
Accurate recursive learning of uncertain diffeomorphism dynamics

Adam Nilsson Andrea Censi

Abstract— Diffeomorphisms dynamical systems are dynami-
cal systems for which the state is an image and each command
induce a diffeomorphism of the state. These systems can
approximate the dynamics of robotic sensorimotor cascades well
enough to be used for problems such as planning in observations
space. Learning of an arbitrary diffeomorphism from pairs
of images is an extremely high dimensional problem. This
paper describes two improvements to the methods presented
in previous work. The previous method had required O(ρ4)
memory as a function of the desired resolution ρ, which, in
practice, was the main limitation to the resolution of the
diffeomorphisms that could be learned. This paper describes
an algorithm based on recursive refinement that lowers the
memory requirement to O(ρ2). Another improvement regards
the estimation the diffeomorphism uncertainty, which is used
to represent the sensor’s limited field of view; the improved
method obtains a more accurate estimation of the uncertainty
by checking the consistency of a learned diffeomorphism and its
independently learned inverse. The methods are tested on two
robotic systems (a pan-tilt camera and a 5-DOF manipulator).

I. INTRODUCTION

Robotic systems are going to be truly safe and reliable only
when they have the ability of verifying all their models and
their assumptions about themselves and the environment [1].
Clearly, the fewer assumptions an agent has, the fewer
assumptions can be violated. The problem of bootstrapping [2]
considers the limit as the assumptions tend to zero: a boot-
strapping agent assumes nothing except that it is embodied in
a robotic body. We think of a bootstrapping agent as able to
create increasingly more complex representation starting from
uninterpreted observations and commands [3, 4]. For example,
a bootstrapping agent can start from scrambled pixels and
reconstruct the shape and calibration of its sensors [2, 5–7].
At a higher level, the agent should learn the dynamics of
the unknown commands–observations black box. A robotic
system can be idealized as the series of actuators and sensors:
commands to the actuators produce motion, and motion
makes the sensors observations change. Learning the actuator
dynamics (how commands produce motion) is relatively easy
because in a robotic system commands and states are low
dimensional, thus established generic learning techniques can
be used (e.g., [8]). Instead, learning the nonlinear and high-
dimensional observations dynamics (how observations change
following motions) requires methods specific to robotics.

Previous work has shown that it is possible to find families
of models that can represent the dynamics of the set of
“canonical” robotic sensors (range-finders, cameras, and field-
samplers) [9]. These classes occupy different points in
the trade-off of efficiency vs assumptions/prior information.

A. Censi and A. Nilsson are with the Computing & Mathematical Sciences
department, Division of Engineering and Applied Science, California Institute
of Technology, Pasadena, CA. E-mail: {andrea, adam}@cds.caltech.edu.
Research supported by the US National Science Foundation (NRI program,
grant #12018687) and DARPA (MSEE program, grant #FA8650-11-1-7156).

We have shown classes of models that learn generic bi-
linear relations among commands, observations, and their
derivatives [10, 11], and their use in applications such as
instantaneous servoing and fault/anomaly detection [12]. The
most structured class of models represents the sensorimotor
dynamics as a set of diffeomorphisms of the observations
space [13]. Successively, we have used these models for
planning in observations space [14], even dealing with a
sensor’s limited field of view. This line of work is related
to deep learning approaches to unsupervised learning of
transformations [15, 16], but the focus is on dynamics and
control rather than classification tasks.

Contribution: This paper presents two improvements to
previous work. The first improvement is in the learning
of diffeomorphisms. In practice, the naive learning method
described in [13] was limited by the memory required,
which was O(ρ4) as a function of the resolution ρ. This
paper describes a method based on recursive refinement that
is more efficient, requiring O(ρ2) storage and O(ρ2 log ρ)
computation, thus allowing learning of higher-resolution dif-
feomorphisms. Moreover, the paper describes an improvement
to the method for computing the scalar uncertainty field
associated to the learned diffeomorphism. This makes it
possible to have a better classification of areas that can be
predicted or not due to the sensor’s limited field of view.

Paper outline: Section II recalls some differential geometry
preliminaries. Section III recalls the class of Diffeomorphism
Dynamical Systems (DDS): these are discrete-time dynamical
systems for which the state x is a function on a manifold S ,
the observations are the part of the state visible through
a viewport V ⊂ S, and each command u ∈ U induces a
diffeomorphism Φ(u) ∈ Diff(S) of the state x. In the case
of a camera, the manifold S is the visual sphere S2 and a
point s ∈ S corresponds to a pixel.

Section IV shows how we can learn a DDS by learning the
diffeomorphism ϕ = Φ(u) associated to each command u.
To recover the map ϕ : S → S, we learn independently the
values of ϕ(s), by looking for the pixel v that minimizes a
dissimilarity statistics. The method presented in previous work
did this procedure naively, leading to a memory requirement
which was quartic in the resolution ρ. The improved method
achieves a better complexity by recursively refining the
solution rather than using a fixed search resolution.

Section V discusses how to represent and learn a scalar-
valued uncertainty field. The method presented in previous
work looked at the residuals of the minimized dissimilarity.
The improvement shown here is based on checking the
consistency of the estimated ϕ and its inverse ϕ−1.

Section VI describes experiments with two robotic plat-
forms. Section VII concludes and discusses future work.
Datasets and source code can be found at http://purl.org/censi/
2013/rddl.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1208

II. GEOMETRY PRELIMINARIES

This section recalls basic preliminaries about manifolds,
functions defined on manifolds, and diffeomorphisms. Do
Carmo [17] is a readable introduction to differential geometry.

Manifolds: Let S be a differentiable manifold, which will
represents the domain in which the sensor observations are
defined. For a central camera, the manifold S is the unit
sphere S2. For range-finders, we can use a construction in
which S = S1 ×R (directions× distances) [11]. A manifold
comes equipped with a distance function dS : S×S → R+, so
that dS(s1, s2) is the distance between two points s1, s2 ∈ S .

Images: We call image a function from S to some output
space O. For an RGB camera, the output space is O = [0, 1]3.
For simplicity, we assume that O = R, but everything easily
generalizes to more complex output spaces.

Im(S) is the set of all images defined on S. The Lp

distance dIm
Lp

(y1,y2) between two images y1,y2 ∈ Im(S) is
the average of their difference over the domain S:

dIm
Lp

(y1,y2) = 1
|S| (∫S

|y1(s)− y2(s)|p ds)
1
p . (1)

There exist also other distances between images that have
better performance as heuristics in a planning problem [14].

Diffeomorphisms: A diffeomorphism of S is a map from S
to itself that is differentiable, invertible, and whose inverse is
differentiable as well. Diff(S) is the set of all diffeomorphisms
of S . A distance between two diffeomorphisms can be defined
as the average distance of the transformed points:

dDiff(S)(ϕ1, ϕ2) =

ˆ
S
dS(ϕ1(s), ϕ2(s)) ds.

A norm on Diff(S) can be defined as the distance of a
diffeomorphism from the identity function Id:

‖ϕ‖ = dDiff(S)(ϕ, Id).

III. DIFFEOMORPHISM DYNAMICS

A diffeomorphism dynamical systems (DDS) [13] is a
discrete-time dynamical system for which the input com-
mands u belong to a finite alphabet U; the state x ∈ Im(S)
is an image on S; the observations y are the subset of the
state visible through the “viewport” V ⊂ S.

Dynamics: The state x ∈ Im(S) evolves according to a
diffeomorphism that depends on which command is chosen.
Let Φ : U → Diff(S) be the function that associates to
each command a diffeomorphism of the manifold S , so that
each command u ∈ U is associated to a diffeomorphism
Φ(u) ∈ Diff(S). The state x ∈ Im(S) evolves according to
the dynamics

xk+1(s) = xk(ϕk(s)), with ϕk = Φ(uk).

This can be written in a more compact form as

xk+1︸ ︷︷ ︸
next image

= xk︸︷︷︸
previous image

◦ Φ(uk).︸ ︷︷ ︸
diffeomorphism ϕk

(2)

TABLE I
SYMBOLS USED IN THIS PAPER

Manifolds, images, and diffeomorphisms
S a differentiable manifold

dS(s1, s2) the distance on the manifold S
Im(S) the set of “images” (functions from S to R)

dIm
Lp

(y1,y2) Lp distance between two images
y1,y2 ∈ Im(S)

Diff(S) the set of all diffeomorphisms of S
ϕ ∈ Diff(S) a generic diffeomorphism of S

dDiff(S) distance between diffeomorphisms
‖ϕ‖ norm of a diffeomorphism

Diffeomorphism dynamics systems (DDS)
U finite commands alphabet

uk ∈ U command given at time k
xk ∈ Im(S) state of the DDS
V ⊂ S viewport

yk ∈ Im(V) observations
Φ : U→ Diff(S) function that associates the diffeomorphism

for each command
V
ϕ
unpr,V

ϕ
pred ⊂ V unpredictable/predictable regions

Estimation of diffeomorphisms
δ > 0 bound on the size of ‖ϕ‖ as a fraction of V
S = {si}ni=1 discretized domain

As search area for a point s
Es(v) :As → R+ dissimilarity function

ρ native image resolution
g resolution-independent sampling grid
ρ? desired resolution for the solution

(H,W) grid width/height (pixels)
(S, T) image dimensions on S (deg)

λ ∈ (0, 1) shrinking factor for RDDL
Uncertainty and uncertainty estimation

UIm(S) set of “uncertain images”
〈y,z〉 ∈ UIm(S) generic uncertain image

z : S → [0, 1] scalar uncertainty
UDiff(S) set of “uncertain diffeomorphism”

(ϕ, γ) ∈ UDiff(S) generic uncertain diffeomorphism
γ : S → [0, 1] scalar uncertainty

γ̂res(s) uncertainty estimated using residuals
method (Section V-B)

γ̂c,a(s) uncertainty estimated using consistency
condition, absolute. . . (Section V-C)

γ̂c,n(s) . . . and normalized

S = S2

V

Observations: The observations yk ∈
Im(V) are a function defined on the view-
port V ⊂ S. Alternatively, it is useful
sometimes to define yk ∈ Im(S) and set
the observations to have value 0 outside V:

yk(s) =

{
xk(s) + εk(s) s ∈ V,

0 s ∈ S \ V. (3)

The process εk(s) is IID Gaussian noise on the measurements.
Predictable and unpredictable regions: For a given dif-

feomorphism ϕ, the viewport V can be partitioned in two
regions: V

ϕ
pred is the region in which the values of the

next observations yk+1 can be predicted from the previous
observations yk, and the region V

ϕ
unpr is its complement:

V'
pred

V'
unpr

'

VV
ϕ
pred = {s ∈ V | ϕ(s) ∈ V} ,

Vϕ
unpr = {s ∈ V | ϕ(s) ∈ S \ V} .

1209

IV. METHODS FOR ESTIMATING DIFFEOMORPHISMS

This section describes the previous diffeomorphism esti-
mation algorithm described in previous work [14] and an
improved method that achieves better efficiency and sub-pixel
accuracy by using recursive refinement.

Learning scenario: The algorithms share most assumptions
about the learning scenario. The training data is a discrete-
time stream of observations/commands tuples {〈yk, uk〉}k.

There is a clear trade-off in choosing the discretization
interval ∆: estimating large motions gives more accurate
results, as the “signal” is larger than the noise, but it is
more computationally expensive because the search area for
each pixel is larger. In principle, we could learn multi-scale
transformations or use a different interval for each command.
In this paper, the interval is manually chosen to be ∆ = 1 s.

From the stream {〈yk, uk〉}k. we assemble tuples of
the kind {

〈
yk, uk, yk+1

〉
}k that are used as training data.

Some examples are shown in Fig. 1. The diffeomorphism
corresponding to each command u ∈ U can be recovered
separately. The temporal index k is not important, because
learning only considers one pair of images at a time. Conse-
quently, for the purpose of estimating one diffeomorphism,
we can assume to have a set of image pairs {〈ya,yb〉} that
are related by the diffeomorphism to be estimated.

Graph-search approaches to motion planning [14] also
require to estimate the inverse diffeomorphism ϕ−1. While
it is possible to estimate ϕ and then invert it numerically,
it is simpler and more robust to estimate ϕ−1 directly by
using the same procedure with the images swapped: from the
sequence swapping the role of two images, thus looking at
the stream {〈yb,ya〉} instead of {〈ya,yb〉}.
A. Discretized representation of diffeomorphism

It is convenient to think of the transformation to learn as
a diffeomorphism of a continuous domain, but in practice
we need to have a discretized representation, in which the
diffeomorphism ϕ is represented by its values at a discrete set
of points in the domains. More formally, the viewport V ⊂ S
is discretized into a set of n points S = {si}ni=1 ⊂ V arranged
in a grid overlaid on V.

In previous work, for each point si ∈ S we estimated the
closest point to ϕ(si) contained in S; this is equivalent to learn
a permutation of the points of S. Hence a diffeomorphism
on a 2D domain is represented as an integer tensor D of
dimensions H ×W × 2, where H ×W is the shape of the
image. If a point s ∈ S has coordinates (u,v) in the grid,
then the coordinates of ϕ(s) are (D[u,v,0],D[u,v,1]).

In this paper, the representation changes only slightly to
accommodate sub-pixel resolution. The tensor D is a 2D array
of floating-point values, such that it is possible to interpolate
between coordinates.

B. Pointwise Discretized Diffeomorphism Learning (PDDL)
The diffeomorphism estimation method described in previ-

ous work, here dubbed “PDDL”, which stands for Pointwise
Discretized Diffeomorphism Learning, estimates the diffeo-
morphism pointwise.

Let us first describe the procedure assuming a smooth
domain. For each point s ∈ V we need to find the correspond-
ing ϕ(s). The estimation is done for each pixel separately,

yk yk+1uk

(b)

(a) Orbit camera

(c)

(e)

(f)

(g)

(displacement)

tilt

pan

(d) Kuka Youbot

Fig. 1. Robotic platforms used in the experiments and example training data.
The first column shows the initial image; the second is a representation of the
command; the third shows the final image; the fourth is a superimposition
of the two. (a) A pan-tilt Orbit camera. (b) Tilt motion; (c) Pan motion;
(d) Kuka Youbot with a camera mounted on the end-effector. The arm has
5 degrees of freedom: the rotation of the base, three revolute joints in the
same plane, and a final wrist, plus the gripper. (e) A wrist rotation results
in an off-centered rotation of the image; (f) Base rotation is equivalent to
a pan motion (but this depends on the position of the wrist); (g) The third
revolute joint results in a tilt motion.

k'(s) � sk \('(s) � s) y0 y0 � '

YouBot B3

Orbit

YouBot B4W

(a)

0 max

(b)

(c)

(d)

(e)

(f)

(g)

tilt

pan

base

wrist

base

R3

R4

Fig. 2. For visualizing the diffeomorphisms, we show for each command
the modulus of the displacement (‖ϕ(s) − s‖, with blue = max and
white = 0), the orientation ∠(ϕ(s)− s) and the prediction of a template
image. (a)–(b): Pan and tilt motions of the Orbit camera result in almost
pure translations of the visual field, though our learner is precise enough to
represent the spherical aberration of the lens. (c)–(d): For the Youbot we
consider two different configurations. In the “b3” configuration we move
only the base and the third revolute joint, so that the Youbot approximates a
very expensive pan-tilt camera. (e)–(g): In the “b4w” configuration, we use
the base, the fourth joint, and the wrist. The diffeomorphism corresponding
to the wrist can be estimated easily, as shown in (e), and it corresponds to a
rotation of the visual field. (f)–(g): It is not possible to associate a unique
diffeomorphism to any motion of the base and the fourth joint, because the
wrist joint configuration is a hidden state that is not modeled. In those cases
the learned diffeomorphisms are just noise.

1210

'̂(s)

third cycle

'̂1(s)

second cycle

s

V '̂0(s)

A0
s

A1
s

yayb

first cycle

Fig. 3. The method presented in this paper uses a recursive refinement
approach. For each pixel s, the search area Aj

s is progressively refined during
successive “learning cycles” j. At each learning cycle, the search area is
resampled to be a fixed number of pixels g (g = 5 in the figure). At the end
of a cycle, the best guess for ϕ(s) is used to re-center the search, and the
physical area is then shrunk. This is repeated until the resolution matches an
arbitrary given resolution, possibly higher than the original image resolution.

in the sense that for two pixels s1 and s2, the estimation
of ϕ(s1) can be done in parallel to the estimation of ϕ(s2).

Fix a point s on the domain. Learning uses the stream
of pairs of images 〈ya,yb〉. If s ∈ Vpred, the DDS dynamics
given by (2) and (3) implies that

yb(s) = ya(ϕ(s)).

Therefore, to find the unknown ϕ(s) we look for the pixel
in ya that is most similar to yb(s) on average.

The search is restricted by using a bound on the diffeo-
morphism size, represented as a scalar δ > 0, expressed as a
fraction of the size of the viewport V:

‖ϕ‖ ≤ δ |V|. (4)

Define the “search area” As as the points in the viewport
that are close enough to s to be candidates for ϕ(s):

As = {v ∈ V | dS(s, v) ≤ δ |V|}. (5)

A dissimilarity function Es(v) : As → R+ is computed
by averaging on the training data. The value Es(v) encodes
how dissimilar is the sensel s from the sensel v:

Es(v) = E(ya,yb)∈dataset{|ya(v)− yb(s)|}. (6)

The minimum of the cost function Es(v) is taken to be an
estimate of the value ϕ(s):

ϕ̂(s)
.
= arg min

v∈As

Es(v).

The actual implementation uses a discretized domain, such
that both s and v range in the discrete set of points S. For
convenience, the search area is taken to be rectangular, rather
than circular, as (5) would imply.

Because the values of ϕ(s) are estimated independently
for each point s, no continuity or smoothness constraints
are enforced. This would be actually easy to do, using an
energy model or a gaussian process [18], but in the context
of bootstrapping we do not want to commit to a particular
prior on the diffeomorphism.

In practice, the main issue with this method is the
large memory usage. The memory needed is quartic in
the resolution of the image. (This will be derived later in
Section IV-D). For a computer with 12GB of RAM, for the
systems considered in this paper (Fig. 1), we can learn all
diffeomorphisms simultaneously only up to a resolution of
160× 120.

C. Recursive Discretized Diffeomorphism Learning (RDDL)
The Recursive Discretized Diffeomorphism Learning

(RDDL) algorithm retains the same point-wise estimation
scheme, but learning is recursively done at increasing reso-
lutions, so that the memory requirement is lower, and, as a
bonus, one can also obtain sub-pixel resolution.

A slight difference in the formalization is that RDDL
uses “learning cycles”. During each learning cycle, the
diffeomorphism is estimated at a successively increased
resolution. At the end of the cycle, the search area for each
pixel is re-centered on the best guess and shrunk by a given
factor (Fig. 3). In the experiments presented here, learning
is done offline from logs, and each learning cycle passes
through all available data.

In addition to the bound δ on the size of the diffeomorphism,
the parameters for RDDL include: a desired target resolu-
tion ρ?, potentially higher than the native image resolution; a
shrinking factor λ ∈ (0, 1), which describes how quickly the
search area is shrunk; an integer g ≥ 3, which describes the
number of pixels to which the search area is down-sampled.
At each learning cycle, we change both the search resolution
and size of the search area, so that the number of points in
the search area is constant and equal to g2 (Fig. 3).

A high-level description of the algorithm in the continuous
domain proceeds as follows. As before, the process is entirely
parallel for each point s ∈ V. The index j ≥ 0 is used to
denote the learning cycles. At the end of each learning cycle
there is a guess ϕ̂j(s) for the value of ϕ(s); the search area
is then shrunk and re-centered at that guess. More precisely,
let Aj

s be the search area for point s at cycle j. For the first
cycle j = 0, the search area A0

s is centered on s and has
radius equal to δ |V|:

A0
s = {v ∈ V | dS(s, v) ≤ δ |V|}.

The dissimilarity function E0
s (v) is computed only in the

search area A0
s, and the image is resampled such that a g× g

grid covers the search area. At the end of the learning cycle,
the estimate ϕ̂0(s) of ϕ(s) is computed as the minimum of
the dissimilarity function:

ϕ̂0(s)
.
= arg min

v∈A0
s

E0
s (v).

For successive cycles j > 0, the search area Aj
s is centered

on the previous guess ϕ̂j−1(s), and it is shrunk of a factor λ ∈
(0, 1), so that at cycle j the search area radius is δ λj :

Aj
s = {v ∈ V | dS(ϕ̂j−1(s), v) ≤ δ λj |V|}.

The image is resampled so that at cycle j the resolution is
proportional to λ−jρ and the number of pixels is the search
area is constant and equal to g× g. This makes each learning
cycle use the same amount of memory.

At the end of the cycle, the guess for ϕj(s) is given by
the minimum over the area Aj

s:

ϕ̂j(s)
.
= arg min

v∈Aj
s

Ej
s(v).

This process continues until the search resolution reaches the
desired resolution ρ?.

The desired resolution is arbitrary, but clearly eventually the
noise becomes dominant. For the systems considered in this

1211

paper, a resolution of 0.5 pixels seems reasonable. It would
be interesting to have a precise bound on the identifiable
resolution as a function of the statistics of the images and
the various sources of noise.

The implementation is relatively straightforward; the only
delicate part is bookkeeping of the various coordinate trans-
formations between the search areas at different resolutions.

D. Complexity

RDDL requires less time and memory than PDDL.
Complexity of PDDL: Let (H,W) be the size of the image

in pixels. This can be written as H = ρS and W = ρT
where S, T is the “physical” size of the domain in S (e.g.,
in degrees) and ρ is the resolution (pixel/deg). The number
of pixels is H × W = ρ2ST , which is quadratic in the
resolution. If δ ∈ (0, 1] is the search area, expressed as a
fraction of the size of the domain, each pixel has a search
area of size ρH × ρW = δ2ρ2ST . Therefore, the memory
usage for PDDL is quartic in the resolution:

ρ2ST × δ2ρ2ST = ρδ2 (ST)
2

= O(ρ4).

The computational complexity is the same.
Complexity of RDDL: Regardless of the current resolution,

at each learning cycle the search area is discretized to g × g
grid, thus the memory usage is ρ2ST · g2 = O(ρ2), which
compares favorably with the O(ρ4) complexity of PDDL.

Simple algebra allows us to find how many cycles are
needed to obtain the desired resolution ρ?. At the j-th learning
cycle, the resolution of the search area is g/(max{S, T}Aλj).
Therefore, the number of cycles needed to reach the resolu-
tion ρ? is, assuming S = T ,

j? = d(log g − log ρ?Sδ) / log λe .

The computation cost, which is fixed for each cycle,
is O(g2) for each of the ρ2ST pixels in the image. The
total cost is j? times the cost of one iteration:

d(log g − log ρ?Sδ) / log λe ρ2STg2.

To compare the two method, suppose the desired resolu-
tion ρ? to be equal to the native resolution ρ. Then RDDL has
computational complexity O(ρ2 log ρ) compared to O(ρ4) for
PDDL.

V. ESTIMATION OF DIFFEOMORPHISM UNCERTAINTY

This section describes how we represent uncertainty in
images and in diffeomorphisms, the previous method that
was used to estimate it, which was based on looking at the
residuals of an error function, and an alternative method,
which is based on checking the consistency of the estimated ϕ
and ϕ−1.

A. Uncertainty of images and diffeomorphisms

It is necessary to have some notion of uncertainty to deal
with phenomena such as the sensor’s limited field of view:
if the viewport V ⊂ S is not the entire domain S, for
some motions it is not possible to predict the values of the
observations in the whole viewport, as they depend on the
“hidden” part of the domain.

In principle, one would need to be able to represents an
arbitrary probability distribution over images and diffeomor-
phisms. Given a starting image, the prediction of our models
should be a distribution over images. However, it is intractable
to do this in full generality; here, we use a very simple
approximation that associates a pointwise scalar “certainty”
value to images and diffeomorphisms.

Uncertain images: The set of “images” Im(S) was defined
to be the set of all functions from S to R. Here we extend
it to the set of “uncertain images” UIm(S), which is meant
to be a tractable, very thin slice of all probability measures
on Im(S).

An element of UIm(S) is a pair (y, z), where y ∈ Im(S)
is a normal image, and z : S → [0, 1] is a scalar “certainty”
value, with the following semantics: z(s) = 1 if we know
exactly y(s); and z(s) = 0 if we know nothing about y(s).

Values of z(s) between 0 and 1 account for intermediate
cases; while, in principle, we could give it a precise prob-
abilistic interpretation, the approximations that are done in
learning and propagating this uncertainty do not allow a
precise probabilistic semantics to hold in practice.

Given a pair of uncertain images 〈y1, z1〉 and 〈y2, z2〉
∈ UIm(S), the distance between them is defined by extending
the definition of distance on Im(S) given by (1) to account
for the uncertainty, by discounting the differences between
the images y1,y2 according to their uncertainties z1, z2:

d
UIm(S)
Lp

(〈y1, z1〉 , 〈y2, z2〉) .
= (7)

1
|S|

(´
z1(s)z2(s) |y1(s)− y2(s)|p ds´

z1(s)z2(s) ds

) 1
p

.

Uncertain diffeomorphisms: In the same spirit, we lift the
diffeomorphisms Diff(S) to an enlarged space of “uncertain”
diffeomorphisms UDiff(S), which contains tuples (ϕ, γ),
where ϕ ∈ Diff(S), and the scalar field γ : S → [0, 1] is a
scalar uncertainty that represents the “certainty” about ϕ(s).

B. Residuals-based uncertainty estimation method

In previous work we quantified the confidence in the
estimate ϕ̂(s) as the value γ̂res(s), which was the minimum
of the dissimilarity function Es (defined in (6)):

γ̂res(s) = min
v∈As

Es(v).

The values of γ̂res(s) are linearly scaled as to obtain values
in the interval [0, 1] over the whole domain.

The rationale for using this measure is that at the minimum
the residual dissimilarity should be equal to the variance
of the observations noise (the term ε(s) in the observation
model (3)), if s belongs to the predictable region Vpred, and
should have a higher value for points in the unpredictable
region Vunpr.

In practice, however, this confidence measure is very
sensitive to several unmodeled phenomena (Fig. 4a,b), such
as aliasing effects, noise that acts on the commands (thus
inducing a slightly different diffeomorphism), and it is not
invariant to the image statistics (e.g., the uncertainty is
underestimated in regions with more uniform texture).

1212

C. A consistency-based uncertainty estimation method
A simple alternative way to estimate the confidence can

be obtained by checking the consistency of the estimated
diffeomorphism.

For each command, we learn both an estimate of ϕ as
well as an estimate of ϕ−1; denote these by ϕ̂ and ˆϕ−1,
respectively. In principle, we would expect that ϕ̂ and ˆϕ−1 are
inverse of each other, meaning that, for all s, ϕ̂(ˆϕ−1(s)) = s,
as well as ˆϕ−1(ϕ̂(s)) = s. These consistency conditions do
not hold if s ∈ Vunpr, and do not hold exactly because of
noise and other unmodeled effects as described before that
affect ϕ̂ and ˆϕ−1 differently.

Therefore, our estimation of uncertainty γ̂c,a(s) is a quan-
tification of how much the consistency conditions are violated
by measuring the distance between s and ϕ̂(ˆϕ−1(s)):

γ̂c,a(s) = dS(s, ˆϕ−1 ◦ ϕ̂ (s)). (8)

A variation on this idea is to normalize the deviation by the
size of the diffeomorphism:

γ̂c,n(s) =
dS(s, ˆϕ−1 ◦ ϕ̂ (s))

dS (s, ϕ̂ (s))
. (9)

These pointwise values are then linearly normalized in the
[0, 1] range over the whole domain.

(previous) (recursive/subpixel estimation)

(g)

(b)

(h)

(c)

(i)

(d)

(f)

(a)

'�1
uncertainty
for

'
uncertainty
for

ground
truth

uncertainty
estimation

diffeo,
estimation

(j)

(e)

(previous)
consistency-based

absolute normalized

PDDL RDDL

residuals-based

�̂res �̂c,n�̂c,a

Fig. 4. Qualitative comparision among the certainty estimated by the
different methods discussed in the paper; a quantative comparison is given
in Fig. 7. All data is for the ORBIT dataset and the command “tilt up”.
Red corresponds to a value of 0 and green to 1. The first row shows
the uncertainty for the diffeomorphsim ϕ, and the second line shows the
uncertainty for the inverse diffeomorphisms ϕ−1. The last column shows
the ground truth obtained by prior knowledge of the dynamics. The green
area should match Vpred, which is the part that we are not able to predict
based on the current image alone. The first column (subfigures a,f) shows
the uncertainty field estimated by the residuals-based method (Section V-
B) based on the previous method PDDL for diffeomorphism estimation
(Section IV-B). The residual does not allow to distinguish clearly between
Vpred and Vunpr. The third column shows the same residuals-based method
(Section V-B) but with the diffeomorphism estimated using the new methood
RDDL (Section IV-C) using parameters λ = 1/5, g = 15, which gives a
resolution of 0.5 pixels. The classification is much clearer, probably because
the diffeomorphism is more precise. The next two columns show the results
using the consistency-based estimated uncertatinty (Section V-C), using the
absolute deviation, defined by (8), as well as the normalized relative deviation,
defined by (9). Compared to the previous method, there is a much clearer
classification in Vunpr and Vpred.

VI. EXPERIMENTS

A. Data collection and setup

The ORBIT pan-tilt camera dataset is the same used in
previous work [14]. It contains 1000 samples, with a mix of
indoor and outdoor environments.

We use two Youbot datasets that differ for the degrees of
freedom activated. The first, denoted by YOUBOTB3, uses
the base and the third revolute joint (thus making it a very
expensive pan-tilt camera) and has 348 samples; the second,
denoted by YOUBOTB4W, uses the base, the fourth revolute
joint, and the wrist, and has 563 samples.

B. Memory usage and speed

Experiments show that RDDL uses less memory than
PDDL. For instance, for the ORBIT system with 4 commands,
PDDL can learn simultaneously the diffeomorphisms for all
commands only up to a resolution of 160× 120, while there
is no hard-limit on the resolution for RDDL because of the
recursive approach.

RDDL is faster than PDDL, at least asymptotically. Fig. 5a
shows the time needed for learning from the whole ORBIT
dataset as a function of the resolution in a log-log scale.
The figure shows the results for: PDDL (δ = 0.35), and two
parametrizations of RDDL (δ = 0.35, λ = 1/3, g = 9; and
λ = 1/5, g = 15). Fig. 5b shows the number of learning
cycles for obtaining a desired resolution, which depends on
the combination of the parameters λ and g. The different
slopes in the log-log graph reflects the difference in the
computational complexity (O(ρ4) vs O(ρ2 log ρ)), as derived
in Section IV-D. The graph for PDDL stops at the resolution
160× 120.

The relatively unoptimized Python implementation is quite
slow; at 160 × 120 it takes around 1 s for integrating the
information in one sample 〈ya,yb〉.
C. Precision

RDDL is as precise as PDDL, as measured by their
performance in a prediction task, in which the observations
predicted by the learned models are compared with the actual
observations.

Fix a prediction horizon by choosing an integer ` ≥ 1.
From the log {〈yk,uk〉}k we extract a sequence of tuples of
the form

〈yk, {uk, . . . ,uk+`−1}︸ ︷︷ ︸
"plan" pk

,yk+`〉.

We call “plan” the the sequence pk of the ` commands
between the two images yk and yk+`. The evaluation consists
in comparing the observations yk+` with the prediction
given the initial observations yk and the plan pk. The
predicted yk+` is obtained from yk by applying the ` learned
diffeomorphisms corresponding to the commands in pk. For
comparing the predicted image with the observed image
we use the L2 distance defined in (1) and the uncertainty-
weighted distance defined in (7).

Fig. 6a show the L2 prediction error for: the previous
method PDDL, the proposed method RDDL (λ = 1/3, g = 9),
and, for illustration purposes, the result of RDDL after only
the first resolution. In all cases, RDDL is as precise as PDDL.

1213

D. Uncertainty estimation

Experiments show that the consistency-based uncertainty
estimation method (Section V-C) is more accurate than the
residual-based method (Section V-B).

We first discuss a qualitative comparison, where we
compare visually the methods to see whether they are able
to distinguish between the predictable region Vpred and the
unpredictable region Vunpr.

Here we use the ORBIT dataset, and we look and the
command corresponding to “tilt up”. For the diffeomorphism
induced by this command, the unpredictable region Vunpr is
the top part (Fig. 4e). For the inverse diffeomorphism, Vunpr is
the bottom part (Fig. 4j).

The uncertainty estimation method is independent of the
diffeomorphism estimation method, so we show various
combinations. The first two columns show the result for the
residuals-based uncertainty estimation method (Section V-
C); the first column is for the previous diffeomorphism
estimation method PDDL and the second for the improved
method RDDL, with a higher target resolution (0.5 pixels).
We attribute the much better classification between Vpred
and Vunpr to the improved accuracy of RDDL. The third and
fourth columns show the result for the new consistency-based
uncertainty estimation method (Section V-B), for the absolute
and relative consistency measures, defined in (8) and (9). The
relative estimation method looks qualitatively better.

A quantitative comparison among the uncertainty estima-
tion methods is more rigorous but less intuitive.

Fig. 7 shows the prediction error computed using the
uncertainty-weighted L2 distance defined in (7) for all
combinations of diffeomorphism and uncertainty estimation.
Experimentally we found that, if the uncertainty is not
computed well, there are some non-intuitive phenomena.
For example, using the usual L2 distance (not weighted by
uncertainty), the prediction error always increases over the
prediction horizon (see for example Fig. 6). If the uncertainty
is not well estimated, there is a non-intuitive result that the
prediction error computed using the weighted distance actually
decreases on average with the length of the prediction horizon.
Therefore, looking at the trend of the uncertainty as the
prediction horizon increases gives a quantitative measure that
the estimated uncertainty reflects the true uncertainty. The
data in Fig. 7 shows that the consistency-based estimation
of uncertainty has a better trend than the residuals-based
estimation.

VII. CONCLUSIONS

A diffeomorphism dynamical system (DDS), in which each
command induces a diffeomorphism of the observations, is a
relatively simple approximation of the sensel-level dynamics
of robotic sensorimotor cascades.

This paper has presented two improvements for estimating
diffeomorphisms and their uncertainty. The recursive learning
method (IV-C) allows to learn diffeomorphisms at higher
resolution than the previous method because of the reduced
memory needed. The consistency-based uncertainty estimation
method (V-C) provides a better estimation of the uncertainty,
as seen for example in the clearer distinction between
predictable and unpredictable regions Vpred and Vunpr.

cy

cl
es

(b) Cycles for reaching a given resolution

tim
e

(s
)

image resolution (pixels)

g = 15

g = 9

� = 1/5

� = 1/3

RDDL

PDDL

RDDL

(a) Computation time

Fig. 5. (a) Learning time for PDDL and RDDL for two choices of the
parameters (λ = 1/3, g = 9 and λ = 1/5, g = 15) as a function of
the image resolution (from 40× 30 to 320× 240), for the ORBIT dataset
composed of 1000 samples. The graph for PDDL interrupts at 160× 120,
which is the largest resolution that is possible to obtain if we want to learn
all diffeomorphisms at the same time for a system with 4 commands on a
computer with 12 GB of RAM. The methods have different computational
complexity: RDDL has cost O(ρ2 log ρ), while PDDL has cost O(ρ4) for
PDDL. In this Python implementation they take approximately the same
time around the 160× 120 resolution, PDDL having been more optimized.
(b) Number of learning cycles required to reach the required resolution.

Our current work consists in dealing with hidden states and
continuously-varying commands. The DDS dynamics that
we learn associates one diffeomorphism to one command.
This is only an approximation, because, in general, the
diffeomorphism depends also on other states, which could
be observable (such as the joints configuration) or hidden
(such as the 3D shape of the environment). For instance, this
approach fails in learning the diffeomorphism associated to
the Youbot base and third joint, because they depend on the
configuration of the wrist joint (1f–g).

Let q ∈ Q represents the observable states. In principle,
if a state of observable, we could learn a different diffeo-
morphism for each state and command; instead of the map
Φ : U → Diff(S) we could learn the map Φ : U × Q →
Diff(S). However, this would need much more data: if the
state space Q is discretized to 100 states, we would need
100 times the learning data. To avoid the need of more
data, we are considering an approach based on Gaussian
processes (GP) [18]. Let Eu,q

s (v) be the dissimilarity for
sensels s, v ∈ S for a given command u ∈ U at an observable
state q ∈ Q. Then we are considering either representing
the diffeomorphism ϕu,q(s) as a GP with state 〈u, q, s〉 ∈
U ×Q× S and observations in S, or representing directly
the dissimilarity Eu,q

s (v) as as a scalar-valued GP in the
variables 〈u, q, s, v〉 ∈ U×Q×S ×S . This approach would
reduce the data needed for learning, and as a bonus it would
allow interpolating between diffeomorphisms associated to
different commands.

Dealing with states that are not directly observable is a
more complicated goal. Similar functionality has been shown
in some works in deep learning, which demonstrated learning
of a collection of linear dynamical systems with discrete
hidden states [19].

1214

prediction horizon `

RDDL
PDDL

RDDL
at first
iteration

(a) Prediction error, ORBIT dataset, L2 distance

(b) Prediction error, ORBIT dataset, uncertainty-weighted L2 distance

(c) Prediction error, YOUBOTB3 dataset, L2 distance

(d) Prediction error, YOUBOTB3 dataset, uncertainty-weighted L2 distance

Fig. 6. Quantitative comparison of the two learning methods PDDL and
RDDL on a prediction task. Two datasets are used (Section VI-A): (a)-(b)
refer to the ORBIT dataset, (c)-(d) refer to the YOUBOTB3 dataset. Once
fixed a prediction horizon `, for all images yk in the dataset, we compare
the observed yk+` with a prediction based on yk and the learned model.
We use two different ways to measure distances on the set of uncertain
images: one based on the normal L2 distance, used in (a) and (c), and one
based on the uncertainty-weighted L2 distance (defined in (7)), used in (b)
and (d). In all cases the precision RDDL is the same as PDDL. The figures
also report the precision of RDDL with the approximated result after only
the first learning cycle.

pr
ed

ic
tio

n
er

ro
r

prediction horizon `

�̂res �̂c,n�̂c,a

ground
truth

PDDL RDDL RDDL RDDL
�̂res

Fig. 7. Quantitative evaluation for uncertainty estimation for the same
methods in the qualitative comparison in Fig. 4. The graph shows the
prediction error measured with the uncertainty-weighted L2 norm, defined
in (7), as a function of the prediction horizon `. We have noticed that the
quality of the uncertainty estimation can be quantified by the trend over a
long prediction horizon. We expect that the prediction error grows with the
horizon, as it happens for the ground truth uncertainty. When the uncertainty
is not well approximated, we find the paradoxical behavior that the trend
is negative, like for the residuals-based method. The better behavior of the
consistency-based methods reflects the qualitative measurement in Fig. 4,
except that the relative measure (Fig. 4c) performs slightly worse than the
absolute (Fig. 4d).

REFERENCES

[1] A Stoytchev. “Some Basic Principles of Developmental Robotics”. In:
IEEE Transactions on Autonomous Mental Development 1.2 (2009)
DOI:10.1109/ TAMD.2009.2029989.

[2] D. Pierce and B. Kuipers. “Map learning with uninterpreted sensors
and effectors”. In: Artificial Intelligence 92.1-2 (1997) DOI:10.1016/
S0004-3702(96)00051-3.

[3] B. Kuipers. “An intellectual history of the Spatial Semantic Hierarchy”.
In: Robotics and cognitive approaches to spatial mapping 38 (2008).

[4] J. Stober and B. Kuipers. “From pixels to policies: A boot-
strapping agent”. In: Proceedings of the International Conference
on Development and Learning (ICDL). 2008 DOI:10.1109/ DE-
VLRN.2008.4640813.

[5] M. Boerlin, T. Delbruck, and K. Eng. “Getting to know your
neighbors: unsupervised learning of topography from real-world,
event-based input”. In: Neural computation 21.1 (2009) DOI:10.1162/
neco.2009.06-07-554.

[6] J. Modayil. “Discovering sensor space: Constructing spatial em-
beddings that explain sensor correlations”. In: Proceedings of the
International Conference on Development and Learning (ICDL). 2010
DOI:10.1109/ DEVLRN.2010.557885.

[7] A. Censi and D. Scaramuzza. Calibration by correlation us-
ing metric embedding from non-metric similarities. Tech. rep.
CaltechAUTHORS:20120805-103228127. (To appear in IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2013). Califor-
nia Institute of Technology, 2012 (url).

[8] J. Sturm, C. Plagemann, and W. Burgard. “Body Schema Learning
for Robotic Manipulators from Visual Self-Perception”. In: Journal
of Physiology (2009).

[9] A. Censi. Bootstrapping Vehicles: A Formal Approach to Unsu-
pervised Sensorimotor Learning Based on Invariance. Tech. rep.
California Institute of Technology, 2012 (url).

[10] A. Censi and R. M. Murray. “Bootstrapping bilinear models of robotic
sensorimotor cascades”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). Shanghai, China,
2011 DOI:10.1109/ ICRA.2011.5979844.

[11] A. Censi and R. M. Murray. “Bootstrapping sensorimotor cascades: a
group-theoretic perspective”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). San Francisco, CA, 2011
DOI:10.1109/ IROS.2011.6095151.

[12] A. Censi, M. Hakansson, and R. M. Murray. “Fault detection
and isolation from uninterpreted data in robotic sensorimotor cas-
cades”. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). Saint Paul, MN, 2012 DOI:10.1109/
ICRA.2012.6225311.

[13] A. Censi and R. M. Murray. “Learning diffeomorphism models
of robotic sensorimotor cascades”. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). Saint
Paul, MN, 2012 DOI:10.1109/ ICRA.2012.6225318.

[14] A. Censi, A. Nilsson, and R. M. Murray. “Motion planning in obser-
vations space with learned diffeomorphism models.” In: Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA). 2013.

[15] R Memisevic and G. Hinton. “Learning to represent spatial transfor-
mations with factored higher-order Boltzmann machines”. In: Neural
Computation 22.6 (2010) DOI:10.1162/ neco.2010.01-09-953.

[16] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. “Convolutional
Learning of Spatio-temporal Features”. In: Proceedings of the
European Conference on Computer Vision. 2010 DOI:10.1007/ 978-
3-642-15567-3_11.

[17] M. do Carmo. Riemannian Geometry. Birkhauser, 1994. ISBN: 3-540-
20493-8.

[18] C. E. Rasmussen. Gaussian processes for machine learning. MIT
Press, 2006.

[19] I. Sutskever, G. E. Hinton, and G. W. Taylor. “The Recurrent Temporal
Restricted Boltzmann Machine”. In: Advances in Neural Information
Processing Systems (NIPS). 2008.

1215

