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Abstract— In this paper, we propose an efficient part-based 

approach for action recognition. The main concept is to recog-

nize human actions by less occluded parts without using a large 

set of part filters. Therefore, our approach is robust to occlusion 

and cost-effective. We extract spatio-temporal features from 

RGB-D videos, and assign a part-label to each feature. Then, for 

each part, a recognition score is computed for each action class 

by pyramid-structural bag of words (BoW-Pyramid) represen-

tation. The final result is determined by weighted sum of these 

scores and contextual information, which is based on the ratio of 

features between every pair of parts. Several contributions have 

been made in this work. First, the proposed part-based method 

is robust to occlusion and operates on-line. Second, our 

BoW-Pyramid representation can distinguish actions with re-

versed temporal orders. Third, recognition accuracy is in-

creased by incorporating contextual information. The provided 

experimental results have verified effectiveness of our method 

and demonstrated high promise of surpassing performance of 

the state-of-the-art works. 

I. INTRODUCTION 

Action recognition has become a popular field with a va-

riety of applications, such as human-computer interaction, 

surveillance, and sports video analysis. Recognizing actions 

in realistic environments is especially of increasing interest in 

recent research [1–4]. A lot of existing works did much effort 

to deal with the problem of cluttered background, either static 

or dynamic. However, only fewer works tried to solve the 

problem of occlusion, which is an important issue to action 

recognition. In this paper, we focus on the problem of human 

action recognition under occlusion.  

Although occlusion occurs commonly in real world, it is a 

difficult task to recognize human actions with some body 

parts being occluded. We consider three scenarios of occlu-

sion while performing an action. The first one is that the 

subject is occluded by static objects, the second one is that the 

subject is occluded by moving persons, and the third one is 

that the camera lens is partially occluded. We evaluate the 

performance under occlusion using all of these three scenar-

ios in our experiments. 
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Fig. 1. System overview. 

In our work, we define contextual information in the aspect 

of action itself. We observed that some actions are much 

associated with some particular body parts, whereas some 

other actions are associated with all body parts. For example, 

kicking is heavily associated with legs while running is as-

sociated with all body parts. With this observation, our con-

textual information is defined by the ratio of features between 

two body parts.  

Recognizing actions from RGB videos suffers from some 

problems such as illumination variations and background 

noise. Owing to emerging of RGB-D cameras, we can get 

depth information besides intensity. Depth information is 

invariant to illumination and color of clothing. Moreover, it is 

helpful to occlusion detection and foreground-background 

segmentation. Since Kinect is a handy inexpensive RGB-D 

camera developed by Microsoft, we use it as our input sensor. 

In this paper, we propose an efficient part-based approach 

that is robust to occlusion and can run on-line. The overview 

of our system is shown in Fig. 1. First, we segment human 

and extract spatio-temporal features from RGB video and 

depth video, respectively. Then, we assign a part-label to each 

feature. For each part, we use BoW-Pyramid to represent an 

action and train a Support Vector Machine (SVM) classifier 

for it. We also define contextual information according to the 

assignments of all features. Finally, each SVM classifier 

computes a recognition score, and the final result is deter-

mined by weighted sum of these scores and contextual in-

formation. 

The contributions of this paper are three-fold. First, the 

proposed part-based method is robust to occlusion and can 

run on-line. Second, with the BoW-Pyramid representation, 

we can distinguish actions with reversed temporal orders. 

Third, the contextual information is helpful to action recog- 
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nition by increasing recognition accuracy. To verify the 

mentioned contributions, three datasets are used in our ex-

periments, namely KTH [5], RGBD-HuDaAct [6], and the 

dataset that we called OccData recorded by ourselves. The 

provided experimental results are satisfactory, and have 

demonstrated high promise of surpassing performance of the 

state-of-the-art works. 

The rest of the paper is organized as follows. Section II 

introduces existing works related to our approach. Section III 

describes the proposed part-based BoW-Pyramid representa-

tion. Section IV presents the recognition scheme. Experi-

mental results are shown in section V, and we conclude this 

paper in section VI. 

II. RELATED WORK 

Several methods have been proposed to recognize human 

actions. Bobick and Davis [7] used motion history images 

(MHI) to represent actions. Gorelick et al. [8] represented 

actions as space-time volumes, and Lv and Nevatia [9] se-

lected some key poses for recognition. However, so far these 

methods depend on extracted silhouettes, which are broken 

caused by occlusion. Hence, they cannot deal with occlusion 

robustly.  

Part-based approaches are intuitively suitable for handling 

occlusion. Wang et al. [10] used histogram of oriented gra-

dient (HOG) and Local Binary Pattern (LBP) as features, and 

trained part detectors to detect human with partial occlusion. 

Tran et al. [11] used a set of body-part detectors, and repre-

sented each part as a sparse motion descriptor image for ac-

tion recognition. These approaches detect body parts by ex-

haustive sliding window search through the entire image, 

which is time-consuming. Instead of detecting body parts for 

each frame, we assign each feature to the nearest body part 

according to skeleton information provided by OpenNI [12]. 

Our method is cost-effective that can run on-line. Weinland et 

al. [13] used 3DHOG as features. They classified each em-

bedded block descriptor individually and then combined the 

classification responses as the final result. But the training 

data with occlusion are made artificially, which are far from 

being realistic. In our work, we use non-occlusion data for 

training and use realistic occluded data for testing, and 

demonstrate promising results in our experiments.  

Recently, methods based on local spatio-temporal features 

[14, 15] have shown promising results in RGB videos. Laptev 

et al. [2] followed the work by [15] to detect interest points 

and used histograms of oriented gradient (HOG) [16] and 

optic flow (HOF) as feature descriptor. Niebles et al. [17] 

followed the approach in [14] to detect interest points, and 

they used two models, i.e., probabilistic Latent Semantic 

Analysis (pLSA) and Latent Dirichlet Allocation (LDA), for 

recognition. After incorporating the additional depth infor-

mation, spatio-temporal features can be extracted from not 

only RGB videos but also depth videos. Zhang and Parker [18] 

extended [14] to RGB-D videos and used LDA to recognize 

human actions, but features they used are not scale-invariant. 

In our work, we use features proposed by [2] and extend them 

to RGB-D videos. 

Most methods mentioned above followed the bag of words 

(BoW) approach using spatio-temporal features [2, 17, 19]. 

However, BoW approach loses both spatial and temporal 

relations among features. To handle this problem, Laptev et al. 

[2] divided the whole space-time volume into spatio-temporal 

grids, and used SVM with a multi-channel χ
2
 kernel to clas-

sify human actions. Ni et al. [6] used spatial pyramid match 

kernel (SPM) algorithm [20]. In our work, we use 

BoW-Pyramid to represent actions, which is inspired by 

temporal pyramids for object recognition developed by Pir-

siavash and Ramanan [21]. BoW-Pyramid is a coarse-to-fine 

representation by concatenating all histograms produced from 

different time segments. Our action representation can dis-

tinguish actions with reversed temporal orders such as 

stand-up and sit-down. Experimental results demonstrate that 

our BoW-Pyramid representation is better than those in [2] or 

[6]. 

Some existing works defined context as scenes or objects 

associated with actions [22–24]. Such approaches recognize 

scenes or objects to assist in recognizing human actions in 

real world. However, generally speaking recognition of only 

some particular actions could benefit from the context. In 

other words, recognizing some actions may not get ad-

vantages from the context, and could even be jeopardized by 

it instead. There are two arguments for the above cases. First, 

the same action could occur at many places, and different 

subjects could take different objects while performing the 

same action. For example, running could occur on the street, 

at the gym, in the hallway, etc. Also, while a subject is run-

ning, he/she may carry a suitcase, a cellphone, or something 

else. Second, different actions could occur at the same place, 

and a subject may take the same object while performing 

different actions. For example, a subject could play basketball 

or volleyball at the gym. Also, a subject may take his/her 

cellphone while running or jumping. In our work, we define 

context by the content of actions so that it is general for most 

actions. 

III. PART-BASED BOW-PYRAMID REPRESENTATION 

In this work, we extract spatio-temporal features, which 

combine both intensity and depth information from RGB-D 

videos, after preprocessing. Then, we classify the extracted 

features into different parts and organize them into 

BoW-Pyramid to represent an action for each part. 

A.  Preprocessing 

The depth information provided by Kinect is 14-bit values. 

To form depth images, we convert the raw data to 8-bit values 

so that their range is consistent with intensity images. We also 

calibrate both color camera and depth camera of Kinect to 

coordinate the corresponding intensity image and depth im-

age. Before extracting spatio-temporal features, we segment 

human from depth image and intensity image implemented 

by OpenNI [12] for each frame. Fig. 2 shows one example of 

segmented result. Due to the segmentation, noise in the 

background can be removed. 
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B. Spatio-Temporal Feature 

For the spatial-temporal features, we apply the approach 

proposed by [15] that extended Harris operator to space-time 

space. We detect interest points separately from sequence of 

intensity images and sequence of depth images, where human 

has been segmented. Since shapes and motions are two im-

portant cues for action recognition, HOG and HOF are con-

catenated as feature descriptor. Features are extracted at 

multiple levels of spatio-temporal scales. Fig. 3(a) shows an 

example of extracted features from RGB video and from 

depth video. The red dots represent detected interest points, 

and the sizes of the corresponding circles represent scales of 

interest points. Note that there is some noise on the boundary 

of silhouette due to imperfect segmentation, so we perform a 

denoising process before assigning part-labels to these fea-

tures. To this end, we check the depth of each pixel within a 

window centered at an interest point. An interest point is 

considered as noise if the ratio of non-human pixels within 

the window is greater than a threshold. We discard these 

noisy features and keep the remainder as valid features. Fig. 

3(b) shows the denoising result of Fig. 3(a). 

C. Part Assignment 

We assign a part-label to each valid feature using Nearest 

Neighbor Classifier (NNC) according to skeleton information, 

which consists of 15 joint positions, provided by OpenNI [12]. 

Although such skeleton information provides body configu-

ration of a human, it is quite unstable due to tracking failure, 

change of viewpoints, and occlusion. Weng and Fu [25] 

pointed out that some of postures might be lost in tracking, 

especially for those with self-occlusion. In fact, the more 

occluded parts, the more severe failures that might occur. 

Some examples of unstable skeleton are shown in Fig. 4. 

Therefore, we use skeleton information to detect which 

joints are occluded instead of recognizing actions. A joint is 

regarded as occluded if most of its neighbors are non-human 

pixels. This technique is the same as denoising process of 

features described in the last subsection. We predefine the 

part to which each joint belongs, denoted by    for joint  . 

Then, we classify features into parts using non-occluded 

joints. Given the set of non-occluded joints   and a feature  , 

we find the closest non-occluded joint    of   using NNC 

                   

where   is the Euclidean distance function. We then assign 

    to   as its part-label. 

Since the configuration of human body is articulated, we 

treat some adjacent joints as the same part. Moreover, in order 

to take within-class variation into account such as some 

persons are right-handed while some are left-handed, we also 

treat the symmetric body parts as the same part. By doing so, 

we can get the correct assignments of features despite of 

incorrect configuration of skeleton in most cases. We use four 

parts in our work, and Fig. 5 shows some results of part as-

signments. Note that there are still few false assignments due 

to incorrect configuration of skeleton, but it does not affect 

our final result severely. 

D. BoW-Pyramid Representation 

We organize features that belong to the same part into 

BoW-Pyramid representation from RGB video and depth 

video separately. Then we fuse RGB BoW-Pyramid and 

depth BoW-Pyramid by concatenation, and the resulting 

feature vector is our representation of an action. 

The traditional bag-of-words approach for action recogni-

tion calculates the distribution of visual words over the entire 

video. The visual words are made by running clustering al-

gorithm over all features so that each feature can be assigned 

to a visual word. An action is represented by a histogram 

where each bin is the occurrence of a visual word. However, 

different actions with reversed temporal orders cannot be 

distinguished by such representation since their distributions 

of visual words over the entire video are very similar. To 

encode temporal information, we calculate the distributions 

    

Fig. 2. Segmented result of kicking. 

 

 

(a) 

 

 

  (b) 

Fig. 3. (a) Features extracted from RGB video and depth video. (b) The 

denoising result of (a). 

          

Fig. 4. Some examples of unstable skeleton. The rightmost two are under 
occlusion. 

 
 

  

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Results of part assignments for (a) baseball striking, (b) kicking, (c) 

tennis serving. Top row are intensity images and bottom row are depth 
images. Different colors of circles represent different parts. In this paper, 

we use four parts: head, torso, arm, and leg, which are represented by 

magenta, cyan, blue, and green, respectively. 
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of visual words using different time segments from a video 

based on the pyramid-like structure as Fig. 6 shows. There are 

L+1 levels in the pyramid and the whole video is divided into 

2
l 
segments at level l where L ≥ l ≥ 0. A histogram is com-

puted from each segment, and BoW-Pyramid is represented 

by concatenating normalized histograms from segments of all 

levels. Note that level 0 produces the same histogram as the 

one produced by traditional bag-of-words model. Therefore, 

BoW-Pyramid can be treated as the generalization of 

bag-of-words model. With BoW-Pyramid representation, we 

can distinguish different actions with reversed temporal or-

ders at finer levels although they are indistinguishable at level 

0. There is no need to divide spatial grids in our work since 

we have already divided features into different parts.  

IV. RECOGNITION SCHEME 

The main concept of our recognition scheme is to recog-

nize actions by parts. We also take contextual information 

into consideration, which can be treated as a prior distribution 

to each action class. A recognition score is computed from 

each part of view and the final result is combined in a 

weighted sum scheme as shown in Fig. 7. In this section, we 

describe contextual information followed by the weighted 

sum scheme. 

A. Contextual Information 

We get contextual information based on the ratio between 

two parts from all training videos. The ratio between part   

and part   in video   is defined as 

      
|  |

|  |  


where |  | denotes the number of features belong to a certain 

part in video  , and   is a small real number to prevent from 

dividing by zero. We divide all videos into one of three sets 

according to the value of this ratio and a positive threshold   

   { |       }

   { |        
 

 
}

     |      
 

 
 

Then for each set, the prior probability of action class   in 

  ,   1,2,3 is defined as 

 

     
 

|  
 |

|  |


where |  
 | denotes the number of videos that belong to class 

  in   . There are such prior probabilities for every two parts, 

but since most human actions are mainly different from limbs, 

and also the extracted features mainly focus on limbs as Fig. 5 

shows, only two parts, namely hand and leg, are used to get 

contextual information in our implementation. 

B. Weighted Sum Scheme 

A SVM classifier, which is implemented by LIBSVM [26] 

in our work, is trained for each part using training data. To 

recognize actions, we use the probability yielded by each 

SVM as the recognition score given a video. The final result 

is the action class with the maximal weighted-sum value 

                
  ∑           

where      
 is the prior probability according to contextual 

information that the given video belongs to   ,   is the set of 

all parts,    is the weight for part  , and      is the score of 

class   produced by SVM of part  . The weight    is deter-

mined by the fraction of non-occluded joints that belong to 

part  , defined as 

   
  

∑      


where    denotes the number of non-occluded joints belong 

to part  . The more non-occluded joints a certain part has, the 

greater its weight is. Thus, the final result is dominated by 

these parts with less occlusion while parts which are severely 

occluded have only little contribution to the final result. 

V. EXPERIMENTAL RESULTS 

Our experiment is carried out under a computer with Intel 

Core i5 CPU and 4GB RAM. Three datasets are used in ex-

periments, i.e., KTH [5], RGBD-HuDaAct [6], and OccData 

recorded by ourselves. OccData contains eight types of ac-

tions, which are baseball striking, boxing, jumping, kicking, 

running, basketball shooting, swimming, and tennis serving. 

 

 

Fig. 6. Pyramid-like structure of a video. The whole video is denoted by 

  , and the  th segment at level   is denoted by   
  where    ≥   ≥ 1 and   

≥   ≥ 1. 

 

 

Fig. 7. Recognition scheme. 

…

…

Level  0

Level  1

Level  L
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There are 875 RGB-D video clips of actions without occlu-

sion performed by 12 subjects, and 159 RGB-D video clips of 

occluded actions performed by 3 subjects out of the 12. All 

actions are performed in cluttered background with signifi-

cant intra-class variation and inter-class variation. The 

viewpoints and the distances between camera and each sub-

ject are slightly different. There are three cases of occlusion in 

OccData, that is, the subject is occluded by static objects, the 

subject is occluded by moving persons, and the camera lens is 

partially occluded. Fig. 8 shows some sample frames of 

OccData dataset, where the subject is segmented shown in the 

depth videos. We set L=1 in the following experiments. 

To evaluate the performance of our BoW-Pyramid repre-

sentation, we use KTH and RGBD-HuDaAct for testing. 

Because skeleton information is not provided by these two 

datasets, our features are not classified into parts, and con-

textual information is not used. We use the original data 

without any preprocess. To take fairness into account, we use 

the same evaluation scheme and performance measure as the 

compared work. The comparisons are shown in Table 1 and 

Table 2. Note that our BoW-Pyramid representation is better 

than the spatial-temporal grid proposed by [2] with the same 

feature used, and the accuracy is much improved compared to 

[6] since there are many actions with reversed temporal or-

ders, i.e., enter the room versus exit the room, go to bed ver- 
 

   

   

   

   
 

Fig. 8. Sample frames of OccData dataset. 
 

Work Average accuracy 

Ours 92.3% 

Laptev et al. [2] 91.8% 

Table 1. Comparison result of KTH. 

Work Average accuracy 

Ours (RGB-D) 91.7% 

Ours (RGB) 90.1% 

Ni et al. [6] 82.8% 

Zhao et al. [27] 89.1% 

Table 2. Comparison result of RGBD-HuDaAct. 

 

(a) Ours 

 

(b) Ni et al. [6] 

Fig. 9. Confusion matrix of our approach and Ni et al. [6]. Class of 

background activity is not used and thus not shown in (b). For better view, we 
use two characters to represent each action category, i.e., PJ: put on the 

jacket, EX: exit the room, SD: sit down, DW: drink water, EN: enter the 

room, EM: eat meal, TJ: take off the jacket, MF: mop the floor, MP: make a 
phone, SU: stand up, GB: go to bed, and GU: get up. 

sus get up, take off the jacket versus put on the jacket, and 

stand up versus sit down. Therefore, it can highlight the ad-

vantages of BoW-Pyramid representation using 

RGBD-HuDaAct. Such improvement can be observed in Fig. 

9. The main confusion of our approach is between drink water 

and eat meal since the motions between these two actions are 

very similar. Also note from Table 2 that the result of our 

approach using RGB features is sufficient good enough, and 

the additional depth features help only a little. One reasonable 

conjecture is due to the background noise in depth videos that 

makes the BoW-Pyramid representation less informative. We 

believe that such improvement would increase if human is 

segmented from depth videos.  

 To evaluate the robustness of our part-based method to 

occlusion and the benefit of contextual information, we use 

OccData dataset for testing. Our method is on-line that the 

frame rate is above 16 using video clips under resolution 

144×108. The video clips of training data are mirrored to 

handle variation between left-handed and right-handed. We 

test non-occluded data in leave-one-subject-out scheme, and 

use all non-occluded video clips as training data for testing 

occluded data. The result is shown in Table 3. As it can be 

seen, the recognition accuracy is promising even under such 

low resolution. Two observations can be made from Table 3. 

First, the accuracy can be improved with contextual infor-

mation for both occluded test and non-occluded test thus 

verify the benefit of our contextual information. Second, the 

accuracy doesn’t drop much when there is occlusion and thus 

verify the robustness to occlusion of our approach. Fig. 10 

shows the confusion matrices using contextual information. 

For non-occluded test, baseball striking is confused with 

kicking because some subjects raise or stick out one of legs 

during performing the striking motion, and the confusion 

between tennis serving and basketball shooting is due to the 

similar motions. For the occluded test, the accuracies of most 

action classes drop while some increase compared to the 

non-occluded test. This might be due to whether correct prior 

probability is got from contextual information according to 

the computed ratio from (2). 
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 With context  Without context 

Non-occluded test 82.5% 79.2% 

Occluded test 77% 74.6% 

Table 3. Recognition accuracy of OccData. 

  

(a) 

  

(b) 

Fig. 10. Confusion matrix of (a) non-occluded test and (b) occluded test 

with contextual information. For better view, we use two characters to 
represent each action category, i.e., BS: baseball striking, BX: boxing, JP: 

jumping, KK: kicking, RN: running, SH: basketball shooting, SW: 

swimming, TS: tennis serving. 

In this paper, we propose an efficient part-based approach 

to recognize actions from RGB-D videos. The proposed 

part-based recognition scheme is robust to occlusion and can 

run on-line. Our system recognizes an action mainly by spa-

tio-temporal features lying on less occluded parts. Instead of 

using a set of part filters to detect each part for each frame, we 

directly classify features into parts so that a lot of computa-

tional cost can be reduced. We use BoW-Pyramid to represent 

an action so that actions with reversed temporal orders could 

be distinguished. Moreover, we define the contextual infor-

mation based on the content of actions so that it is applicable 

to most actions and helpful to action recognition. Experi-

mental results demonstrate that BoW-Pyramid is comparable 

to the state-of-the-art approaches, and also show the robust-

ness to occlusion as well as the benefit of contextual infor-

mation. 
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