
Unity-Link: A Software-Gateware Interface for Rapid Prototyping of
Experimental Robot Controllers on FPGAs

Anders Blaabjerg Lange, Ulrik Pagh Schultz and Anders Stengaard Soerensen

Abstract— In experimental robotics, we are often faced with
differing requirements between projects and as a project
evolves, making the initial choice of technology difficult, often
requiring a continuous and tedious development of the low-level
parts of the robotic system. We propose the use of FPGAs as
a flexible solution to these low-level issues; We here address
the hitherto unresolved issue of interfacing the FPGA-based
controllers to high-level robotics software running on a PC.

This paper presents the Unity-Link software-gateware stack,
which connects high-level software frameworks to our modular,
FPGA-based generic hardware. Unity-Link provides simple,
unified abstractions for quickly and easily interconnecting PC-
based systems with nodes that provide hard real-time control of
distributed robotic systems. Unity-Link uses a component-based
modular bus structure based on open standards, and interfaces
with a library of gateware components, enabling us to create
complex applications quickly and efficiently. Automated code
generation is used to provide convenient, application-specific
interfaces to high-level robotics middleware such as ROS.

Terminology: The bit-file loaded into an FPGA, gen-
erated through synthesis of HDL code, will throughout this
article be denoted as gateware (GW) in order to distinguish
this from actual hardware (HW) or software (SW).

I. INTRODUCTION

There are numerous well-proven technologies for interfac-
ing robot controllers to actuators and sensors. Given specific
requirements we can choose an appropriate standardized
solution, such as a serial bus or simply a TCP/IP-based
network if there are no real-time requirements. In experi-
mental robotics, we are however often faced with differing
requirements from project to project and as the project
evolves over time [1], [2], [3]. This issue is a fundamental
challenge: adopting a new interface architecture each time
the requirements change takes a significant amount of time,
and usually does not contribute directly to the functionality
of the robot [1], [4]. The tendency is towards ad-hoc so-
lutions, resulting in an architectural mismatch between the
requirements and the technology, as well as an absence of
reuse between projects.

To remedy this problem, a hardware-software interface
approach is needed that facilitates development and increases
reusability [1], can be used without expertise in embedded
systems [5], and provides integration to high-level software
frameworks such as e.g. ROS [6] or Orocos [7]. We believe
that such an approach is most easily achieved using a
modular design [8], [9]: Hardware can be modularized into
standardized nodes that exhibit a high degree of flexibility
[1], [5], and software can be modularized into components

A. B. Lange, U. P. Schultz and A. S. Soerensen are with the Maersk
McKinney Moeller Institute, University of Southern Denmark, Odense,
Denmark (e-mail: {anlan, ups, anss}@mmmi.sdu.dk)

that can be combined to implement a solution that satisfies
a given set of requirements.

We propose that this approach be based on a single
software/hardware framework that provides a unified archi-
tecture, such that (1) the same generic technology can be
used to quickly and easily provide a wide range of different
hardware architectures, and (2) the robot controller interface
remains invariant as the hardware architecture of the robot
system evolves [10].

This paper presents the Unity-Link software-gateware
stack, which connects high-level software frameworks to
our modular, FPGA-based generic hardware. Unity-Link
provides simple, unified abstractions for quickly and easily
interconnecting a wide range of hardware and software tech-
nologies. Unity-Link connects PC-based systems with nodes
that provide hard real-time control of distributed robotic
systems. Unity-Link can be used with both stream- and
memory-mapped interfaces, uses a component-based mod-
ular bus structure based on open standards, and interfaces
with a steadily growing library of gateware components
providing commonly used, realtime processing, IO-, data-
storage and data-distribution cores, enabling us to create
complex applications quickly and efficiently.

Our approach is based on using automated code generation
to interface high-level frameworks to the underlying hard-
ware, providing flexible, hard-realtime hardware interfaces
using FPGAs, and using a real-time network to transparently
distribute control across multiple nodes [1], [2], [5], [11]. The
contributions of this paper concern the overall architecture
of the Unity-Link generic software-hardware connection
framework: a bus-based gateware architecture that exposes
the underlying shared-memory model of a realtime network
through a proxy model that integrates with a dataflow-based
middleware. In short Unity-Link provides a free, open-source
and easy-to-use architecture for connecting FPGAs to PCs
through a variety of interface technologies, a feature we
find to be lacking for FPGAs today. We provide a detailed
performance analysis of the runtime characteristics of Unity-
Link and evaluate the implementation complexity of Unity-
Link compared to traditional, ad-hoc solutions.1

Relation to previous work: Unity-Link is the compo-
nent of the Unity framework that connects the FPGA-based
infrastructure to a standard PC; the Unity framework [10] is
a unified software/hardware framework based on FPGAs for
quickly interfacing high-level software to low-level robotics
hardware, and is an evolution of the TosNet framework [1].

1The entire Unity framework is open-source and currently being made
available at https://github.com/Embedix/Unity

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3899

II. HARDWARE-SOFTWARE INTERFACES FOR ROBOTICS

A. Fundamental challenges and the role of the FPGA

Interfacing hardware to software is a fundamental chal-
lenge in robotics, in particular in those domains where new
hardware and control methods are developed through experi-
ments. We are primarily concerned with two key challenges:
providing an interface to specific actuator or sensor electron-
ics required for a given application, and bridging the gap
between this interface and high-level software frameworks
such as ROS that provide reusable functionality for the high-
level behaviors of the robotic system. The issue of scalable
real-time processing and control is critical here: although not
required for all applications, it is often essential for high-
performance robots interacting with the physical world.

We propose to solve the interfacing challenge using FP-
GAs and to bridge the gap to high-level software frameworks
using a generic software-gateware infrastructure. We choose
FPGAs over microcontrollers (MCUs) due to their superior-
ity in almost all performance areas relevant to experimental
robotics, except for price and library support:

• FPGAs can provide deterministic hard real-time per-
formance no matter the complexity or scale of the
implemented algorithms [9], [12], [13].

• Logic developed for a small FPGA can be moved
directly to a larger device while preserving timing be-
havior, but code written for one MCU cannot always be
moved to another larger MCU because of architectural
differences.

• On an FPGA the architecture is controlled by the
developer, facilitating interfacing to sensor and actuator
electronics, and providing increased flexibility as well
as the possibility of tailoring the gateware to reduce the
need for costly software abstractions on higher levels
[1], [2], [5], [11].

• FPGAs can be reconfigured allowing the architecture
and IO system to be updated even after deployment.
Using an MCU-based system only the algorithmic func-
tions can be altered, and only to the extent the processor
can keep up with the computation requirements; new
hardware interfaces, or updates to existing ones, cannot
be done without replacing the physical hardware.

B. MCU-based approaches
Many modern robotic systems use a layered architecture

with a PC running a high-level robotics framework, con-
nected to MCU-based boards that handle real-time concerns.
The connection could be a point-to-point serial connection,
a serial bus such as RS-485, a real-time network such
as CANBUS or Ethernet PowerLink (EPL), or simply a
standard network if there are no real-time requirements.

ROS and OROCOS are two of the most popular frame-
works for high-level SW development within robotics. As an
example of their use, Smits and Bruyninckx describe how a
complex robot control application can be created using a
composition of different component based SW frameworks
(ROS, OROCOS/RTT, KUKA-FRI and Blender) and data
flow integration [7]. ROS is described to have a simple,

easy and effective data flow model, but to have inefficient
coordination support. OROCOS on the other hand has a more
complex data flow model but also good support for coordina-
tion through the use of FSMs. Neither of these frameworks
however provide generic solutions for interfacing to low-
level electronics, but instead rely on the aforementioned
layered approach, for example using ROS-serial which in
turn requires a custom MCU-based solution to be developed.

C. FPGA-based approaches
We use FPGA-equipped boards as generic infrastructure

nodes for distributed control and HW/SW interfacing in
robotics [1], [2], [5], [11]. FPGAs have however also been
used in various other projects and fields of study. Fernandes
et al describe an HDL-based library for data acquisition and
real-time algorithms utilizing a PCIexpress interface [13].
Using this library a Transient Recorder and Processor (TRP)
unit is developed for use in for example nuclear fusion
experiments. The library is built as modular/componentized
HDL-code with the goal to ease algorithm development
for developers novice to the low-level HW details of FP-
GAs. Heckerling et al describe a general infrastructure for
rapid development of FPGA-based control systems using
the Wishbone System-on-chip (SoC) bus coupled with an
Ethernet UDP-based interface [14]. The framework allows
gigabit transmission rates and provides a remote-DMA (Di-
rect Memory Access) interface to the PC user. Various other
implementations of Ethernet-based communication stacks for
FPGA to PC interfaces are presented in [9], [15], [16] and
[17], the latter which in particular encourages the use of
Component Based Software Engineering techniques. Like
our work, the Wishbone SoC bus standard is a central
technology in the work of Kissler et al detailing a generic
framework for rapid prototyping of SoC systems [8].

Common technologies for interfacing FPGAs to PCs are
USB [9], [12], [18], Ethernet [14] and PCIexpress [1],
[5], [11], [13]. Ethernet-based technologies such as EPL
and EtherCat are easy to connect to a PC with medium-
to-high (10-1000Mbps) transmission speeds and software
development is relatively simple. Alternatively, with sim-
ple USB-based interfaces readily available for CAN-based
networks, it is easy to interface a PC. Modern USB-based
UART interfaces can handle transmission speeds of several
Mbps, and USB-FIFO interfaces reach the full potential of
the USB 2.0 specification (the limited bandwidth of CAN-
bus becomes the limiting factor here). PCIexpress-based
interfaces have very high performance in terms of data
bandwidth, but are also expensive in terms of the needed
hardware infrastructure, are more complex, and more difficult
to use because of the needed low-level kernel drivers.

None of these technologies however provide a software-
gateware stack that bridges high-level software frameworks,
such as those commmonly used in robotic MCU-based
systems, to the gateware control logic of an FPGA.

D. Evaluation
FPGAs are not commonly used in robotics, we believe the

reason to be partly historical: people stick to what they know,

3900

and a well-established community already provides high-
quality open-source software components, frameworks and
tools for standard PC and micro-controller based equipment.
Moreover, FPGAs suffer from a combination of a lack
of good, open-source, vendor-independent HDL-component
libraries for programming FPGAs, and a high degree of com-
plexity associated with FPGA programming, since knowl-
edge of low-level, internal FPGA structures is required for
advanced work. To make FPGAs more useful for robotics,
we believe there is a need for open-source, well-written, and
well-documented HDL-component libraries. These libraries
must be part of a framework that both provides an easy way
to construct the FPGA gateware and provides easy access to
modern, medium-to-high performance interface technologies.
This is the overall goal of the Unity framework [10]. We
will now present Unity-Link, which is the generic interface
between our HDL-library components and the PC.

III. UNITY-LINK

We have designed and implemented Unity-Link, a generic
PC-FPGA interface protocol that bridges the gap between
realtime logic and high-level software without compromising
ease-of-use and simplicity. Unity-Link provides direct access
to an arbitrarily large shared memory address space hosted
by multiple FPGA-based IP-cores, possibly distributed across
multiple physical nodes connected by a realtime network.
Communication with the underlying hardware is through this
shared memory, which thus serves as a software-independent
abstraction that can be mapped to higher level software.
Unity-Link can connect to a standard PC using a USB inter-
face, which provides reasonable performance and attaches
to a standard address/data bus where the hard real-time
capabilities of the FPGA can be exploited. The goal of the
Unity-Link protocol and interface is to shield the user from
the complexities of the underlying hardware interface and to
provide a single, simple and unified interface between a high-
level software framework, such as ROS running on a PC, and
the application-specific gateware in an FPGA or network of
FPGA’s. In effect Unity-Link bridges the gap between high-
level software frameworks and low-level FPGA GW using a
generic software-gateware infrastructure.

The Unity-Link gateware protocol has a stream-oriented,
layered and componentized design that provides flexibility
with regards to interface technologies that are point-to-point
(UART, FIFO, USB, etc.) and addressable streams (RS485,
Ethernet, etc.). The gateware provides flexible access to the
shared-memory model of the underlying real-time network,
in our case the TosNet realtime network [1]. The user
can interact with the Unity-Link protocol through a serial
link using any general-purpose programming language or
tools like MatLab. A high-level software stack for Unity-
Link, written in Python, facilitates integration into a publish-
subscribe computational model, and has been interfaced
to the Robot framework ROS. Automated code generation
directly supports both a proxy-based object-model imple-
mented in Python and the automatic generation of a complete
ROS node that links the Unity shared memory models

public scara(ctrl,comm) {
TOSNET(CTRL=ctrl, COMM=comm, BASE=0);
j1: joint("joint 1") @(0x80,0x88,0x8C,0x94);
j2: joint("joint 2") @(0x81,0x89,0x8D,0x95);
j3: joint("joint 3") @(0x82,0x8A,0x8E,0x96);
j4: joint("joint 4") @(0x83,0x8B,0x8F,0x97);
}
joint(name): @(spd,cpos,pos_sp,spd_sp) {
@cpos: signed READ(ID=name+":cpos", PUBLISH(1,10));
@spd: READ(ID=name+":spd", PUBLISH(1,10));
@pos_sp: signed WRITE(ID=name+":pos_sp");
@spd_sp: WRITE(ID=name+":spd_SP");
}

Fig. 1. UL-spec for the SCARA case study

to appropriate ROS topics. Configuration of the complete
software stack for interfacing ROS to a given hardware con-
figuration can in this way be done using a simple declarative
specification, as illustrated later in this section.

The Unity-Link gateware layer is completely determinis-
tic, therefore the setup is capable of real-time performance
as long as the selected physical interface and the connected
computer are both real-time capable. The goal of Unity is
however to provide the user with an easy way of moving the
real-time critical parts of a design directly into hardware,
ensuring hard real-time performance where appropriate [10].
The Unity-Link gateware directly supports automatic (hard
real-time) isochronous sampling and publishing of data.

A. Example: PanaRobo SCARA robot and ROS
As a concrete example of a use-case we have chosen

a working robot setup in our robotics lab: a PanaRobo
SCARA robot, part of an experiment to measure spray nozzle
characteristics [19]. Unity-Link is used to connect a standard
PC to a TosNet real-time network of FPGAs that control the
individual parts of the robot.

All the software is either generic or automatically gen-
erated from the Unity-Link specification (UL-spec) shown
in Figure 1. The public interface scara defines a TosNet
hardware link and four joints named j1–j4. Each joint is
parameterized by a name and the memory space addresses
used in the gateware interface. Joints are defined by the
joint expansion, which also specifies automatic publishing
of some of the values. These are automatically published as
ROS topics, and ROS topics are automatically created for
setting the joint positions. The underlying hardware is based
on distributed controller nodes using TosNet. The Unity-Link
to TosNet interface is completely generic. The distributed
controller nodes that interface the shared memory model to
various parts of the robot were developed previously [20].

The system could be extended by adding additional nodes
to the TosNet network or by adding additional IP-cores to
the Unity-Link address/data bus. In the latter case additional
VHDL code would be required, typically in the form of
component configuration and connections. We aim to provide
generic VHDL components for the most common tasks and
to automatically generate the required configuration and con-
nection code based on an overall architectural specification,
this is however left as future work.

B. Example: 18-DOF walker
As a simple evaluation of the ease with which software-

hardware interfaces can be established, we compare two

3901

implementations of the software-hardware interface for an
18-DOF walker robot. The original interface for this robot
was developed using a traditional MCU-based approach,
which required the implementation of a communication layer
on the PC, a corresponding communication layer on the
MCU, and a low-level controller for the MCU written in
assembler. Control of the robot was independently reimple-
mented using the TosNet framework [2], which is now one of
the components of Unity. As was the case for the PanaRobo
SCARA, the Unity-Link specification language defines the
high-level software interface, and generic VHDL components
are configured on the gateware side such that they interface
to and control the underlying hardware.

For the MCU-based solution, the implementation of the
communication comprised a PC-side serial communication
library, which at the time was written manually. Had an
approach such as ROS-serial been used, the PC-side could
have been automatically generated, similarly to the case
for Unity-Link, where the complete PC-side software stack
is configured and generated based on a 23-line declarative
specification. On the MCU, 58 lines of C code are used to
implement the communication, whereas hardware control is
implemented using 82 lines of mixed C and assembly code.
On the FPGA, the communication is completely generic, and
the hardware control required 14 lines of configuration code
to be written, plus 32 lines of boilerplate code that needed
to be copy-pasted to instantiate existing components; both
parts of this VHDL code are highly amenable to automated
code generation, this is however left as future work.

From a practical point of view, we note that the initial
software implementation was a time-consuming task, which
was significantly reduced by the use of the TosNet frame-
work, and in the end required less than 20 minutes for the
FPGA design, most of which was spent on creating the .ucf
file (IO pin specification) and less than 10 minutes to define
the Unity-Link specification.

C. Experience

In addition to the PanaRobo SCARA and 18DOF Walker
robots, we have also used Unity-Link for interfacing to
two Mitsubishi PA10 7DOF robot arms [21], controlling
prototypes of rehabilitative robotic training devices in [22],
and numerous student projects such as ROS-based field
robots and motor controllers.

The overall experience is that the gateware part of Unity-
Link works reliably, has high performance, and is easy to
interface to many different kinds of controller software due
to the simple protocol (described in more detail in Sec. IV).
Feedback from users, students and researchers alike, have all
been positive, although most users until now only have been
using the GW part of the framework, and have therefore had
an initial software development overhead in interfacing to the
serial protocol. The software stack now eliminates this issue
for software written in Python and any software based on
ROS, and we also plan to create bindings for other popular
tools and general purpose programming languages.

D. Software to gateware interface
The Unity-Link stream-based interface is currently based

on a standard FTDI FT232H IC, which can provide a data
rate of 64Mbit/s while resembling a standard serial-port on
the PC, it can however also support data rates of 320Mbit/s
using the FTDI proprietary D2XX drivers. In order to pro-
vide the possibility of higher performance and hard real-
time guarantees, the Unity framework can easily support
the introduction of a memory-mapped interface such as a
PCIexpress endpoint that directly integrates with the shared
memory model [1] instead of the Unity-Link gateware. Using
a PCIexpress interface provides a DMA connection directly
from the PC to the target FPGA (the high-level Unity-Link
software however does not currently support this feature).

IV. UNITY-LINK GATEWARE

Unity-Link is a stream-based interface protocol designed
for the generic address/data bus architecture of the Unity
framework. To ensure maximum compatibility with various
FPGAs it is written entirely in VHDL, without use of
vendor-generated Logic/IP-cores. The Unity-Link gateware
layer is completely deterministic, capable of hard real-time
performance for read/write operations as well as automatic,
isochronous sampling and publishing of data.

A. Architecture
The Unity-Link gateware implements a stream-based pro-

tocol for communication directly from a PC to the FPGA
fabric. Rather than directly interfacing to a specific compo-
nent, like a real-time network core or a fixed-size memory,
it is designed for handling communication between a PC
and a generic address/data bus. This approach solves the
inflexibility and resource waste problems of our previous
TosNet implementation [1], [11], at the expense of being
a more general interface without the possibility of dedicated
protocol commands for special-purpose actions, like, e.g.,
commands to commit in/out registers of double-buffered
memories, or transmitting asynchronous data. Such actions
must instead be implemented at a higher abstraction level
using general bus transactions.

Fig. 2 (left) shows a high-level architectural overview of
the Unity-Link gateware communication/protocol stack. The
Unity-Link gateware is built from three major modules all
connected to each other using FIFOs, these modules are the
physical layer, the datalink layer and the application layer.
This layered and componentized design - using simple FIFO
interfaces - facilitates easy change between various datalink
and physical layers, enabling security and reliability, as well
as connectivity requirements to different physical mediums
(e.g. UART, USB-FIFO, RS485 or Ethernet) to be met.

The Unity-Link application layer implements a subscrip-
tion manager which support up to 256 configurable subscrip-
tion groups that can publish data over the link. Each subscrip-
tion group is capable of holding up to 255 addresses, and they
can be individually configured for requesting data publishing
at any integer division of the subscription manager’s base
publish frequency. In addition, any subscription group can

3902

Data Proxy<<layer>>

Hardware Proxy

Message Link

Interface

Link Controller Message Handler

Memory/
Register-File

Data Proxy

Stream
(abstract)

Addressable
(abstract)

RS232

RS485

UDP

Data Proxy Group
(abstract)

Double Buffered
Memory

TosNet Memory

HW Proxy
(abstract)

0..*

1

0..*

1

1..* 0..*

1

1..*

Unity-Link Physical Layer
UART/FIFO/Ethernet

Unity-Link Application Layer
FSM

FIFOFIFO

Unity-Link Datalink Layer
CHKS + Data ENC/DEC

FIFOFIFO

Wishbone <> BII wrapper

BII

Wishbone Master

WBI

Gateware

Software

User logic

Wishbone interconnect (BUS)

FT245

Generic Data Proxy group

FIFO

Specific Data
Proxy group

<<user defined>>

<<layer>>

<<layer>>

<<layer>>

Fig. 2. Unity-Link gateware and software

also be configured to request a publish-event upon an external
hardware generated interrupt, enabling publishing of data
from FIFOs to happen asynchronously when available.

The datalink layer and application layer has been designed
to support an intuitive and human-readable message format.
This format allows arbitrarily long commands and data fields
in a message, the entire English alphabet can be used in
the command part of a message, while the data part is
restricted to hexadecimal characters. The datalink layer can
easily be extended with support for a pure binary protocol if
the overhead of the current ASCII based approach becomes
an issue. Moverover, automated code generation makes it
feasible to consider application-specific binary protocotols
for even higher performance, this is however considered
future work. ASCII encoding of the protocol has been
selected solely for ease of use.

Communication over Unity-Link follows a simple protocol
that gives access to the shared-memory model of the underly-
ing hardware. Read and write commands for specific memory
locations can be issued from the PC, for read commands
the resulting value is returned over the link in a read result
message. Publishing of data can be issued from the FPGA,
in messages that identify the data being pushed to the PC.

The protocol has basic commands for reading and writing
data to and from the shared-memory model using; single-
read (R), multiple-read (RM) which can generate an atomic
read of up to 255 data-words in one transaction, and the
write (W) commands, all of which can be issued with and
without CRC. Apart from these basic IO commands a set
of instructions for configuring, enabling/disabling publishing
as well a command for reading the configuration of the
Unity-Link GW exist. The latter is used for automatic
configuration of the Unity-SW stack with regards to data-
and address-widths, maximum read-multiple command size,
number of subscription-groups, their size, and the base-
publish-frequency.

Unity-Link is an interface for accessing a generic bus. In
order to actually make practical use of it, it must however be

interfaced to a specific System on Chip (SoC) bus. Several
standard bus schemes for SoC exist; we have chosen the
Wishbone bus as the default bus technology for our work
with the Unity framework and Unity-Link. The reason for our
choice of Wishbone is due to its inherent simplicity and the
availability of free Wishbone-compatible IP-cores through
the Open Cores project website. All GW components in the
Unity GW library aimed at bus-interfacing are designed for
easy integration with any SoC bus architecture.

B. Protocol stack implementation
The Unity-Link stack consists of the physical, datalink and

application layers. The datalink layer is optional: a physical
layer might not require a datalink layer, in which case it can
be omitted. The configurations and experiments reported in
this paper however all make use of the datalink layer.

The physical layer implements the logic necessary to
interface the higher layers to the interface medium. The
interface medium could be any type implementable in the
digital logic of an FPGA, e.g., UART, I2C, SPI, JTAG, FIFO,
USB or Ethernet interfaces (some of which require external
signal conditioning logic).

The datalink layer ensures that only valid messages are
passed on to the application layer. This makes it possible
to implement the application layer without the need for
it to rigidly verify the validity of an entire packet before
beginning to process it, hence both enabling increased mes-
sage processing speed and simplified error handling logic,
at the expense of increased latency. The datalink layer
provides CRC checksums using a standard CRC-8-CCIT
checksum (any CRC checksum could be generated simply by
inputting the desired CRC polynomial in binary form before
synthesizing the GW).

The application layer mediates interaction between the
message-based I/O and the generic address/data bus. This
layer is implemented as a finite state machine (FSM). In the
standard configuration, the application layer contains a sub-
scription manager holding one or more subscription groups,
and a set of states implementing the actual data publishing,
as well as states for activating and deactivating the publish
service, and configuring the individual subscription groups.
The subscription groups can be configured with the addresses
of data to be published and the rate of which to publish
them (relative to the base publish frequency). The application
layer FSM simply waits for a publish request from the
subscription group/manager (if present) or the reception of
a message header, after which it processes the request and
returns any data or generated error messages. The application
layer interfaces to a generic address/data bus, in other words
a Bus Independent Interface (BII). In order to use the Unity-
Link stack with a specific SoC bus, it is necessary to create
a wrapper for the application layer BII.

All complex IP-cores in the Unity framework (Unity-Link,
TosNet, double buffered memories, FIFOs, . . .) are imple-
mented with the IP-core functionality separated from the On-
Chip-Bus (OCB) implementation; making it easy to switch
OCB technology if desired, as advocated by Kissler [8].

3903

V. UNITY-LINK SOFTWARE

The Python-based software stack for Unity-Link is de-
signed to provide a flexible platform that will enable software
developers to quickly and painlessly implement high-level
access to, and control of, any FPGA-based system using
the Unity framework, and to enable easy integration into
data-flow oriented frameworks (e.g. ROS). Code generation
is used to provide application-specific bindings to Python and
ROS, as well as automated configuration of the SW-stack.

Fig. 2 (right) shows a UML class diagram of the main
classes and upper layers of the Unity SW stack. The Unity
SW stack is divided into four main layers plus an underly-
ing layer for the HW-interface device driver. This layered
approach enables the developer to choose the best level of
abstraction for the task at hand, simply by connecting to the
layer with the desired abstraction-level.

The lowest two layers are the device driver and stream
interface layers, direct use of these layers provides complete
control over the data transmission, but requires direct man-
agement of data and requests sent across the link. The stream
devicer-driver layer (Layer 0) is an application-specific
device-driver interface to for example UART, Ethernet, etc.
This layer is used by the stream interface layer (Layer 1),
which provides a unified, simple, direct and low-level control
of read and write requests to the FPGA address-space.

The next two layers provide message-based and proxy-
based access models, use of these layers enables direct access
to individual data elements, but lacks logical abstractions
for grouping data. The message link layer (Layer-2) pro-
vides a message-centered, FIFO-based interface to the FPGA
address-space. It handles both transmission, re-transmission
and reception of responses and publish messages. The hard-
ware proxy layer (Layer-3) provides high-level proxy classes
for direct access to the associated GW-module in the FPGA,
simplifying data access to mere relative addressing, as well
as providing abstractions over module-specific behaviour
that cannot be directly or efficiently mapped to the generic
read/write/publish protocol of the lower SW/HW layers.

The uppermost layer is the data proxy layer which pro-
vides logical groupings of data and software-based pub-
lishing if required. Our code generator uses this layer to
provide high-level abstractions to the programmer. The data
proxy layer (Layer-4) provides classes for a high-level data-
centered abstraction layer across all available HW-Proxies,
even from differing streams. It is possible to create logical
groups of data proxies based on any data proxy object(s),
setup automated data-publishing (HW as well as SW con-
trolled), and register user-specified callback functions on
both data proxies and data proxy groups.

Apart from the Python-based high-level interface we cur-
rently also have simpler interfaces for C, C++ and MatLab.

VI. EXPERIMENTS

We now describe a series of experiments designed to
analyze the performance of the Unity-Link stack. We first
describe the experimental setup, then report on a detailed

set of read-write experiments and a simple experiment per-
formed using ROS, and last present our analysis of the data.

A. Experimental setup
The Unity-Link GW can be configured in multiple ways

and is designed to connect to any stream-capable interface.
For the experiments, we have configured the GW for 32-
bit data-width, 8-bit address-width, and 50MHz clock. All
tests have been conducted using the FTDI FT232H chip as
interface between a PC and the FPGA; it has been configured
in both RS232-UART mode with baud rates of 1, 6 and
12 MBaud as well as Asynchronous FT245 mode (64Mb/s),
whereas Rx- and Tx-FIFO depth of the GW-interface has
been set to both 16 bytes and 256 bytes. The FT245 mode
with 256-level FIFOs generally had the best performance.
The PC is an Intel Core 2 DUO vPro E8400 at 2x3GHz
with 2Gb of RAM running Ubuntu 12.04 LTS.

The physical-layer GW has the possibility to force the
FT232H-IC to send data “immediately”, i.e., to disregard
USB timeout and receive-fifo thresholds in order to reduce
latency, at the expense of decreased throughput. This Send-
Immediate (SI) functionality has been tested for both publish-
messages alone and in general for read/write responses.

We have made experiments on three basic levels to deter-
mine the performance parameters of Unity-Link: Level-one
parameters have been obtained through VHDL-simulations
of the GW for the R, RM, W commands as well as for
the GW controlled publishing in the various configurations
possible for the GW. Level-two parameters are obtained
through small test-scripts written in Python, with direct
access to the serial-port interface presented by the FTDI
FT232H hardware. Level-three data are obtained through
test-programs run directly on top of the auto-generated
wrapper for the Unity-SW stack.

B. Detailed read-write experiments
The performance for a single read command at the dif-

ferent levels can be seen from Table I, subtables Read
and Read:SI. The FTDI row is shown for reference of the
expected throughput: its latency is the ideal-case latency
consisting of transmission-time of request+response plus
the GW-delay. For average values the standard deviation
is written in parentheses and denoted “sd:”. Latency de-
scribes the time from a request is sent until its response
is available. Throughputs are given - relative to the PC - as
input “(i)”, output “(o)”, input+output “(i+o)”, and input-or-
output “(i,o)” depending on what is most appropriate for the
level and access-method used. An asterix “*” indicates an
asynchronous test, meaning requests have been sent in large
bursts from one thread and a second independent thread has
been used to receive and store the responses.

If the GW does not use the SI functionality, the latency of a
synchronous read is measured to be, on average, 974µs from
a low-level python test-program, and from the Unity-SW
stack to be 1072µs. If on the other hand the SI functionality is
utilized, the latency drops to 223.6µs and 652µs respectively.
This increase in performance however comes at the price

3904

Read Latency [s] Throughput [b/s]

Unity GW 1.14 85.7×106 (i)
200.0×106 (o)

FTDI FT245 3.524 (ideal) 67.1×106 (i,o)
Low-Level python 974 (sd: 120) 164.3×103 (i+o)

Low-Level python* 889.8×103 (i)*
Unity-SW 1072 (sd: 17.5) 149.2×103 (i+o)

Read:SI Latency [s] Throughput [b/s]

Unity GW 1.14 85.7e6 (i)
200.0e6 (o)

FTDI FT245 3.524 (ideal) 67.1e6 (i,o)
Low-Level python 223.6 (sd: 9.06) 715.6e3 (i+o)

Low-Level python* 639.1e3 (i)*
Unity-SW 652 (sd: 11.7) 245.6e3 (i+o)

Write Latency [s] Throughput [b/s]req→rsp req→effect

Unity GW 1.26 approx. 0.84 151.3e6 (i)
54.1e6 (o)

FTDI FT245 - - 67.1e6 (i,o)
Low-Level python

971 (sd: 76.81) 19.9 (sd: 3.77) 156.5e3 (i+o)

Low-Level python* 56.6e6 (o)*
1.315 (burst)* (30xWrite)*

Unity-SW 1058 (sd: 16.64) - 143.7e3 (i+o)

Write:SI Latency [s] Throughput [b/s]req→rsp req→effect

Unity GW 1.26 approx. 0.84 151.3e6 (i)
54.1e6 (o)

FTDI FT245 - - 67.1e6 (i,o)
Low-Level python

221.74 (sd: 5.89) 19.03 (sd: 3.07) 685.5e3 (i+o)

Low-Level python* 62.5e6 (o)*
1.159 (burst)* (30xWrite)

Unity-SW 553 (sd: 34.86) - 274.9e3 (i+o)

TABLE I
PERFORMANCE MEASUREMENTS FOR READ-WRITE OPERATIONS

of reduced throughput for large/bulk asynchronous transfers,
where the throughput of the received data drops from roughly
890 Kb/s to 640 Kb/s. The maximum size of an asynchronous
transfer also drops from 200+ requests in a single transfer
to just 18. The throughput for asynchronous transfers is
calculated as the average time between reception of each
response in the asynchronous request, divided by the re-
sponse size. These throughputs seem very low, and one could
suspect the USB-interface hardware and the GW of being
much slower than expected. But by letting the FPGA GW
timestamp the generated responses with a high resolution
(50MHz) timer, it can however be seen that the asynchronous
requests are actually handled at very high throughputs in the
GW. For the large asynchronous transfer of 200+ requests, a
mean response-data-rate of 35.3×106 b/s is generated, with a
periodic slow-down after roughly each 36 messages (roughly
every 62.14µs). The 36 messages in each period are sent at
an average data rate of 64.2×106 b/s. The reason for this
periodic slow-down is believed to be due to the output FIFOs
running full, because of the periodic nature of the USB-
interface. For the GW using the SI function, the maximum
size deteriorates to 18 messages, but it can be seen from the
GW timestamps that the responses for these 18 messages
are generated with an average data rate of 121.8×106 b/s,
which can only occur as the output FIFO in the GW before
the FTDI interface is 255 bytes deep, just enough for the
252 bytes generated by the 18 requests.

Table I also shows the performance parameters for a write
command (subtables Write and Write:SI). The latencies are
either the time from a request is sent until a response is
received (req→rsp), or the time from a request is sent to its
effect on the FPGA output-pins (req→effect). From Table I it
can be seen that the stateful (synchronous) write performance
is very low, but that it can be drastically improved by using
the SI functionality. A write has a latency of roughly 20µs
(on average) from the request is sent until it takes effect on
the FPGA output, subsequent writes if performed as a burst
are effectuated with a period of 1.16-1.32µs depending on
whether SI is used or not. Writes performed asynchronously
as a burst of, e.g., 30 writes has an effective (output)
throughput of 56.6 Mb/s for non-SI writes and 62.4 Mb/s

Fig. 3. Average latencies

for SI-writes. In essence SI seems to have purely a positive
effect on writes, which might be because of the smaller size,
and hence much lower data rate of the generated responses.

Figure 3 shows the average latencies and their standard
deviation of synchronous Reads and Write from different
levels (GW, ideal 64Mb/s link, low-level Python test code
and Unity-SW), with and without the usage of SI.

Figure 4 shows the publish-frequency-limit versus the
publish-message-size. The theoretical limit set by the GW
(running at 50Mhz) as well as the lower limit set by an ideal
64Mb/s link are both plotted together with the measured
burst and sustained performance data from the low-level
Python test-code and the Unity-SW. It can easily be seen that
the Unity-SW is much more inefficient than the low-level
Python test-code, this indicates that the current Unity-SW
implementation has a performance issue that needs solving.

C. ROS experiments
A detailed analysis of the performance of ROS with Unity-

Link is out of the scope of this paper. Since the ROS interface
is a thin wrapper around the highest level of the Unity-Link
software stack, the performance is given by the performance
of ROS itself, the ROS Python bindings, and the Unity-Link
stack. To provide an overall idea of the performance, we
have measured the rate at which data can be published to

3905

Fig. 4. Publish-frequency-limit versus publish-message-size

and from Unity-Link. The rate is simply measured using
“rostopic” for a single-integer message type. Data can be
published from Unity-Link to ROS at a sustained rate of
roughly 1.8KHz whereas publishing data from a Python
script to Unity-Link can only be done at a significantly
lower sustained rate of 0.3kHz. Since ROS subscriptions are
currently implemented using synchronous Unity-Link writes,
the performance observed correlates with the performance of
the highest levels of the Unity-Link software stack.

D. Analysis
Based on the experimental results, we conclude that the

current implementation of the Unity-link protocol needs to
be extended. First, support for stateless Writes would allow
the PC application to write data at the full bandwidth of the
link without generating responses. Second, support for an
optional message-ID field should also be added, in order for
the Unity-SW to be able to properly support asynchronous
transmission and reception of data for increased utilization
of the link bandwidth. Last, support for variable bit-width
datatypes, such as booleans, bytes, word and dwords etc. is
desirable on layer-4 of the SW stack for flexibility.

The GW and USB-link can support high bandwidths, but
the latency of the USB link is significant when used for
control applications. We believe that this can be mitigated by
using publishing of all timing-critical data, using SI on pub-
lish messages to reduce their latency, and providing support
for stateless writes. An additional performance enhancement
would be to make use of the proprietary D2XX driver from
FTDI instead of the generic virtual-com-port (VCP) driver.

VII. CONCLUSION & FUTURE WORK

In this paper we have presented Unity-Link, a uniquely
flexible software-gateware framework for connecting high-
level robotics frameworks to low-level FPGA-based elec-
tronics. The performance analysis demonstrates good overall
performance, very high performance of the gateware stack,
and indicates directions for improving the performance of
the software stack. In terms of future work, to improve
overall performance, the Unity-SW stack should probably be
reimplemented in Java or C++. The use of Python has been

(and remains) highly convenient for prototyping, making the
initial research and development of the SW architecture much
easier, at the cost of performance.

REFERENCES

[1] S. Falsig and A. Soerensen, “An FPGA based approach to increased
flexibility, modularity and integration of low level control in robotics
research,” in IEEE/RSJ IROS 2010, Oct. 2010, pp. 6119–6124.

[2] R. Ugilt, A. S. Soerensen, and S. Falsig, A step toward ’plug and
play’ robotics with SoC technology. World Scientific, 2010, ch. 52,
pp. 415–422.

[3] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Orca: A component model and repository,” in Software Engineering
for Experimental Robotics. STAR 30, D. Brugali, Ed. Springer-Verlag
Berlin Heidelberg, 2007, pp. 231–251.

[4] A. Bonarini, M. Matteucci, M. Migliavacca, and D. Rizzi, “R2P: an
Open Source Modular Architecture for Rapid Prototyping of Robotics
Applications,” in Proc. of 1st IFAC CESCIT’12, April 2012, pp. 68–73.

[5] A. Soerensen and S. Falsig, “A system on chip approach to enhanced
learning in interdisciplinary robotics,” in IEEE/RSJ IROS 2010, Oct.
2010, pp. 4050–4056.

[6] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[7] R. Smits and H. Bruyninckx, “Composition of complex robot appli-
cations via data flow integration,” in IEEE ICRA 2011, may 2011.

[8] D. Kissler, A. Kupriyanov, F. Hannig, D. Koch, and J. Teich, “A
generic framework for rapid prototyping of system-on-chip designs,”
in CDES, H. R. Arabnia and M. M. Eshaghian-Wilner, Eds. CSREA
Press, 2006, pp. 189–195.

[9] M. Pordel, N. Khalilzad, F. Yekeh, and L. Asplund, “A component
based architecture to improve testability, targeted FPGA-based vision
systems,” in IEEE ICCSN 2011, May 2011, pp. 601–605.

[10] A. B. Lange, U. P. Schultz, and A. S. Soerensen, “Unity: A Unified
Software/Hardware Framework for Rapid Prototyping of Experimental
Robot Controllers using FPGAs,” in SDIR-VIII Workshop at IEEE
ICRA 2013, May 2013.

[11] S. Falsig and A. Soerensen, “Tosnet: An easy-to-use, real-time com-
munications protocol for modular, distributed robot controllers,” in
ROBOCOMM 2009, March 31–april 2 2009, pp. 1–6.

[12] S. Toscher, T. Reinemann, and R. Kasper, “An adaptive FPGA-
based mechatronic control system supporting partial reconfiguration
of controller functionalities,” in First NASA/ESA Conf. on Adaptive
Hardware and Systems 2006, June 2006, pp. 225–228.

[13] A. Fernandes, R. Pereira, J. Sousa, A. Batista, A. Combo, B. Carvalho,
C. Correia, and C. Varandas, “HDL Based FPGA Interface Library for
Data Acquisition and Multipurpose Real Time Algorithms,” Nuclear
Science, IEEE Trans., vol. 58, no. 4, pp. 1526–1530, Aug. 2011.

[14] A. Heckerling, T. Anderson, H. Nguyen, G. Price, S. Siegal, and
J. Thomas, “An ethernet-accessible control infrastructure for rapid
FPGA development,” High Performance Embedded Computing Work-
shop 2008, pp. 1 – 2, sep. 2008.

[15] A. Lofgren, L. Lodesten, S. Sjoholm, and H. Hansson, “An analysis
of FPGA-based udp/ip stack parallelism for embedded ethernet con-
nectivity,” in NORCHIP 2005, nov. 2005, pp. 94 – 97.

[16] N. Alachiotis, S. Berger, and A. Stamatakis, “Efficient PC-FPGA
communication over gigabit ethernet,” in IEEE CIT 2010, 29 2010-july
1 2010, pp. 1727 –1734.

[17] T. Uchida, “Hardware-based TCP processor for gigabit ethernet,”
Nuclear Science, IEEE Trans., vol. 55, no. 3, pp. 1631–1637, 2008.

[18] F. Jolfaei, N. Mohammadizadeh, M. Sadri, and F. FaniSani, “High
speed USB 2.0 interface for FPGA based embedded systems,” in EM-
Com 2009, dec. 2009, pp. 1 –6.

[19] I. Lund, J. Cortsen, and D. Solvason, “Development of a fully
automated high-resolution mechanical spray patternator,” Aspects Of
Applied Biology 114, 2012, page 243, no. 114, p. 243, 2012.

[20] S. Falsig, “Interaction framework for loosely-coupled controllers,”
Ph.D. dissertation, University of Southern Denmark, 2012.

[21] H. Gylfason, “FPGA Based Real Time Network Bridge & Robot
Control Platform,” Master’s thesis, University of Southern Denmark,
Faculty of Engineering, The Maersk Mckinney Moller Institute, 2012.

[22] A. Soerensen, S. Chreitch, H. Olsen, and G. Sjoegaard, “Robot assisted
training for rehabilitation after traffic accident a case report,” Dansk
Biomekanisk Selskab, 2011.

3906

