up validation of quality features for a minimal
set of features for pose computation.

A. Improvements to the algorithm

In a similar way to visual-words-based methods, to speed
up even further the parsing of salient points s; in the RGB
query image, these are ranked using their IDF, which is
obtained simply by N/|Q(h;)|, where N = |Q)| is the total
number of HoG descriptors in the hash table (total of words
in the document) and |Q(h;)| is the frequency of occurrence
of the word Q(h;).

Also, step 3 of the above procedure can be extended to
include more than one 3D reference distance instead of using
only that obtained with the anchor point (s,,p.5) € C.
For instance, assuming we use all members of C, a list of
reference distances is produced: D = {dRr1,dRo, ..., dg|c|}
where dg; is the 3D distance in between the candidate salient
point s, and the image point s; in C (remember that such
distance is obtained by using the query depth image). Then
for step 4, the 3D distance in between the 3D position of a
candidate descriptor in Q(h;) and each 3D point p;p in C
should be similar, within the tolerance margin €¢p, than the
corresponding distance dg;. If at least one of this distances
breaches the margin ep then d; is marked as an invalid
descriptor.

Finally, our algorithm heavily depends on the anchor point
being a true positive match, which references to the right part
of the map at which the camera is currently pointing at. Our
experience indicates that if the anchor point is a false positive
then the chain will fail to be constructed since the map 3D
geometry will not correspond to the geometry observed by
the query depth image. Note that once the chaining process
has started (after step 2), there is no provision for when we
have run out of salient points in the query image and the
chain size is less than cg;... The solution is simple and for
this we suggest to rank the salient points as indicated before.
Thus, if we have parsed all the salient points then we should
go back to step 1, but we should start from the next position
in the ranking where we found the previous unsuccessful
anchor point. Our experiments show that a successful chain
is consructed in 80% of the cases using the first found anchor
point, the rest takes about three or four attempts before a
successful chain is constructed.

V. EXPERIMENTS

We first perform experiments for the tuning of the param-
eters in our algorithm before comparing the performance of
our approach with the baseline appearance-driven method
in terms of speed and percentage of relocalised frames. In
both cases we will show the effect of using a quality set of
matches produced by our 3D geometric test versus using a
set obtained with a blind 1-NN search. All the experiments
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visual features and their HoG descriptors. Image shows sample RGB and depth images with their chain C of quality matches plotted. The position of the
HoG descriptor p;p is shown in yellow, its associated image point is shown in green s;p if the distance is less than the set threshold (inlier), otherwise
it is red (outlier). Turquoise lines show the chain obtained. Best seen in the PDF version.

ran in a single core with clock of 2.40 GHz and without any
GPU computation.

For the experiments, a map of 3D points was built using
a visual odometry system similar to that in [27] but with
more robust feature description as per section III. Features
were initialized with an inverse depth parametrization [18]
but primed by the depth obtained from an RGB-D sensor
(ASUS X-tion pro live). We use 320 x 240 pixels intensity
and depth images. For map building, the depth information
from the sensor quickly leads to convergence in 3D and after
a converged feature goes out of view, its corresponding HoG
descriptors are quantised and stored in the hash table Q as
explained in section III. This allows agile exploration of the
environment without the burden of state growth as in e.g.
full SLAM. Our saliency detection returns typically 50 to 80
features distributed across the frame.

Our testing ground is a topological collection of sub maps
(see figure 3) of different size and visual ambiguity: a 200m?
laboratory, a 40m long L-shaped little textured corridor and
a shelved wall in an office space. To make the environment
more realistic for larger scale relocalisation all these maps
are shared by the same hash table Q containing 100,000 HoG
descriptors. We should highlight that several bins in Q may
contain thousands of descriptors. We further use another lab
environment for tests with a quadrotor.

A. Parameter Tuning and Relocalisation Criteria

We are interested in assessing the effect of parameters in
the quality of the features in the chain which ultimately will
be used by RANSAC to find a camera pose. Therefore we

Three different 3D scenarios: Lab, Corridor and Office used to construct a map treated as a topological collection of submaps adding to 100K

should establish whether such features are true inliers or not.
For this experiments the algorithm was set to attempt to use
only one anchor point for the construction of the chain C.
If the chain size is not bigger than cg;,. then the algorithm
will exit without attempting to find another anchor point.

Our 6D relocalisation success criteria is necessarily more
strict than when considering appearance-only relocalisa-
tion (e.g. [10]). Given a reference distance error thresh-
old ep, a chain size cs;,. and a query image with its
corresponding camera pose (obtained with visual odome-
try) with translation t and quaternion q for orientation,
our algorithm will return a chain of 2D-3D pairs C =
{(s1,P1B), (S2,P2B),- - -, (Sn, PnB)}, Where n is the size of
the chain. If the 3D point p;p is an inlier then its projection
on the camera pose should be close to the image point s;,
ie, s; ~ II(R(q)(pip — t)), where II is the perspective
projection model. We consider p;p to be an inlier if the
distance between its projection and its related image point s;
is less than a projection threshold, which in our experiments
is set to be 2 pixels. A frame is considered relocalised only
if the chain contains a minimum number of inliers, in this
case, 5 points. Relocalisation success is measured as the
ratio of relocalised frames over the total number of query
frames which in this case is 13542 images. Note that we
use every single frame in our test sequences captured during
agile motion of the sensor.

B. Effect of 3D error tolerance

Figure 4a-b shows the effect of varying the reference
distance error € p, which ranged from 10 to 160 cm. For these
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tests, we fixed the chain size c4;,. = 15. This distance error
is one of the prime parameters affecting the relocalisation
rate, the number of inliers as well as processing time. On
one extreme, if this threshold is very large it is equivalent
to not using any assistance from depth. It may happen that
the algorithm can not find a valid chain quickly and thus
we mitigate this by limiting the process to up 2 seconds.
If this time limit is breached then next available frame is
used. Those unsuccessful frames are excluded from the time
computation but not for the relocalisation rate.

The effect of ep in the processing time (see figure 4b) is
interesting since, if ep is very strict the number of inliers
per chain is still high, but in contrast, the percentage of
relocalisations drops. The latter means that the number of
successful chains, although with high number of inliers, gets
reduced when ep gets reduced. The increment in processing
time in this case is due to the pruning of several candidate
descriptors, which forces the algorithm to access more fre-
quently to Q thus investing more processing time. On the
other hand, if ep is very lax, the number of inliers is still
high, however, it accepts as ’valid’ too many descriptors in
Q which clogs the algorithm. This graph alone is a good
justification for the involvement of depth information in the
process. This also clearly shows an optimal narrow win-
dow where processing time savings are achievable. Around
ep >= 50cm the relocalisation percentage peaks. Numbers
quoted are the average results for 10 runs.

Experiments for Chain Size: 15
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Fig. 4. Set of experiments where ep was set to different values. Note that
the averaged percentage of relocalised frames (a) does not improve as the
distance is increased. In contrast, the quality of the chain seems to decrease
which is expected given that a large tolerance may introduce false positive
matches. As expected, the processing time (b) increases as the distance error
tolerance increases since the number of descriptors to compare to increases.
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Fig. 5. Set of experiments where the size of the chain is set to different
values. Note that the best results are obtained for the size 10 and 15. Chains
of bigger sizes do not seem to contribute to the percentage of relocalised
frames nor to the percentage of inliers (a), on the other hand, there is an
increment in computational effort (b).

C. Influence of chain size

Figure 5 shows tests for the effect of chain size. For this
experiments we set ep = H0cm. The averaged processing

time showed in figure 5b indicates that the smallest size
of the chain is too optimistic since the algorithm breaks as
soon as it gets 5 features in the chain, but several of these
chains did not contain enough inliers to accept the frame
as relocalised (at least 5). However, when the chain size is
increased to just 10 there is an immediate increase in the
number of relocalised frames. The percentage of inliers does
not increase with chains bigger than 10, but beyond this point
the processing time does, see figure Sa. From this results,
chain sizes between 10 and 15 appear reasonable choices.

TABLE I
RESULTS FOR SMALL SETS OF MATCHES

Method Set Size | Reloc. Time Pose Error (cm)
% (ms) Mean | Std D.
Appearance 7 394 776.3 22.6 33.1
Driven 10 70.3 1737 20.3 274
15 87.8 4811.2 19.5 259
ALL 95.6 48173 .0 11.2 10.2
7 68.9 72.2 15.8 18.8
ALL 83.8 206.8 9.8 11.1
Using 3D Test 7 77.9 79.3 16 19.6
Trying 1 or more 10 93.6 120.9 12.5 14.8
Anchors 15 94.8 187.7 104 125
ALL 94.8 220.1 9.9 11.7

D. Reduced Set of Quality Matches

The most important highlights from the previous analysis
are threefold: (1) subject to proper tuning, our approach
can potentially construct a successful chain of matches by
using the first found anchor point in 80% of the cases; (2)
successful chains returned by our algorithm contain around
90% inliers; (3) The previous results are obtained with
relatively small chain sizes of 10-15. Therefore, we moved
on to test in full our algorithm by connecting it to a three-
point pose algorithm plus RANSAC.

For this experiments we compare the performance of the
appearance-driven method for different number of matches,
i.e.: the algorithm exits as soon as it finds a specific number
of matches and then it attempts RANSAC to find the camera
pose, we tested for 7, 10, 15 and *ALL’ possible matches
that can be found. For our method we set cg;.. to the same
number of matches mentioned before, however, we tested
two configurations: (1) using only the first found anchor
point; (2) In case the first anchor fails, just keep attempting
until another anchor is found. Once the quality chain C is
obtained, this is passed to the consensus procedure in order
to relocalise the camera pose. The relocalised camera pose
obtained with RANSAC, for both methods, was compared
against that obtained during mapping. For this experiments
we used the topological map and video sequences shown in
figure 3.

Results are shown in table I where an immediate con-
clusion arises: a blind search performed by a 1-NN-like
algorithm (appearance-driven) begins to drop its performance
as the set of matches is reduced. This is due to the fact that
the set may contain outliers in its majority and therefore,
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RANSAC fails to estimate a pose. Moreover, not only the %
of relocalisations drops, but the accuracy of the retrieved pose
as well. In contrast, our method seems to maintain stability,
except for the case with 7 matches where there is a reduction
of around 14%. However, using only the first found anchor
point results in around 80% of relocalisations for the rest
cases. For the ALL case the algorithm did not get increased
its computational time in a drastic manner, this confirms
that the 3D test avoids unnecessary comparisons. Finally, an
increase in relocalisation % is observed when more than one
anchor point is tried (if the first fail). However, this does not
over increase the computational time, which indicates that
a successful chain was constructed using few attempts after
the first one failed.

As a final note, observe that the relocalised camera pose
error shown in table I is in average 15 cm. However, this
relocalised camera pose is that returned by RANSAC without
any post refinement. The latter could be done by assigning
a big uncertainty to the relocalised camera pose and then
using the matches in C to iteratively correct the pose with
Kalman filter updates, such as it is done in [15], [14].

Fig. 6. Aerial vehicle used to captured challenging fast-motion sequences
to test the processing time for an appearance-driven method against our
approach. The RGB-D sensor was mounted on the vehicle and connected
by cable to the processing laptop while flown manually.
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Fig. 7. Top view of the Lab scene where a map of 3D points was pre-built
and later used to test the appearance-driven method against our approach.
The map points are shown in blue and the trajectory of the vehicle is shown
in red; notice the discontinuities in the trajectory which is due to moments of
violent fast change in which tracking failed but it resumes as relocalisation
was used during mapping too.

E. Performance under agile 6D motion

Our work is highly motivated by the scenario where a
vehicle with fast agile motion has to explore the environment
for which a 3D map representation is available. Typically,
this map is used to track the 6D pose of such vehicle, but due
to its erratic motion, sudden turns or vibration, the system
may lose tracking and a rapid recovery method is necessary.
This is the case of small aerial vehicles. We have used a small
quadrotor to which we have attached the RGB-D sensor
linked by an umbilical connection figure 6, to an i5 laptop.
The platform is therefore not self contained but provides
sample agile challenging motions when controlled manually.
Similar to the previous experiments, we test relocalisation
for every single frame of the test sequences, i.e. we have
no tracking during testing. The attached video material also
shows the performance of the system. For this experiment
we set Cgi.e = 10 and ep = 50.

We have used this platform navigating in a pre-built map
of a 64m? environment and with 37K descriptors stored in
the hash table Q (see figure 8). A second video sequence was
used to test the relocalisation. No ground-truth was available
for this experiment, however, the relocalised trajectory can
be seen in figure 7. Finally, table II shows a summary of the
results for this experiment. Note that strong erratic motion
produced high image blur, which led both relocalisation
algorithms to failure. We achieved an average time of 83 ms
with our approach compared with 3000 ms when using the
appearance driven method. Recall that our timings include
from frame capture to 6D pose estimation. Our algorithm is
left slightly behind w.r.t. the appearance-driven due to some
frames where the vehicle flies too close to objects. The latter
affects the generation of depth information from the sensor.

TABLE II
SUMMARY OF RESULTS FOR AGILE MOTION

Sequence Method # Frames | % Reloc. Time
(ms)

Parrot 3D Test 3638 73.6 % 83.3
Appearance 3638 752 % 3000

VI. CONCLUSIONS

In this work we have presented a 3D geometric test for
retrieving a set of quaility 2D-3D points which can be
effectively used for camera pose relocalisation. The approach
has the ability to work with maps built from Visual Odometry
and full SLAM as well as with other sensors such as a
stereo camera or a camera+LIDAR rig. We have compared
our method with an appearance-driven approach previously
used for 6D pose estimation and that is representative of
some other visual methods that use quantization tables or
visual words. However, our main objective has been that of
demonstrating that, in the scenario where a set of matches
has to be extracted from a list of candidates, it is possible
to rule out 3D inconsistent candidates by using our low cost
test. This leads to savings in computational time, but also to
obtain a compact set of quality matches that can be used to
effectively recover the camera pose.
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Fig. 8. Samples of the test sequence captured by the RGB-D sensor mounted on a quadrotor which flew around the scenario depicted in figure 7. The
images show some examples where our algorithm found a valid hypothesis and some other examples where the algorithm fails to relocalise due to the

sudden erratic motion of the vehicle.

Future work includes the adaptation of the method to
other relocalisation processing pipelines that use different
classifiers. We have already begun to investigate the use of
different types of descriptors and organisation models [35]
aiming to increase the speed of the relocalisation proce-
dure. Other possible avenue for future work is the parallel
implementation of our algorithm, which would enable the
simultaneous construction of several chains thus increasing
the pool of quality matches.
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