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Abstract— In this paper, we consider the performance of
distributed control algorithms for networked robotic systems
when one or more robots fail to execute the optimal policy. In
particular, we investigate the performance of the circumcenter
algorithm with connectivity maintenance [1]–[3] when one or
more adversarial agents act maliciously to maximally disrupt
convergence of the remaining, cooperative agents. To this end,
we formulate a performance objective for each adversary node
in terms of the circumradii of its cooperative neighbors in a
communication graph which does not require omniscience of
adversaries as is often assumed in the literature (e.g., [4], [5]).
We provide an optimization algorithm based on finite-horizon
dynamic programming, and obtain solutions through numerical
simulation. Our results show that in general adversarial nodes
are able not only to impede convergence toward consensus,
but can also affect global changes in the topology of the
communication graph for the cooperative agents.

I. INTRODUCTION

There has been much research in the past regarding the

consensus problem (also known as the opinion problem).

In a multi-agent system, consensus has various applica-

tion areas in terms of information consensus. A number

of linear algorithms for information consensus have been

developed in [6], [7], [8], [9]. In these studies, analysis of

convergence, performance, and stability with linear protocol

were performed in synchronous/asynchronous networks with

switching topology, and communication delays.

There were also studies concerning consensus of multi-

vehicle networks. In particular, [1], [2], [3] study the case

when agents’ physical positions are considered as consensus

variables. Ando et al. [1] first introduced an algorithm with

which agents locally converge to the center of the smallest

circle containing the set of locally connected agents, and

also proposed conditions to preserve the network’s connec-

tivity between pairwise agents. In [2], Lin, and Moore first

described this type of problem as multi-agent Rendezvous

problem, and applied their algorithm in both synchronous and

asynchronous network. In their work in [3], [10], Cortés, et

al. formalized those ideas from [1], [2], and showed that with

their circumcenter algorithm with connectivity constraint,

rendezvous can be achieved in finite time. In this paper, we

extensively use the terminology defined in [3].

Also there have been many studies regarding the consensus

problem in which adversarial nodes are present. Especially
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in computer networking community, this type of problem

is better known as the Byzantine Generals problem. The

original problem and and its variations can be found in [4],

[11], [12] to name a few. In recent years, there were also

attempts to develop linear algorithms based on [6], [7] which

are resilient to various types of malicious activity. Gupta

et al. in his paper [13], introduced general possible failure

modes for the malicious agents depending on how they

update their states. Similar to their terms, we define three

types of adversary as follows. Type-A adversary simply does

not communicate to other nodes, which is similar to jamming

problem in networks. Type-B adversary uses a constant rule

in updating its state. Type-C adversary updates its state

in an arbitrary manner. In [10], Cortés, et al. considered

link failures (which can be modeled as Type-A adversaries)

between pairwise agents, and showed that even with the

occurrence of link failures, rendezvous can be achieved under

special topological assumptions. Jadbabaie et al. in their

work [14], showed that a network that evolves with linear

protocol in [6] converges to a consensus whenever there is

a Type-B adversary. In their work, an adversary which they

call the leader moves with constant speed, and fixed heading.

In his paper [5], [15], Leblanc developed a robust linear

consensus protocol named as ARC-P. ARC-P is resilient to

Type-C adversaries whose numbers are upper bounded. Their

main idea is to give zero weight to nodes that have the most

deviated state values from others. In [16], Sundaram, and

Hadjicostis also considered Type-C adversary, and studied

the relation between resilience of linear consensus network

and its topological property.

In this paper, we consider the worst-case performance of a

multi-agent rendezvous network where part of the nodes act

maliciously. Especially we put our attention to a special case

when all the agents execute the circumcenter algorithm with

connectivity maintenance from [1], [2], [3]. The problem is

a maximization problem where the reward function is given

as the minimum circumradius of the local network. Here, the

term local implies that we consider only the circumcircles of

set of non-adversarial agents which are within the commu-

nication (i.e., sensing) range of adversaries. The adversaries

in our paper are Type-C, which have the potential to actively

disrupt the performance of the network. Both our previous

work in [17], and this paper utilize finite-horizon dynamic

programming as a solution method to obtain the worst-case

behavior of the distributed multi-vehicle networks pursuing

optimal sensor deployment, and rendezvous respectively.

The outline of this paper is as follows. First, we take a

brief review on terms and notable properties of average-
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consensus. Then, we introduce the circumcenter algorithm

with connectivity maintenance from [1], [2], [3] and show

that the algorithm converges to consensus using the proper-

ties of proper convex-hull averaging maps. Next, we model

our system with adversarial agents, and formulate our opti-

mization problem, which aims at maximally disrupting the

performance of cooperative-agent-only network. Then we

briefly investigate the physical, and topological constraints

for adversarial nodes, and present our solution method i.e,

a finite-horizon dynamic programming. Lastly, we show

numerical simulation results, and conclude our paper with

a few remarks.

II. PRELIMINARIES ON AVERAGE-CONSENSUS

A. Consensus in general

We consider a finite number of n agents, indexed 1, . . . , n.

Let I be a set of n indices such that I = {1, . . . , n}.

Then our dynamic system with each agent i ∈ I is a tuple

(X,X0, U, fi), where X ⊆ R
d is a continuous state space

where d is a dimension of the space, X0 ⊆ R
d is an initial

state space, U ⊆ R
d is an input space, and fi is a time

independent discrete-time evolution map fi : X × U → X .

Each state vector is denoted as xi ∈ X where i ∈ I , and the

set of all state vectors is denoted as x = (x1, . . . , xn) ∈ Xn.

In similar manner, f : Xn × Un → Xn is the evolution

map of all n agents such that f = (f1, . . . , fn). Hence, the

discrete-time dynamics for all n agents are given by,

x(l + 1) = f(x(l), u(l)) (1)

where l is symbol for discrete-time step such that l ∈ N∪{0}.

In this paper, for each agent i ∈ I , we consider the following

discrete version of distributed-integrator dynamics.

xi(l + 1) = xi(l) + ui(l) (2)

Now we are ready to state the definition of consensus.

Definition 1: Given with a dynamical system defined as

above, set of state vectors (x1(l), . . . , xn(l)) ∈ Xn is in

consensus at time l if,

x1(l) = x2(l) = · · · = xn(l). (3)

The state space X was also named as opinion space, and

denoted by S in [18], [19].

B. Average consensus on one-dimensional state space

There are various types of consensus problem most gen-

erally can be put as X−consensus problem. The symbol

X is defined to be a consensus value which is a function

of state vectors. (e.g. X (x) =
∑n

i xi is average-consensus,

and X (x) = maxi xi is maximum consensus.) The average-

consensus is a well-studied area especially in computer

science [8], [12], [20]. Typically, graph theory along with

matrix theory has been used as a tool to study the conver-

gence properties, and connectivity of the network in [7], [9],

[8]. The aforementioned papers are mainly concerned with

averaging-consensus algorithms, which are linear mappings

each defined by a matrix. Those algorithms are designed to

be used in a one-dimensional state space. Therefore for the

case d > 1, a more suitable mapping uses the concept of

convex hull, which is reviewed in the next section. In our

problem, we only deal with the state space in R
2. Hence,

unless otherwise noted d = 2.

C. Convex-hull averaging map

Recall that the weighted average of n state vectors is;

n
∑

i=1

wixi (4)

where
∑

i wi = 1, and wi ≥ 0 for each i ∈ I . Especially

when d > 1, (4) is more often called a convex combination

of n vectors (x1, . . . , xn). Recall that the convex hull of a

set x = (x1, . . . , xn), conv(x), is the smallest convex set

which contains x, which coincides with the set of all convex

combinations of vectors x. Now we are ready to see a new

term convex-hull averaging map which is defined as follows.

Definition 2: [18] Suppose that there are n agents

(x1, . . . , xn) each in the state space X ∈ R
d for d ≥ 2, then

f : Xn × Un → Xn is a convex hull averaging map1, if all

of its component functions {fi}
n
1 are convex combinations

of (x1, . . . , xn).

The necessary condition for fi(xi, ui) to be a convex com-

bination of (x1, . . . , xn) under (2) is for each i ∈ I ,

ui(x) ∈ conv(x)− xi (5)

Also, according to the definition 2, the following relation

holds.

conv(f(x, u)) ⊆ conv2 (6)

we say that the convex-hull averaging map f is proper,

if inclusion in (6) is strict everywhere else but when x

is consensus i.e. (3). The following theorem shows the

convergence property of the convex-hull averaging map.

Theorem 1: [18] Let f : Xn × Un → Xn be a

continuous, and proper convex-hull averaging map, with X

being a compact state space. Suppose that agents evolve

with discrete-time dynamics as (1). Given that initial state

x(0) ∈ X0 for each i ∈ I ,

lim
l→∞

xi(l) = γ (x(0)) (7)

where γ (x(0)) ∈ X is the consensus value.

For the interested reader, more details of this theorem and

its variations are contained in [18], [21] along with proofs.

This is a general result because it states that given any convex

averaging map, consensus is always guaranteed.

D. Circumcenter-law with connectivity constraints

In this paper, we are particularly concerned with networks

in which communication between nodes is constrained by

separation distance. Such constraints define a connectivity

graph Gdisk(r) = (V,E) in which elements of V correspond

to nodes, and an edge exists between nodes i and j if

1In [21], Krause used a term compromise map instead.
2Given a set S and a vector x, the difference of the set with the vector:

S′ = S − x is defined by S′ = {s− x | s ∈ S}.
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dist(xi, xj) ≤ r, where dist(·, ·) is a Euclidean distance,

and r is the communication range (see, e.g., [3], [22]). The

neighborhood index set of node i defined as

Ni = {j ∈ I | j 6= i, dist(xi, xj) ≤ r}

and Xi denotes the set of positions of all nodes that are

within range of node i, including node i

Xi = {xj | dist(xi, xj) ≤ r}.

In the absence of adversarial nodes, [1] presents a control

strategy for consenus that relies on geometric properties of

the neighborhoods of Gdisk. For each neighborhood Xi, we

define a circumcenter, denoted as CCi, to be the center of the

smallest circle that contains Xi, and circumradius, denoted

as CRi to be the radius of the smallest circle that contains

Xi:

CRi = min
q∈X

max
xj∈Xi

‖q − xj‖ (8)

and equivalently,

CCi = argmin
q∈X

max
xj∈Xi

‖q − xj‖ . (9)

Loosely speaking, the idea of the circumcenter law with

connectivity maintenance in [1]–[3] is that at each time step,

each agent i ∈ I moves toward the circumcenter CCi, while

maintaining connectivity with its neighbors by staying within

a connectivity constraint set Xi. The set Xi is the intersection

of the pairwise constraints Xi,j between node i and each of

its neighbors:

Xi,j = B

(

xi + xj

2
,
r

2

)

(10)

and

Xi =
⋂

j∈Ni

Xi,j (11)

in which B(a, b) denotes closed ball with radius b centered

at a. It is easy to show that if agent i and j are neighbors

at time l, then as long as ui(l) ∈ Xi,j − xi(l), and uj(l) ∈
Xi,j − xj(l), then i and j remain neighbors at time l + 1.

Let CC∗

i be the point in the boundary of Xi along the

line between xi and CCi (i.e., movement by node i to

CC∗

i is the maximal motion toward the circumcenter CCi

that remains within Xi). A circumcenter control law that

maintains connectivity constraints is given by

ui(l) = ki (CC∗

i − xi(l)) (12)

in which ki is a time-invariant proportional control gain for

agent i, and ki ∈ (0 1).

The following lemma describes the convergence properties

of the evolution map f : Xn×Un → Xn when circumcenter

law with connectivity constraint is applied to all agents.

Lemma 1: The discrete dynamic system given as (1), and

(2) which starts from initial position x(0) ∈ Xn
0 , with control

defined in (12) converges to a consensus.

A proof of this lemma is given in Appendix I.

Controller A

Controller C

System A

(Xm ,X0
m,Um,fa)

System C

(Xn-m,X0
n-m,Un-m,fc)

Augmented System

x

x

ua

uc

xa

xc 

x

Fig. 1: Block diagram of our system.

III. PROBLEM STATEMENT

In this paper, we consider the problem in which m of the n

nodes in the network act as adversaries. The remaining nodes

follow the control law in (2), and are called cooperative

nodes. We denote the index set for the adversarial nodes

as Ia = {1, . . . ,m}, and the index set for the cooperative

nodes as Ic = {m+1, . . . , n}. Thus, the overall network can

be partitioned into adversarial and cooperative subsystems,

as shown in Figure 1. For the adversary nodes, we denote by

xa = {xi}i∈Ia , ua = {ui}i∈Ia , and fa = {fi}i∈Ia the set

of positions, controls, and evolution maps, respectively, and

xc, uc, and fc are defined analogously for the cooperative

nodes.

In this paper, we assume that the cooperative nodes are

unaware of the presence (and identities) of the adversarial

nodes. Thus, the cooperative nodes execute control strategy

ui, defined by (12), for each i ∈ Ic. Note that when comput-

ing the circumcenter CCi, all neighboring nodes, including

adversary nodes, are considered (since the cooperative nodes

are not aware of which nodes might be adversarial).

The adversary nodes have as their goal to maximally

interfere with the achievement of consensus (or rendezvous)

by the cooperative agents. There are various ways that one

could formalize this objective; here we opt to define the

objective of an adversary node as maximizing the size of

the smallest circumcirle for those cooperative nodes in its

neighborhood. To formalize this objective, let Xi = {xj |
j ∈ Ni \Ia} denote the set of positions of cooperative nodes

that are neighbors of node i. Then the circumcenter and

circumradius of this set are given by

CRi = min
q∈X

max
xj∈Xi

‖q − xj‖ (13)

and

CCi = argmin
q∈X

max
xj∈Xi

‖q − xj‖ (14)

The objective for adversary node k ∈ Ia at position xk is

then given by

L(xk) = min
i∈Nk

CRi (15)

and the goal of the adversary is to maximize L by its choice

of control. Note that this is a local objective function, since

each adversary node considers only those cooperative nodes
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i
i

k

k

Fig. 2: An example showing ineffective adversarial node’s

control. The solid circle is the adversary, and blank circles

are cooperative agents (left: time l, right: time l + 1).

that lie within its communication radius.

In the following, we make the following assumptions

regarding the network.

• All agents use a same clock (i.e., synchronous network).

• Initially, the communication network defined with

Gdisk(r) is strongly connected.

• The system is memory-less, and time-invariant.

• Adversaries have twice the sensing rage of cooperative

agents (this assumption can easily be relaxed or modi-

fied).

IV. OPTIMAL ADVERSARIAL STRATEGIES

As the first step in this section, we define a constraint set

to confine adversarial node’s motion. First, for each time step

l, each adversarial agent’s input is bounded as follows,

ui(l) ∈ B (0, umax) , i ∈ Ia, ui(l) ∈ U (16)

where umax is a positive real number which is related to the

node’s mobile specifications.

A. Connectivity of adversarial nodes with other nodes

In this section, we investigate a more general version of

connectivity constraint which can be used for adversarial

nodes in special cases. For instance, suppose that there is a

cooperative node which needs to be monitored by adversarial

node all the time, then it is desirable that the cooperative node

be connected all the time. We state our result as follows.

Lemma 2: Suppose that j ∈ Ia, i ∈ Ic and i ∈ Nj at time

l. Then, dist(xj(l), xi(l)) ≤ r implies dist(xj(l + 1), xi(l +
1)) ≤ r if and only if,

uj(l) ∈ ui(l) +B
(

xi(l)− xj(l), dist(xi(l), xj(l))
)

(17)

Since the proof of the lemma is simple and algebraic, it will

be omitted from this paper. As you can see from (17), not

only the state information is required, but also ui(l) with

i ∈ Nj (i.e., neighbor agents’ control inputs) is necessary to

obtain the largest constraint set. In other words, only with

the redundancy of information we can obtain more relaxed

version of connectivity constraint set than (10).

B. Effectiveness of adversarial node’s control

In this section, we specify the condition under which

adversarial node’s control is effective or ineffective. Given an

adversarial node indexed with k ∈ Ia with some cooperative

agent i ∈ Nk, if adversary agent’s control at time l satisfies,

uk(l) ∈ B
(

CCi(l + 1),CRi(l + 1)
)

− xk(l) (18)

then the position of adversary xk(l) does not have any affect

in the motion of other agents because at time l + 1 for the

same i,

CRi = CRi (19)

Fig. 2 shows an example of this graphically.

C. A finite-horizon forward Dynamic Programming

Similar to our work in [17], we are interested in obtaining

the solution to maxxk
L(xk) over a finite horizon using

forward dynamic programming [23]. With a slight abuse of

notation, let maxxk
L(xk) = L∗(xk). The strongest point

of dynamic programming approach is that it provides both

necessary and sufficient conditions for optimality. To make

our approach tractable, we discretize the input space U into

a grid, and confine the motion of adversary to move over

it. Suppose that we have total N stages. Then given a time

horizon l = 0, . . . , N−1, and an adversarial node with index

k ∈ Ia, we expect to solve the following recursive equations.

J̃N (x(0)) = 0, (20)

J̃l(x(N − l)) = max
uk(N−l−1)∈U

[

gN−l−1

(

x(N − l − 1)
)

+J̃l+1

(

f̃
(

x(N − l), u(N − l − 1)
)

) ]

(21)

where f̃ is a backward state transition3 given as,

x(l − 1) = f̃
(

x(l), u(l − 1)
)

(22)

and the current reward at time l is given by

gl
(

x(l)
)

= L
(

xk(l)
)

(23)

The total reward over N stage is,

J̃0
(

x(N)
)

= max
uk(0),...,uk(N−1)

(

N−1
∑

l=0

gl
(

x(l)
)

)

(24)

We denote by π∗ = {u∗

k(0), . . . , u
∗

k(N − 1)} which solves

(24) to be the optimal policy of adversarial agent k over N

stages.

D. Stopping condition

Our DP algorithm in (20)-(21) terminates at time N when

either one of the following conditions is satisfied.

• u∗

a(N) = 0, i.e., ui = 0 for all i ∈ Ia.

• xm+1(N) = · · · = xn(N).

3The term ‘backward’ was used simply because with f̃ , state proceeds
backward in time.

5582



2

1

Fig. 3: A disk graph Gdisk(r) showing initial positions of

agents and their connectivity. (circled nodes are adversaries)

The 1st condition relies on a heuristic that if u∗

a(N) = 0

is the best control for adversarial agents at time N , it

will remain the best in subsequent time, too. The second

condition is to simply avoid trivial cases in this problem in

which all cooperative agents are in consensus except for the

adversaries.

V. SIMULATION RESULTS

In our simulation, we chose our workspace X to be a

unit square [0 1]2. Fig 3. shows the initial configuration.

There are total 20 nodes where one of them is the adver-

sary (n = 20, and m = 1). The unfilled circle in Fig.

3 is where the adversarial node (index:1) is placed. The

maximum communication range was set to r = 0.3, and

control gain was uniformly applied to all cooperative agents:

k2 = · · · = k20 = 0.2. Fig. 4 shows the evolution of all

agents over 40 stages. Solid circles are the final positions,

unfilled circles are initial positions, solid lines are traces of

cooperative nodes, and thicker lines are traces of adversarial

node. The adversarial node moves with 8-neighbor-rule over

80×80 equally spaced grid on X . Fig. 5 shows comparison of

cooperative agents’ network properties between 3 distinctive

cases: when there is no adversary in the network, when

there is a single adversary, if greedy method is used, and

if DP method is used to obtain optimal policy π∗ is used

over 40 stages. In Fig. 5-(a), the vertical axis shows the

minimum circumradius of local network with optimal policy

π∗ denoted by L∗(xk). In Fig. 5-(b), the vertical axis shows

the circumradii of all cooperative agents i.e., CR(xc). In

both Fig. 5-(a), and Fig. 5-(b), solution from DP method

yield the most favorable results in both local, and global

performance metric i.e., circumradius value. Furthermore in

Fig. 5-(c), the algebraic connectivity was compared between

3 cases. Algebraic connectivity is defined as the 2nd smallest

eigenvalue of the Laplacian matrix L which is related to

the worst-case speed of convergence of the network [7].

When using DP algorithm, the algebraic connectivity was

overall the lowest. In sum, results from Fig. 5 implies that
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Fig. 5: Comparison of network properties: circumcenter

algorithm with no adversary, adversary with greedy

algorithm, and DP algorithm as a solution method.

adversary’s motion impedes the rendezvous of cooperative

agents. The fact becomes obvious in Fig. 4 by comparing

3rd column with 1st, and 2nd column. Fig. 6 shows results

when there are 2 adversaries. We considered the worst-case

maximization strategy by choosing current reward at each

time step as mink∈Ia L
∗(xk). Fig. 6-(a) shows evolution of

agents using approximate DP algorithm (4-step lookahead)4.

In Fig. 6-(b), current costs at each stage are compared

between different algorithms

VI. CONCLUSION AND FUTURE WORKS

In this study, we formulate our performance objective in

terms of circumradii of 1-hop neighborhood of an adversary

4More than 4-step lookahead methods were not considered here due to
the heavy computational load.
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(a) No adversary, 20 stages (b) Greedy method, 20 stages (c) DP method, 20 stages

(d) No adversary, 30 stages (e) Greedy method, 30 stages (f) DP method, 30 stages

(g) No adversary, 40 stages (h) Greedy method, 40 stages (i) DP method, 40 stages

Fig. 4: Evolution of agents over 20, 30, and 40 time steps. Each column shows results when there is no adversary (a),(d),(g), when
there is a single adversary, if greedy method was applied (b),(e),(h), and if DP method was applied (c),(f),(i) respectively. Solid circles
are the final positions, and unfilled circles are initial positions. In 2nd and 3rd columns of the figure, double circles are the adversarial
nodes position, and the thinker lines are their traces.

node, and obtain the local strategy of each adversary node

by using DP method which is optimal. It is shown in

our simulation result that even a single node failure can

alter the convergence property of multi-agent rendezvous

networks. We propose a few possible future directions. First,

when we solve maxxk
L(xk), we consider only the 2-hop

neighborhood of adversary which implies that our strategy

is local. As you can see from Fig. 4 and 5, when a greedy

method is used, the solution falls into local maxima which

are trivial solutions, no better than the case when there is

no adversary at all. The result suggests that we consider

larger number of agents e.g., 3-hop neighborhood. Next, we
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(a) Evolution of agents (approx. DP)
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Fig. 6: Simulation results with two adversaries.

assumed in this paper that adversaries fully share information

between each other, and they cooperate to find the worst-case

optimal policy. In the future, it will be interesting to relax this

assumption such that communications between adversaries

are local, and each adversary makes its own decision in

independent manner. Furthermore, studying the convergence

property of adversary-present networks, and time to reach

consensus are other interesting subjects.

APPENDIX I

PROOF OF LEMMA 1

Lemma 1: The discrete dynamic system given as (1) and (2)

which starts from initial position x(0) ∈ Xn
0 , with control

defined in (12) converges to a consensus.

Proof: In the proof, we show that f is a continuous,

and proper convex-hull averaging map, and use Theorem 1 to

show that it converges to a consensus. To show the continuity

of f , it is sufficient to show that each component function

fi is continuous on X . In [3] it was shown that ‘fti’ is a

continuous map which implies that CC∗

i is also continuous

on X . From (2) and (12), it can be shown that each fi is

continuous. According to [3], CCi ∈ conv(Xi) \ Ver(Xi)
where Xi is set of positions for agent i, and its neighbor,

and Ver(Xi) is a set of vertices of conv(Xi). This implies

that CCi ∈ conv(Xi). By the property of convex set, an

open line segment connecting two points in a convex set, is

strictly inside the convex set. Using this property, given set

of points (x1, . . . , xn) each in X , each component function

fi map xi to xi + ui = xi + ki(CC∗

i − xi) from (2), and

(12). Obviously [xi CC∗

i ] ⊆ [xi CCi], and since ki ∈ (0 1)
for each i, the following relation holds.

fi(xi, ui) ∈ (xi, xi CC∗

i ) ⊂ [xi CCi] ⊂ conv(Xi) ⊆ conv(x)

For each i ∈ I , fi(xi, ui) is strictly in conv(Xi) if xi 6= CCi,

and there is always at least one node j ∈ I \ {i} such that

xj ∈ Ver(x). Hence, conv(f1(x1, u1), . . . , fn(xn, un)) ⊂
conv(x), and the inclusion is strict if x is not consensus,

which proves that the map f is proper. In [3], it is shown

that agents evolving with circumcenter-law and connectivity

constraint, with bounded input (similar to our gain ki);

‖ui‖ ≤ umax for some umax > 0, converges to a consensus

with a different approach using the invariance principle.
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