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Abstract— A topological mapping framework designed for
omnidirectional images is presented. Omnidirectional images
acquired by the robot are organized as places which are repre-
sented as nodes in the topological graph/map. Places are regions
in the environment over which the global scene appearance of
all acquired images is consistent. A hierarchical loop closure
algorithm is proposed which quickly sifts through the places to
retrieve the most similar places and another level of thorough
similarity analysis is performed over the images belonging to the
retrieved places. An Image similarity metric based on spatial
shift of local image features across omnidirectional/panoramic
image pairs is proposed. Newly proposed VLAD (Vector of
Locally Aggregated Descriptors) descriptors have been used for
loop closure at place and image levels. Accuracy and efficiency
of our system are corroborated with experimental results on
three publicly available datasets. It is shown that our approach
achieves good loop closure recall rates even without using
epi-polar geometry verification common among many other
approaches.

I. INTRODUCTION

Loop closure is a problem of knowing if the robot is re-

visiting an already visited area of the environment and plays

a pivotal role in accurate map construction. Many powerful

vision based approaches have been proposed recently [1],

[2], [3], [4] to address this problem efficiently. Although

some of these approaches use omnidirectional cameras for

experimentation, they do not explicitly take advantage of the

rich 360 degree image representation. With a 360 degree field

of view, omnidirectional images do not suffer from objects

going out of the field of view as the robot moves or rotates. In

other words, even during robot motion, omnidirectional im-

age appearance remains constant for a longer time compared

to the pinhole camera. This observation motivates us towards

the notion of places - regions of an environment over which

the acquired images’ appearance remains similar. Another

advantage of omnidirectional cameras is that one needs to

traverse each path only once (irrespective of the direction

of motion) in order to map the environment as opposed to

the traditional cameras which demand at least two passes

through a path each in opposite directions.

Representing the environment as places has many advan-

tages in place categorization, providing stronger constraints

for pose-graph SLAM [5], [6], [7], semantic labelling [8],

and topo-metric SLAM [9]. However, scope of the present

approach is only to use place representation for accurate and

efficient map building. Since the maps can be represented

by fewer nodes, one might as well refer to them as sparse

topological maps.

A hierarchical loop closure algorithm is proposed which

when given a query image, firstly the most similar

places/nodes in the map are retrieved. Then, an exhaustive

similarity analysis is performed on the member images of the

retrieved places. The first phase of loop closure constituting

most similar nodes retrieval is achieved using VLAD (Vector

of Locally Aggregated Descriptors) descriptor which has

been proposed in [10] for web-scale image search. This

process happens very fast and boils down the whole map to

a few important places. The second phase of loop closure

that aims to find the most similar images is carried out

using a novel spatial similarity measure for omnidirectional

images using visual words obtained by quantized local image

features (like SIFT, SURF, etc). This metric is obtained by

measuring shifts of matched features and can be used as

a soft geometric similarity measure which can be applied

to hundreds of images per time step and hence a good

alternative to RANSAC based epipolar geometry verification.

Also this technique does not need camera calibration and can

offer in plug-and-play type functionality to any omnidirec-

tional/panoramic camera images.

A secondary contribution lies in introducing the VLAD

descriptor to the robotics community which has never been

done to the best of our knowledge. Different aspects of our

algorithm are experimentally evaluated on the NewCollege

[11] public dataset and two of our own multi-sensor datasets.

The remainder of this paper is organized as follows.

Section II discusses the related work, section III briefly

introduces the VLAD descriptor construction and section IV

discusses the map formulation followed by node and image

similarity analyses. Finally our experiments are detailed in

section V.

II. RELATED WORK

Several approaches [12], [13], [8], [14], [15], [16] have

used place representation of the environment similar to that

of ours. Vatani et al. [12] proposed a sparse topological

mapping algorithm in which places are recognized by optical

flow. Statistical information over convex hulls formed over

the image features are used to detect place/scene changes

in [13], while bayesian change point detection over spatial

pyramid histograms is used in [8]. A normalized graph cuts

based space segmentation has been used in [14] for topolog-

ical mapping in indoor environments. In [17], SIFT feature

matching scores have been used in building sparse maps

for indoor environments. Incremental spectral clustering has

been used by [18] to form nodes of a sparse topological map
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which was used to localize the robot in different seasons.

A bag of words based sparse topological mapping has been

proposed and evaluated in [15]. GIST features [19] have been

used in [16] to construct a sparse topological map. However

GIST features are known for their low degree of invariance

[10].

Most of the existing vision based loop closure techniques

make use of the bag-of-words model [3], [1], [2], [20], [4]

but differ in the ways they detect loop closures. The power

of inverted files has been used in efficient loop closure in

[3]. Relations between visual words are modeled using a

generative model in [1] and [2]. Loop closures using word

histograms is used in [20] and a basically similar but much

more efficient approach is presented in [4] using BRIEF

descriptors. 3D range information is used in conjunction with

a camera in [21] for navigation and map building. The above

discussed approaches assume a dense topological map where

each image is treated as a node and focus more on the loop

closure problem. Most of these approaches do not assume

any specific camera model and propose generic approaches

and also do not capture the geometric information encoded

among the visual words of the images.

III. VLAD FEATURE DESCRIPTOR

This section provides a brief overview of VLAD (Vector

of Locally Aggregated Descriptors) descriptor [10] construc-

tion. As the name suggests, VLAD is a global image descrip-

tor constructed from local image descriptors like SIFT [22]

or SURF [23]. The basic intuition behind VLAD descriptors

is to combine the quantization residues of the local feature

descriptors into a single descriptor and use it as a global

image descriptor.

Algorithm 1 describes VLAD computation using SURF

descriptors as local image descriptors. The inputs for VLAD

computation are image I , a bag of words quantizer Q (code-

book) of k words learned on a training data, SURF descriptor

length l and a PCA (Principal Component Analysis) matrix

P which is also learned on training data. First, the SURF

descriptors are extracted on image I which are then quantized

(lines 3-6). Subsequently, quantization residues are computed

for each descriptor. Quantization residue is the vector dif-

ference between the feature descriptor and the centroid to

which it is quantized to in vocabulary Q, and hence has

the same dimensionality l as the feature descriptor. Vector

sum of quantization residues corresponding to all the features

quantized to each centroid is computed and then represented

as a column vector of matrix d. Finally, the k column vectors

of d (sum of quantization residues) are augmented to form

a full vlad descriptor Dvlad of dimensionality k ∗ l which

can be quite huge. For example, in our implementation, a

128−word vocabulary (k) and 64−dimensional (l) SURF

descriptors are used and the resulting full VLAD descriptor

is 8192−dimensional. Therefore, descriptor size is reduced

using a PCA-projection (line 15). In the present application,

PCA-projection has been used to compress the full VLAD

descriptor to a 256−dimensional descriptor. Hereafter in this

article, whenever a reference is made to VLAD descriptor it

actually means PCA compressed VLAD descriptor.

The quantizer Q and the PCA matrix P are the parameters

which are learned on the training data. It has been suggested

in [10] that very small vocabulary sizes like k = 64 to k =
256 are sufficient for attaining a good accuracy. A detailed

description of the quantizer and PCA matrix learning is given

in section V.

Since VLAD only depends on the continuous quantization

residues, it can bypass the effects of hard quantization [24]

to some extent.

Algorithm 1 VLAD Descriptor Computation

1: procedure GET VLAD(I , Q, l, P )
2: ⊲ I - Image, Q - Quantizer, l - SURF descriptor dimension, P - PCA matrix

3: Fsurf =Extract SURF(I) ⊲ Extracts SURF features

4: n =Num(Fsurf ) ⊲ Number of SURF features extracted.

5: k =Vocabulary Size(Q)
6: Fw =Quantize(Fsurf , Q) ⊲ Quantize features into words.

7: d = [O]
k×l

⊲ Initialize residue matrix with zeros.

8: for i = 1 to n do ⊲ For each SURF feature

9: ci =Get Centroid(Q, Fw
i) ⊲ get centroid corresponding to

the word.

10: d(Fw
i) = d(Fw

i) + Fsurf
i − ci

11: ⊲ Accumulate quantization residue as columns of d.

12: end for
13: Dvlad = [d(1)T |d(2)T |....|d(k)T ]1×(k∗l)
14: ⊲ VLAD descriptor computation by augmenting quantization residues.

15: Dpca−vlad = P ×Dvlad
T

⊲ PCA-projection to compress the

descriptor length.

16: end procedure

IV. MAP REPRESENTATION & LOOP CLOSURE

An image acquired at a time instant t is represented by It
and the features extracted on it by Ft = {Dt,Zt}. Where Dt

is the VLAD descriptor and Zt is the vector of bag of words

quantized SURF features. The topological map at time t is

represented as a set of nodes/places Mt = {N1, N2, ...} and

a graph Gt which encodes adjacency relations among nodes.

Each node Ni contains a set of member images and their

features I
Ni = {INi

1
, IFi

1
, INi

2
, IFi

2
...} and a representative

feature RNi which is the centroid of its member images’

VLAD descriptors. RNi is updated on addition of every new

image to the node.

For each new image It, its similarity to all the reference

images in the map Mt is evaluated hierarchically through

node and image levels. First, the nodes which produce

high similarities with It are found and then, a thorough

similarity with spatial constraints is evaluated on the images

belonging to the highly similar nodes. These image similarity

scores are used as likelihoods in a recursive bayesian filter

similar to [3], [1], [2], [17]. The transition probabilities are

uniformly distributed across the two neighboring images on

both sides of the reference image and zero with respect to

other images. The following subsections discuss in detail,

the node construction and similarity evaluation mechanisms.
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A. Node Similarity

The aim of node similarity analysis is to search the graph

for the most similar nodes to the given query image It. To

simplify the notation, let us call the query image Iq . To obtain

node similarities, we treat the set of nodes in the graph Gt−1

as two disjoint parts such that Mt−1 = {NR∪{N c}}. Where

N
R is called the reference nodes set which constitutes all

the nodes in the map except the current place node N c.

Given a query image Iq , there are three possibilities:

1) It is similar to an existing reference node(s).

2) It is not similar to any of the reference nodes but is

similar to the current place/node.

3) It is neither similar to any reference node nor the

current node and hence should belong to a new node.

The intuition behind separation of reference nodes and

current node is that in an image sequence, a query image Iq
can be similar to the current place node N c in most cases.

This can happen due to their temporal proximity which can

often mean appearance similarity, leading to a temporally

constant possibility of loop closure. Hence, a loop closure

possibility with the reference node set is evaluated first.

Given the query VLAD descriptor Dq we evaluate its

similarity to all the reference nodes in the graph using a

gaussian kernel as follows:

node sim(Dq, Ni) = 1−
gσ(Dq, Ni)

|NR|
∑

j=1

gσ(Dq, Nj)

where : gσ(Dq, Ni) = exp

(

−dist(Dq, Ni)

2σ2

)

(1)

In Equation 1, all the computations involving nodes

are performed using the node’s centroid. For example

dist(Dq, Ni) indicates the euclidean distance between Dq

and the centroid of the node Ni. The computed similarity

values range between 0 and 1 inclusively. Kernel width σ

will be discussed in section V.

A set of relevant nodes Nw whose similarities are greater

than a threshold Ts are selected as the best matches. The

Relevant nodes’ member images are selected for image

similarity analysis which yields likelihoods used for loop

closure posterior computation. A no-loop-closure event is

recognized when none of the similarities rise above the

threshold or when the posterior probabilities indicate a no-

loop-closure event. In case of a no-loop-closure event, since

the image does not belong to any of the places, we verify if

it is addable to the current place node.

Stricter conditions must be satisfied for an image to be

added to the current node. The current node Nc is modeled

as a hyper-sphere with center as the representative feature

RNc (centroid of the member images’ VLAD features). A

new feature can be added to the node only if the updated

centroid is less than a distance of rn from all the member

features as well as the new feature. The parameter rn is

called node radius and ensures that all member features are

tightly bound within this radius from the centroid. Finally, if

the feature cannot be added to the current node a new node

is formed with the feature itself being the centroid.

B. Image Similarity

Given a set of relevant nodes N
w a reference image set

I
R = {Ir1, Ir2, ...} is constructed by the union of relevant

nodes’ member images. Image similarities are computed by

combining two similarity measures namely the VLAD de-

scriptor similarity and the spatial similarity. VLAD descriptor

similarity is computed as the euclidean distance between the

query image VLAD descriptor Dq and the reference image

descriptor.

The second similarity measure evaluates spatial similarity

between two omnidirectional images (assumed to be un-

wrapped panoramas as the images in Figure 1). Let us con-

sider two omnidirectional images acquired at approximately

same location but with different heading directions ; and the

robot is assumed to move in locally planar environments.

Since the omnidirectional images have a circular field of

view, distances between different objects in an image are

well preserved even under a change in heading direction and

a slight translation. In other words, the spatial structure of

the objects(also applies to local image features) does not

change with an in-place rotation of the camera. Hence if two

images are from the same place, all objects in the first image

should be shifted by similar amount to take their positions in

the second image. A zero shift in object/feature coordinates

indicates that the images are acquired in the same place and

same heading direction, while a non-zero shift indicates same

place with different heading. In case of a non match different

objects will have different shifts. This situation is illustrated

in Figure 1 from which, one can infer that the feature shifts

of the true loop closure follow a converging pattern and those

of the false loop closure look dispersed.

The major hurdle here is to mathematically discriminate

true matches from false matches using the shift values while

being robust to the outliers. Algorithm 2 details the feature

shift analysis. The first procedure shows the structure of im-

age similarity evaluation, which includes a call to the spatial

similarity evaluation procedure. To compute spatial similarity

(procedure 2), initially the feature shifts are accumulated

into histograms (lines 10-17). There can be problems in

accommodating features which are shifted beyond the right

border of the image start appearing on the left and vice

versa. To tackle this problem, image width is used in order to

measure shifts in x coordinates only in one direction. Another

problem is in case of multiple instances of the same visual

word in one or both images. For this we have an efficient

clustering based solution. However, to keep things simple,

an approximation is made by considering the mean of the

keypoints as a representative keypoint of all occurrences of

the visual word. While adding shifts corresponding to the

mean keypoints to the shift histogram, the corresponding

bins are updated by the number of occurrences of the visual

word. All the experimental results provided in this paper are

generated by using this approximation.
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(c) True Match Feature
Shifts
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(d) False Match Feature
Shifts

Fig. 1: Feature Shift analysis of a true match and a false match. 1a
shows features matched across a pair of images which are acquired
in the same place. Matches are shown with blue lines. Shift in X
and Y coordinates of a matched feature pair is demonstrated with
a red dashed line. 1b shows illustrates a false match of a pair of
images acquired at different places. 1c and 1d show the plots of
matched feature shifts corresponding to the true and false match
cases respectively.

Weighted mean of shifts is computed using the shift

histograms (lines 22-31). Weighted mean is preferred in

place of regular mean to acquire robustness towards outliers.

Then the distances of all shifts to the weighted mean is

computed and entered into a distance histogram with L

bins (lines 32-36). The final similarity score is computed

using the histogram by assigning weights that are inversely

proportional to the distance the bin corresponds to (lines

39, 40). This way, the first bin elements which contains

all the shifts closest to the mean get multiplied by the

highest weight and hence contribute the most to the similarity

score. Similarly, the higher distance the bin corresponds

to, the lower its contribution to the similarity. Note that

the above discussed spatial similarity evaluation is only

robust to minor translations and variable heading. However,

it perfectly captures the definition of a loop closure and

is clearly indicated by the experimental results. The main

advantage of this approach which widely discriminates it

from others is that it produces strong similarity scores even

with a few feature matches between a pair of images acquired

at the same location. Consequently, the loop closure recall

rate is improved tremendously.

C. Map Update

When the query image is similar to the current node or

when a new node is to be formed, the query image is simply

added to the corresponding node and the node centroid is

updated.

However in the third case (mentioned in section IV-

A), image similarity likelihoods are computed (Likeli-

hood Evaluation procedure in Algorithm 2), which in turn

are used in posterior probability computation of loop closure.

A posterior probability greater than 0.9 is considered to be

a degree of belief high enough to indicate a loop closure.

In case of a loop closure, the image It is added to the

corresponding node only if the past m images also formed

loop closures with the node Ni or one of its immediate

neighbors.

V. EXPERIMENTS

Experimental results are presented on three data sequences

: the NewCollege [11], PAVIN and Cezeaux datasets. New-

College dataset is a popular laser and vision dataset from

Oxford. Panoramas from the LadyBug camera are used for

our experiments. The dataset also contains GPS readings

but they are only partly stable and hence are not very

useful for ground truth construction. Hence loop closure

accuracies for precision-recall evaluation were determined by

manual inspection wherever necessary. PAVIN and Cezeaux

sequences are part of the Institut Pascal multi-sensor datasets

(IPDS). The sequences are acquired using an omnidirectional

camera mounted on a VIPALAB platform 2 meters above

the ground. More details about IPDS can be found on the

website1. The sequences are available for download here2.

Complete ground truth information is obtained from an RTK-

GPS which was also mounted on the vehicle along with

the other sensors. The Cezeaux sequence is very challenging

because of the low resolution of images acquired with the

omnidirectional camera and huge variation in environmental

conditions as well as illumination.

The datasets contain huge number of images (refer to

Table I), however, much smaller subsets are used in this

paper. More precisely, only around two images per second

are considered, resulting 3977 images for NewCollege se-

quence, 1144 for PAVIN sequence and 11571 for Cezeaux

sequence (values in parentheses of table I). Loop closures are

considered when the image location is closer than 5 meters.

Our algorithm runs on a laptop computer equipped with an

intel core i7 under Linux.

1The IP datasets website: http://ipds.univ-bpclermont.fr/
2http://hemanthk.me/joomla/index.php/ipdataset The sequences are orga-

nized and stored here to facilitate easy use and download.
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Algorithm 2 Image similarity computation.

1: procedure 1: LIKELIHOOD EVALUATION(IR,Iq)
2: likelihoods = []
3: for each image i in IR do
4: di = Euclidean Distance(Di,Dq)
5: ⊲ Di,Dq are VLAD descriptors.

6: si = Spatial Similarity(Zi,Zq,W,H, b)
7: ⊲ Zi,Zq are lists of quantized words of SURF features.

8: ⊲ W - Width of images, H- Height of images

9: ⊲ b- Bin width for shift histograms.

10: likelihoods(i) = di ∗ si
11: end forreturn likelihoods
12: end procedure

1: procedure 2: SPATIAL SIMILARITY(Zi, Zq, W ,H ,b)
2: M = Zi ∩ Zq ⊲ Accumulate feature matches.

3: n = size(M) ⊲ Number of matches.

4: num x bins = W/b
5: num y bins = W/b
6: HX = [num x bins] ⊲ Histogram of x-coordinate shifts.

7: HY = [num y bins] ⊲ Histogram of y-coordinate shifts.

8: shifts = [] ⊲ Vector holding x & y shifts.

9: for each matched word wj in M do ⊲ Computes shifts for

matched words.

10: ki = get coordinates(Ii, wj)
11: kq = get coordinates(Iq, wj)
12: if (kq.x ≤ kr.x) then
13: δx = kr.x− kq.x
14: else
15: δx = (W − kq.x) + kr.x
16: δy = (kq.y − kr.y);
17: end if
18: HX.add(δx)
19: HY.add(δy)
20: shifts.append(δx, δy)
21: end for
22: xmean = 0; ymean = 0
23: wtx = []; wty = []
24: for each bin j in HX do
25: ⊲ Computes weights for mean computation.

26:

27: wtx(j) = num elements(HX(j))
n

28: end for
29: for each bin j in HY do

30: wty(j) = num elements(HY (j))
n

31: end for
32: xmean = Weighted Mean(HX,wtx)
33: ymean = Weighted Mean(HY,wty)
34: Hdists = [L]
35: for each shift s in shifts do
36: d = Euclidean Distance((xmean, ymean), s)
37: Hdists.add(d)
38: end for
39: similarity score = 0
40: for each bin index j in Hdists do
41: k = num elements(Hdists(j)
42: similarity score = similarity score+ 1

2j
∗ k

43: ⊲ Final similarity score..

44: end for
45: return similarity score
46: end procedure

Sequence Trajectory Velocity #(Images) FPS

PAVIN 1.3 km 2.3 m/sec 8002 (1144) 15 (2)

Cezeaux 15.4 km 2.5 m/sec 80913 (11571) 15 (2)

NewCollege 2.2 km 1.0 m/sec 7854 (3977) 3 (1.5)

TABLE I: Datasets Description. Values in the parenthesis are the
sample quantities from the original datasets that were used for our
experiments.

Parameter Name Variable Value

Bag of words vocabulary size for VLAD k 128

SURF descriptor size l 64

Full VLAD descriptor size k ∗ l 8192

PCA VLAD descriptor size 256

kernel width for node similarity σ 0.84/1.08
Node radius rn 0.7/0.9

Node Similarity Threshold Tn 0.3/0.4
Bin width for shift histogram b 10

#(bins) for distances histogram L 10

Vocabulary size for spatial similarity 32768

Minimum supporting loop closures m 4

TABLE II: Parameters

A. Parameters and Learning

All the parameters used in our system are shown in table

II. 64−dimensional Upright SURF (USURF-64) are used as

local image features. Training data is formed by randomly

selecting 20% of images from each sequence; SURF features

extracted on all the training images are used in learning the

bag of words vocabularies for VLAD computation and spatial

similarity evaluation. These two vocabularies are learned

using a single vocabulary tree - the first level of the tree

contains 128 nodes and each of these nodes are again split

with a branching factor of 4 for 4 levels having a total of

128∗44 = 32768 leaf nodes. Each SURF feature is quantized

at two levels - one at the first level of the tree (forms a 128-

word vocabulary) which is used for VLAD and the other at

the leaf nodes (forms a 32768−word vocabulary) which is

used for spatial similarity analysis. Full VLAD descriptors

computed on all the training images are used to learn the

PCA matrix P .

B. Node Similarity Analysis

As mentioned earlier in the paper, node similarity analysis

involves filtering the places in the map and selecting the

most similar nodes. This process leads to good results only

if it produces good recall rates even with bad precision. This

means that the retrieved nodes should contain all the loop

closure images which leads to high recall rates. However,

since the nodes also contain many more images other than the

true matches, the precision values can be far from 100%. This

is evident from figure 2a, which shows the precision-recall

values obtained by varying the node similarity threshold rn.

For best precision, node radius for PAVIN and Cezeaux

sequences was set as rn = 0.9 and that of NewCollege

sequence as rn = 0.7. The kernel width for node similarity

computation is chosen to be σ = 1.2 ∗nr, so that it can give

a slight cushion which accounts for noise in node similarity

evaluation.
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Sequence rn #(Nodes) #(images)/node (Traj.)/node

NewCollege 0.7 126 31.5 17.5 m

PAVIN 0.9 60 19.06 21.6 m

Cezeaux 0.9 572 20.22 26.2 m

TABLE III: Node Statistics. #(Nodes) - Number of nodes of the
map built on the sequence. #(images)/node - Average number of
images represented by each node. (Traj.)/Node - Average trajectory
length represented by each node.

Table III shows various node statistics of the maps built

on the three sequences. It can be observed that the average

number of images represented per node is between 20 and

30. This number is far less than the VLAD descriptor dimen-

sionality (256) which leads to singular matrices while using

statistically significant distance measures like Mahalanobis

distance for node level loop closure determination.

C. Accuracy

After the image similarity analysis, loop closure decision

is taken. The precision and recall of these loop closures are

shown in the Figure 2. Figure 2b illustrates the precision-

recall of the loop closure decisions computed without using

the spatial similarity measure and only using the VLAD

descriptor similarity. The curves are computed by varying

the similarity threshold Ts which controls which reference

nodes (and therefore reference images) are considered for

image similarity analysis. We can see that 100% precision is

only possible till 35% recall for the NewCollege sequence,

24% for the PAVIN sequence. Also 100% precision was

never reached on the Cezeaux sequence. The reason is

the low resolution images and the significant variation in

illumination. Figure 2c illustrates the improved precision-

recalls obtained by using the spatial constraint, where the

recall of NewCollege sequence is extended by 36% to a total

of 71% and that of PAVIN has seen an improvement by 58%
reaching a total of 82% at 100% precision. Spatial constraints

also helped the Cezeaux sequence which achieved a recall of

41% with 100% precision, demonstrating the advantage of

spatial constraints in obtaining better recall rates. It should

be noted that no geometric verification has been applied to

obtain the results. Loop closure maps over PAVIN, Cezeaux

and NewCollege sequences are shown in and a loop closure

scenario each are showed in Figure 3.

We have used our datasets and training data to compare

our accuracies with the FABMAP 2.0 3 algorithm as the

authors recently opened ther code to the public. We have used

the default parameters of the algorithm [1]. A vocabulary

of size equal to that of ours is used but on USURF-

128 features (128 dimensional). Precision and recall were

analysed by varying the feature extraction threshold (varying

the number of features per image), vocabulary size and prior

probability thresholds for presence and absence of words

in a location. Full Precision is obtained till 45% recall

on PAVIN, 43% recall on NewCollege and 19% recall on

3http://www.robots.ox.ac.uk/ mobile/wikisite/
pmwiki/pmwiki.php?n=Software.FABMAP

Cezeaux datasets without epipolar geometr verification step.

Evidently, out technique achieves recall rates almost double

that of FABMAP on all datasets.

D. Computational Time

There are five major modules in our algorithm. The three

modules: local feature extraction (120ms), local feature

quantization (5ms) and VLAD Extraction (5ms) take con-

stant time for every image irrespective of the map size. Node

similarity analysis and image similarity analysis costs on

the other hand increase with the map size. Node similarity

analysis takes less than 2ms and image similarity analysis

takes 15ms per frame on average. From the above values,

it can be seen that it takes an average of 150ms to process

each frame, enabling to process 6 − 7 frames per second.

The computational costs are all observed on the Cezeaux

dataset (the largest dataset with 11571) after all the images

are loaded into the map.

VI. CONCLUSION

A hierarchical mapping model is proposed which orga-

nizes images into places and represents them as nodes. A

loop closure framework which uses VLAD descriptors for

retrieving most similar nodes and a spatial similarity measure

on visual words that retrieves the most similar images is

described. Experimental results demonstrating the sparsity,

accuracy and computational time efficiency achieved by us-

ing are presented. The spatial similarity measure particularly

improved the recall rates (nearly double) than that of the

FAMBAP 2.0. These recall rates were achieved without

the geometric verification step. Capability of processing a

decent amount of frames per second is demonstrated on maps

containing over 11000 images.

ACKNOWLEDGEMENTS

The work presented in this paper has been done as a

part of the R-Discover (ANR-08-CORD-019) and ARMEN

(ANR-09-TECS-020) projects funded by the French National

Research Agency (l’ANR).

REFERENCES

[1] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization
and mapping in the space of appearance,” The International Journal

of Robotics Research, vol. 27(6), pp. 647–665, 2008.

[2] ——, “Highly scalable appearance-only slam : Fab-map 2.0,” in
Robotics Science and Systems, Seattle, USA, 2009.

[3] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “A fast and
incremental method for loop-closure detection using bags of visual
words,” IEEE Transactions On Robotics, Special Issue on Visual

SLAM, vol. 24(5), pp. 1027–1037, Oct. 2008.

[4] D. Galvez-Lopez and J. Tardos, “Real-time loop detection with bags
of binary words,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), San Francisco, CA, USA, Sep. 2011, pp.
51–58.

[5] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” 2006, pp. 2262–2269.
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