
Improving Robot Plans for Information Gathering Tasks through
Execution Monitoring

Minlue Wang1 Sebastien Canu1 Richard Dearden1

Abstract— Recent advances in navigation and control of
robots has increasingly led to systems where the actions are
deterministic and the challenge is to collect information about
the world using noisy sensors. Examples include search and
rescue, Mars rover planning and robotic monitoring tasks.
However, theoretical results show that in general these problems
are as hard as solving partially observable Markov decision
problems (POMDPs). We propose an approach where we build
plans assuming both the actions and the observations are
reliable, then monitor the execution of the plan and use a
value of information calculation to add information gathering
actions on-line. We describe two variants: one using a classical
contingency planner to generate the initial plan, and the other
using a Markov decision problem planner. We show how in both
cases the addition of execution monitoring can considerably
improve overall performance with lower computational cost
than solving the original POMDP.

I. INTRODUCTION

Recently there has been significant interest in a class of
problems that are characterised by robots gathering informa-
tion about the world in order to accomplish some task. In
many of these problems the actions available to the robot
can be divided into a set of deterministic actions that change
the state of the world—we refer to these as state changing
actions—and a set of actions which do not change the
world state but stochastically provide information about it—
observation-making actions. A good example of this kind
of problem is the RockSample domain [1] in which a rover
must collect a sample from a scientifically interesting rock,
but does not know in advance which rocks are interesting.
Other examples include robots in office assistant roles [2] and
the problem of deciding what computer vision algorithms to
apply to an image to answer a query [3].

Problems of this type can be modelled as partially ob-
servable Markov decision problems (POMDPs), but sine
POMDPs are more general, allowing stochastic action ef-
fects, we might hope to gain computational advantage by
studying this interesting subclass specifically. Following [4],
we refer to these problems as quasi-deterministic POMDPs
(for a formal definition, see Section II). They differ from an-
other well-studied subclass of POMDPs, DET-POMDPS [5]
in that they allow uncertainty in the observations (DET-
POMDPs are entirely deterministic apart from the initial
state).

An alternative way to think about quasi-deterministic
POMDPs is as an extension of classical planning to al-
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low noisy information gathering actions. Many classical
approaches use modal logics of knowledge to represent
known information (see for example [6]) but they assume
this gathered information is always reliable.

Most existing approaches (see Section VII) to solving
quasi-deterministic problems use POMDP solvers (the no-
table exception is [2]). However, POMDP algorithms do not
scale to the size of problems we are interested in—problems
with fewer than ten thousand states (equivalent to only 13
binary variables) take hours to solve.

The approach we take in this paper is to use much
faster planning algorithms to produce plans that don’t fully
take the uncertainty in the observations into account and
to use execution monitoring to “repair” the plans at run-
time to improve their use of observations. Here we report
on two approaches to the initial plan generation, one that
uses a classical contingency planner (Section III), and the
other that uses a Markov decision process (MDP) planner
(in Section V). In each case, we automatically rewrite the
original problem into a form that can be solved by the
faster planner. Although the state changing actions are still
deterministic, the observation-making actions introduce non-
determinism into the translated problem, hence the need for
contingent branches and MDPs.

Plans created from the transformed problems are exe-
cutable in the original problem, but are unlikely to be optimal
because they assume the observation-making actions are
perfectly reliable. During execution of the plan we monitor
the actual belief state of the agent. When an observation-
making action is reached, since the robot won’t reliably know
the true state even after the observation, we use a value of
information (VoI) calculation to find an observation action
that will change the belief state to improve the expected
quality of the remainder of the plan. If such an action exists,
we execute the one with the highest VoI. This repeats until
no action has positive value. Execution monitoring for the
contingent plan approach is described in Section IV, and for
MDPs in Section VI. In Section VII we review related work,
and in Section VIII we present our results in simulation and
on a mobile robot.

II. QUASI-DETERMINISTIC PLANNING PROBLEMS

The POMDP model of planning problems is suffi-
ciently general to capture all the complexities of the do-
mains we consider here. Formally, a POMDP is a tuple
〈S,A, T,Ω, O,R〉 where:
• S is the discrete state space of the problem.
• A is the set of actions available to the agent.
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• T is the transition function that describes the effects of
the actions. We write P (s, a, s′) where s, s′ ∈ S, a ∈ A
for the probability that executing action a in state s
leaves the system in state s′.

• Ω is the set of possible observations.
• O is the observation function that describes what

is observed when an action is performed. We write
P (s, a, s′, o) where s, s′ ∈ S, a ∈ A, o ∈ Ω for the
probability that observation o is seen when action a is
executed in state s resulting in state s′.

• R is the reward function that defines the value to the
agent of particular activities. We write R(s, a) where
s ∈ S, a ∈ A for the reward the agent receives for
executing action a in state s.

Quasi-deterministic planning problems are POMDPs in
which the actions are of two types: state-changing actions
and observation-making actions, defined as follows:

Definition 1: A state changing action a is one such that:

∀s∃s′ : P (s, a, s′) = 1 ∧ ∀s′′ 6= s′ P (s, a, s′′) = 0

∀s, a, s′∃o : P (s, a, s′, o) = 1 ∧ ∀o′ 6= o P (s, a, s′, o′) = 0
That is, for every state the action is performed in there

is exactly one state it transitions to, and its observations are
uninformative.

Definition 2: An observation-making action a has an
unconstrained observation function O and:

∀s : P (s, a, s) = 1 ∧ ∀s′ 6= s P (s, a, s′) = 0
Definition 3: A quasi-deterministic POMDP is a

POMDP in which every action is either state changing or
observation-making.

In practice, the problems we are interested in are unlikely
to be specified as flat POMDPs. We assume they will be
specified using state variables, for example using a dynamic
Bayesian network as in symbolic Perseus [7]. Similarly, we
use factored-observable models (see [4]), a variable decom-
position of the observations, to simplify the representation
of the observation space. We write b(pi) for the probability
that some state variable pi is true in the initial belief state,
where s = 〈p1, p2, ..., pn〉 is the state variable representation
of POMDP state s.

We illustrate this using the RockSample domain [1], in
which a robot can visit and collect samples from a number
of rocks at locations in a rectangular grid. Some of the rocks
are “good” (scientifically interesting) and the robot will get
a reward for sampling them. Others are “bad” and the robot
gets a penalty for sampling them. The robot’s state-changing
actions are to move in the grid and to sample a rock, and the
observation actions are to check each rock, which returns a
noisy observation of whether the rock is good. If the robot
checks a “good” rock, the observation will be good with
probability 0.8, but bad with probability 0.2, and the reverse
for a “bad” rock.

III. CONTINGENT PLANNING APPROACH

As we said in the introduction, the basis of our ap-
proach is to build approximate plans and then improve

them at execution time by determining the number of times
that observation-making actions will execute. To compute
whether it is worth adding an observation-making action
at any point, we need to know the effects that action will
have on the quality of our future behaviour, and for that
we need to know what future plans we might execute. We
do this by generating a branching plan where every time the
plan includes an observation-making action, there is a branch
at that point for each possible observation the action could
produce. This generating of a branching plan is done offline.

To use a contingency planner to solve a quasi-deterministic
POMDP, we translate it into the probabilistic planning do-
main definition language (PPDDL) [8]. PPDDL is designed
for problems that can be represented as completely ob-
servable Markov decision problems. To use it for a quasi-
deterministic problem we need to represent the effects of
the observation-making actions. We do this by adding a
belief predicate bel() to indicate the agent’s belief that a
state variable has a particular value. For instance, in the
RockSample problem we use bel(rover0, rock0, good) to
reflect that rover0 knows rock0 has good scientific value. The
belief predicate is included in the effects of the observation-
making action and also appears in the preconditions of the
state-changing actions that lead to the goal to ensure that the
agent has to find out the value using the observation actions.
The checkRock action is then transformed to the PPDDL
action:

(:action checkRock
:parameters
(?r -rover ?rock -rocksample ?value -rockvalue)
:preconditions
(not (measured ?r ?rock))
:effect
(and (measured ?r ?rock)

(when (and (rock_value ?rock ?value)
(= ?value good))

(probabilistic
0.8 (and (bel ?r ?rock good)))
0.2 (and (bel ?r ?rock bad)))

(when (and (rock_value ?rock ?value)
(= ?value bad))

(probabilistic
0.8 (and (bel ?r ?rock bad)))
0.2 (and (bel ?r ?rock good)))))

where the measured predicate is used to prevent the same
observation actions being selected multiple times.

Plan Generation

Given a quasi-deterministic planning problem we generate
contingent plans where each branch point in a plan is associ-
ated with one possible outcome of an observation action. We
take the approach of Kuter et al. [9] to generate contingent
plans. First, we determinise the problem according to single-
outcome determinisation [10]. For each observation action,
only the most likely probabilistic effect is chosen. Similarly,
only the most likely state from the initial belief state is
used to define the initial state of the determinised problem.
This converts a quasi-deterministic planning problem into a
classical deterministic model. We use the classical planner FF
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Algorithm 1 Generating the contingent plan using FF
plan=FF(initial-state,goal)
while plan contains observation actions without branches do

Let o be an observation action without a branch such that all such
actions preceding o have branches
Let v be the variable observed at o and v1 be the value obtained
Let s be the belief state after executing all actions preceding o from
the initial state
for each value vi, i 6= 1 of v with non-zero probability in s do

branch = FF(s ∪ (v = vi),goal)
Insert branch as a branch at o

end for
end while

[11] to generate a plan from the determinised initial state1.
Since each observation action in the plan could have

outcomes other than the one selected in the determinisation,
we then traverse the plan updating the initial state as we
go until an observation action is encountered. This forms a
branch point in the plan. For each value vi of the observed
state variable V apart from the one already planned for, we
generate a new initial state for FF by adding V = vi to the
state found by traversing the plan to this point, and call FF to
generate a new branch as shown in Algorithm 1.This repeats
until all observation-making actions have branches for every
value of the observed variable.

IV. EXECUTION MONITORING FOR CONTINGENT PLANS

Our approach for generating branching plans relies on
relaxation of the uncertainty in the initial states and obser-
vation actions. The results of this are plans that account for
every state the world might be in but do not account for the
unreliable observations. To overcome this, we use execution
monitoring. During execution, we update the agent’s belief
state after each selected action via Bayes rule. To select
actions to perform when we reach an observation-making
action in the plan, we utilise a VoI calculation [12]: Suppose
the plan consists of state-changing action sequence a1,
followed by observation action o1, which measures state
variable c. If c is true, branch T1 will be executed, and if c is
false, branch T2 will be executed. When execution reaches
o1, execution monitoring calculates the expected utility of
the current best branch T ∗ based on the belief state b(c)
over the value of c after a1 as follows:

Ub(T
∗) = max

Ti

U(Ti, b) (1)

where Ub(T
∗) represents the value, given belief state b,

of making no observations and simply executing the best
branch. U(Ti, b) is the expected value of executing branch
Ti in belief state b.

Next we examine the value of performing an observation-
making action o (not necessarily the same o1 as planned)
that gives information about c. Performing o will change the
belief state depending on the observation that is returned.
Let B be the set of all possible belief states after executing

1If no plan is found for the given determinisation, we simply try a
different one—all that is required is an initial plan we can construct the
branching plan from.

o (one for each possible observation), and let P (b′) be the
probability of getting an observation that produces belief
state b′ ∈ B. Let cost(o) be the cost2 of performing action
o. The VoI gained by performing o, is the value of the best
branch to take in each b′, weighted by the probability of b′,
less the cost of performing o and the value of the current
best branch:

VG(o) =
∑
b′∈B

P (b′)Ub′(T
b′)− cost(o)− Ub(T

∗) (2)

Where T b′ is the best branch to take given belief state b′:

Ub′(T
b′) = max

Ti

U(Ti, b
′) (3)

Equations 1 and 3 require computing the utility of execut-
ing a branch of the plan, U(T, b). Building the complete
contingent plan allows us to estimate this when selecting
observation actions. We do this by a straightforward backup
of the expected rewards of each plan branch given our current
belief state. The value of U(T, b) (the utility of branch T in
belief state b is computed as follows:
• if T is an empty branch, then U(T, b) is the reward

achieved by that branch of the plan.
• if T consists of a state-changing action a followed by

the rest of the branch T ′, then U(T, b) = U(T ′, b) −
cost(a).

• if T consists of an observation-making action o on
some variable d where if d = di then branch Ti

will be executed (observation-making actions for each
variable will appear at most once), then U(T, b) =∑

d b(di)U(Ti, b)−cost(o), that is, we weight the value
of each branch at o by our current belief about d.

This ability to estimate the value of each branch is in
contrast to the alternative approach of replanning (e.g. see
[2], which we discuss in more detail in Section VII) where
the utility of the future plan is impossible to determine
since it hasn’t yet been generated. Even in our case, we
cannot compute this value exactly as we don’t know what
additional actions execution monitoring will add to the plan.
However, since all the observation-making actions for some
variable p look identical to the contingency planner (they
only reveal the value of p) apart from their cost, the planner
will choose the minimum cost one. This means that the cost
we estimate for the tree will be an underestimate so execution
monitoring will never perform fewer observational actions
than are needed. The execution monitoring algorithm is given
in Algorithm 2.

We select observation-making actions greedily so the
sequence of actions may not be optimal. However, the
unconstrained action selection problem satisfies the require-
ments for sub-modularity [13] which guarantees the greedy
approach is close to optimal.

The description above assumes that there is at least one
observation-making action associated with each uncertain
variable. If this is not the case for some variable p, when

2Costs are represented as negative rewards; we use cost here only to
emphasise the contribution of the action to the VoI.

5287



Algorithm 2 Execution monitoring at observation-making
action o

Let c be the variable being observed by o
Let A be the set of actions that provide information about c
repeat

Let V G(a) be the value gain for a ∈ A according to Eq. 2
Let a∗ = argmaxa V G(a)
if V G(a∗) > 0 then

execute a∗ and update the belief state b′ based on the observation
returned

end if
until V G(a∗) ≤ 0
Execute the best branch in the new belief state b′ using Eq. 3

we create the domain for the contingency planner, we add a
dummy action that reveals the value of p. At execution time,
if a branch point on p is reached, the execution monitoring
searches for any observation-making action that will provide
information about p, so will substitute real actions for the
dummy one if there are any available, and if not will simply
execute the best branch in the current belief state. We do the
same in the MDP-based approach described below.

V. MDP PLANNING APPROACH

In the standard RockSample problem, observations of
the rocks get less reliable the further away from the rock
they are made. Our approach of treating the observation
actions as completely reliable ignores this, so the plans we
find observe all the rocks from the starting position rather
than driving closer to make better observations. This is an
example of a common feature of many quasi-deterministic
problems: an observation-making action that requires a state
changing setup step. The approach we described in Section
III performs particularly poorly for domains where these are
present because execution monitoring cannot choose to do
the setup action. This is because changing the state of the
world might invalidate the rest of the plan. In this section we
present an alternative that replaces the contingency planner
with an MDP planner. This has the advantage that the policy
specifies an action to perform in every state so we can
execute state-changing actions at run-time and the policy still
tells us what action to execute next. However, MDP planning
does not scale as well as contingency planning.

A naive approach to using an MDP planner would be
to convert the quasi-deterministic POMDP into an MDP
by simply deleting the observations from the model. The
problem with this is that it makes the observation-making
actions into NOOPs, so they will never appear in the policy.
In the case of the RockSample domain, this results in a
plan where a good rock is immediately sampled and no
others are examined. We would prefer a plan where each
rock is investigated, and to do this the MDP planner needs
a notion of what it does and does not know. To achieve
this we treat observation actions as actions that switch their
respective variables from an unknown to a known state,
and set all the variables that are initially uncertain to be
unknown in the MDP initial state. So for each variable
p with domain D, the corresponding variable in the MDP
domain, p′, has as its domain D ∪ unknown, and in the

initial state p′ = unknown. To define the transition function
from unknown to each value di ∈ D we use the probability
of getting observation zi that corresponds to value di of p if
we performed the action in the initial state:

P (unknown, ., di) =
∑
D

b(di)P (zi|di) (4)

Note that this translation assumes that the true value of a
state variable is known after performing the corresponding
observation action once. However, in reality the observation
actions are still noisy, so execution monitoring is still re-
quired to improve the plan.

VI. MONITORING FOR MDP POLICIES

For the MDP case the execution monitoring is largely the
same as in the contingency plan case described in Section
III. The value of information calculation is exactly that given
in Equations 1 to 3. The difference comes in the definition of
the “branches” in the plan. For the MDP, the branches being
chosen are the actions according to the MDP policy for the
states corresponding to the possible values of the variable
being observed. That is, when we use an observation-making
action for a binary variable p with domain Dp (which must
be unknown in the current MDP state or the policy wouldn’t
choose an observation-making action), the policies in all
MDP states in {s − (p = unknown) ∪ (p = x) : x ∈ D}
are evaluated. This means that to select actions correctly we
maintain both the belief state according to the original quasi-
deterministic POMDP and the current state according to the
MDP.

Observation Actions with Setup Steps

As we said above, the major difference between the
output of the contingent planner and the MDP planner is
that the MDP planner provides an action for every possible
state. This means that we can allow execution monitoring
to perform state changing actions, and we will still know
what policy to perform in the state that results. This is
important because it allows us to make observations that
require setup actions. To achieve this we allow execution
monitoring to evaluate the information gain from macro
actions consisting of a state changing action followed by an
observation-making action. For example, in the RockSample
domain this allows execution monitoring to calculate the
value of information gained from moving one step towards a
rock before observing it. We use Equation 2 as before, but the
value of a macro action made up of a state changing action
a followed by an observation-making action o becomes:

V Gb′(a + o) = R(b′, a) + V G(o) (5)

Once we decide the current best action, two situations need
to be considered: If the current best action is a macro action,
and hence the immediate action to execute is a state-change
action, we execute the state changing action and repeat the
above procedure. Since it’s possible that a macro action will
again be best, this allows us to execute a sequence of state
changing actions before making an observation. If the current
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Algorithm 3 Execution Monitoring with Macro Actions
Let the current MDP state be s ∈ S
Let o be the observation-making action which is the policy for s, where
the observation is of variable V
Let b be the current belief state
repeat

a∗ = argmax
a


V G(a) if a is an observation action
R(b, a) + V G(o′) if a is a macro

action (a, o′)

if a∗ is a macro action (a, o) then
Execute action a and update the MDP state s and the belief state
b

else if V G(a∗) ≥ 0 then
Execute action a, getting observation Z
b = beliefUpdate(b, a, Z)

end if
until V G(a∗) < 0
Let {s′ : s′ = s− (V = unknown) ∪ (V = v)}
Let πs be the policy at state s ∈ S
Let a∗ be the first action in policy π∗ where:

π∗ = argmax
πs

∑
c

b(c)U(πs, c)

where c is the POMDP state space
Execute action a∗
b = beliefUpdate(b, a∗)

best action is an observation action, this tells us that there is
no better macro action. If this action has value gain greater
than zero, we again execute it and repeat. Otherwise, we pick
the best policy given our current belief state as described
above. The algorithm is given in detail in Algorithm 3.

VII. RELATED WORK

Many execution monitoring approaches [14], [15], [16]
have been developed to detect and fix discrepancies between
the actual world state and the agent’s knowledge of world.
In most cases the discrepancies these approaches are trying
to detect result from exogenous events or action failures.
In addition, most of these approaches are monitoring the
execution of straight-line plans. A good survey can be found
in [17]. However, as none of them are addressing the same
problem of partial observability as we investigate, their
approaches are not comparable with ours.

One related approach is [18], which also performs execu-
tion monitoring on MDP policies at run time. Fritz monitors
plan optimality and identifies when a discrepancy in the
plan is relevant to the quality of the plan. The other closely
related work is [19], which similarly uses classical planning
plus execution monitoring to solve problems that could be
represented as POMDPs. In that work execution monitoring
is used to check the preconditions of actions rather than
to determine which branch to take. They also use value of
information to measure whether monitoring is worthwhile,
but formulate the monitoring decision problem as a set of
POMDPs, rather than using the value of information directly.

An alternative to execution monitoring for solving quasi-
deterministic problems efficiently is described in [2]. There
they use a classical planner and a decision-theoretic (DT)
planner to solve these problems, switching between them
during planning. The approach is similar to ours in that they
use FF to plan in a determinisation of the original problem

augmented with assumption actions that set the value of
unknown variables. However, they build linear plans with
FF and switch to the DT planner to replace the assumption
actions with small policies. The idea is to use the DT
planner where the world is uncertain and the classical planner
elsewhere.

Classical planners have also been applied in fully observ-
able MDP domains—the best known is FF-replan [10], from
which we have taken the determinisation approach. Because
these approaches rely on being able to determine the state
after each action, they cannot easily be applied in POMDPs.

VIII. EXPERIMENTAL EVALUATION

We perform experiments in simulation on a modified
version of the HiPPo domain [3] and on the RockSample
domain [1]. We also tested a version of RockSample on a
physical robot. For comparison in the simulations we use
symbolic Perseus [7], a state-of-the-art point-based POMDP
solver for structured representations. This is only approxi-
mately optimal but repeated trials suggest the policies re-
ported are close to optimal. We use FF [11] and SPUDD [20]
respectively to generate contingency plans and MDP policies.
The standard RockSample problem allows observing any rock
from any position with noise depending on the distance
between the rover and the rock. Representing this in symbolic
Perseus causes a blowup in the number of actions compared
with PPDDL which makes comparison unfair so we only test
contingent plan execution monitoring in the HiPPo domain
and on the physical robot. Allowing macro actions does
not change the policy in HiPPo, so we only report results
from RockSample. We also compared with QMDP [21] in
both domains. However, since the observation actions do not
change the state, QMDP never includes them in plans, so
performs much worse than the other approaches. To measure
plan quality, we measure average total reward and discounted
reward over multiple runs. On the RockSample domain,
evaluation is done over 200 runs, each of 200 steps. Since
HiPPo domains have a larger belief space and do not return
to the initial state after reaching the goal, we performed 1000
runs of 20 steps each except for HiPPo(5,4) where only 100
runs were performed due to long run-times.

HiPPo

We first tested our approach in a modified HiPPo domain
where a robot is able to answer queries, such as “where is
the red triangular object”. Each object in the domain has
both colour and shape properties, and there are five different
values for each. Two noisy observation actions, Colour and
Shape, can be applied to collect information about the
objects. The question is how to apply the colour and shape
detecting actions before answering the user’s queries. We
extended the problem by putting the objects in a grid map,
and making sensing actions usable only when the robot is at
the same position as the object. Therefore, in order to decide
which object is the answer to the query, the agent needs
to move to the object’s location and apply the observation
actions. HiPPo(n, k) denotes a n by n grid with k objects,
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TABLE I: Results for the HiPPo Domains comparing sym-
bolic Perseus (POMDP) with the MDP and the contingency
planning (FF) approaches.

Algorithm Time (s) Total Reward Disc. RewardPlan Exec.
HiPPo (3,2)

POMDP 196.25 0.26 −7.35±29.9 −2.13± 12.0
MDP with EM 1.04 1.42 −7.45±17.3 −2.28± 9.5
MDP, no EM 1.04 0.06 −6.57±15.4 −2.83± 9.8
FF with EM 4.04 1.32 −7.04±17.3 −3.04± 8.9
FF, no EM 4.04 0.06 −7.41±16.9 −2.90± 9.3

HiPPo (4,3)
POMDP 4059 9.95 −3.26±11.5 −1.21± 10.6
MDP with EM 11.88 4.03 −3.75±23.3 −1.21±11.43
MDP, no EM 11.88 0.13 −5.78±21.5 −1.69± 12.5
FF with EM 8.05 3.48 −5.79±18.8 −1.87± 9.8
FF, no EM 8.05 0.12 −5.95±18.5 −1.87± 9.7

HiPPo (5,4)
POMDP - - - -
MDP with EM 207.65 56.74 −3.60±27.5 −0.61± 11.1
MDP, no EM 207.65 0.46 −2.31± 9.8 −1.42± 22.6
FF with EM 16.15 37.38 −3.24±22.2 −0.80± 10.4
FF, no EM 16.15 0.44 −3.30±20.7 −2.01± 9.4

which has n2×52k states in total. The state changing actions
in this domain consist of four actions to move the agent
around the grid and one termination action per object which
is used to state that the corresponding object is the answer
to the query. A typical plan in this domain is to move to
an object, then apply observation actions until the agent is
sufficiently confident that the object is or isn’t the desired
one. If the object is the one desired, then the termination
action for that object is executed, and otherwise the agent
moves to another object. The movement and observation
actions all have small negative rewards associated with them;
if the termination action for object a is executed and a is the
correct object, the agent gets a large positive reward, but if
a is not the correct object, it gets a large negative reward.
More details can be found in [3].

Since HiPPo domains have a large observation space,
problems larger than size (4,3) cannot be solved by symbolic
Perseus in reasonable time (two hours) and memory. As Ta-
ble I shows, although symbolic Perseus managed to achieve
the best plan quality in terms of discounted reward, it requires
orders of magnitude more time in generating policies. In
this domain the MDP policies are quite good (they run the
observation actions once per object, while the optimal policy
runs them multiple times to ensure reliability), so there is
less improvement from adding the execution monitoring. FF
is much faster than the MDP planner, but the plans are of
poorer quality. Execution monitoring helps, but again is not
as effective as with the MDP policies.

RockSample

There are five state-changing actions in this domain: four
moving actions and one sampling action. Each rock has an
observation action which is not perfectly reliable. A reward
of 20 will be given if the rover samples a good rock and goes
to the exit and a reward of −40 if a bad rock is sampled. A
large penalty is given if there is no rock at the position of

TABLE II: Results for the RockSample Domain comparing
symbolic Perseus (POMDP) with the MDP approach.

Algorithm Time (s) Total Reward Disc. RewardPlan Exec.
RS (4,4)

POMDP 274 0.6 251.8±69.1 6.9± 8.4
Macro Actions 13 3.5 161± 61.5 2.3± 9.5
EM 13 1.8 141± 61.3 1.9± 6.9
Without EM 13 1.1 41± 107.3 −3.5± 13.3

RS (5,5)
POMDP 893 0.8 213± 66.8 4.5± 8.0
Macro Actions 99 4 179± 77.3 2.9± 10.9
EM 99 2.4 96± 70.2 −0.3± 8.0
Without EM 99 1.2 61± 100.5 −2.8± 13.3

RS (6,6)
POMDP 1098 1.3 188± 55.5 3.4± 1.8
Macro Actions 476 5.0 150± 78.5 0.5± 9.3
EM 476 2.6 137± 73.3 1.9± 10.9
Without EM 476 1.7 58± 101.3 −2.1± 12.8

RS (7,7)
POMDP 3520 2.4 154± 52.1 2.6± 8.5
Macro Actions 2096 7.2 147± 82.3 −0.2± 10.7
EM 2096 3.5 125± 75.5 −0.7± 10.7
Without EM 2096 4.5 78± 106.9 −2.2± 13.4

(a) (b)

Fig. 1: (a) The boxes used for the search task. The similarity
of the centre two leads to many identification errors. (b) The
turtlebot examining a box during execution.

the rover when sampling or if the rover moves out of grid
except to go to the exit. RockSample(n, k) denotes a n by n
grid with k rocks, which has n2× 2k states in total. We use
a version of RockSample with costs on the actions: Move
actions have cost two while all others have cost one.

As Table II shows, symbolic Perseus unsurprisingly again
obtained the best plans in terms of total reward and dis-
counted reward for all RockSample problems. The MDP
solutions required much less time but only achieve 32%
of optimal on average. Execution monitoring substantially
improves plan quality to 65% of optimal, and macro actions
further improve performance to an average of 81% of opti-
mal. Although it requires more computation at run time, the
overhead of execution monitoring with macro actions is still
far less than solving the POMDP directly.

Mobile Robot

For the physical robot we used a TurtleBot as shown in
Figure 1 (a), running ROS, with an ASUS Xtion depth sensor.
The task for the robot was to find a particular object of
interest in a grid similar to the RockSample domain. We
used the boxes shown in Figure 1 b as the objects and
SIFT [22] for recognition. Training and test images were
collected using the robot, features extracted, and optimal
thresholds to minimize errors determined. We then populated
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the confusion matrix P (observation = boxi| boxj) between
the objects.

We only tested the contingency planner on the robot.
Plan generation time was less than 0.1 seconds (compared
with around 60 seconds for Symbolic Pereus), and time for
execution monitoring is insignificant compared with time
spent running SIFT. The plan found is to visit each box in
turn, use SIFT to see if it is the one of interest (as shown
in Figure 1 (c)), and if so take an image and return to the
start point. Execution monitoring then adds additional SIFT
actions (the action includes taking a new image) to increase
the probability of the box being correctly identified. As might
be expected, more images are used to distinguish the centre
two boxes in Figure 1 (b) than the others (the number of
images varies depending on the reward model for the planner
and the sequence of observations made—a false positive or
negative observation leads to extra SIFT actions).

IX. CONCLUSION

We have presented an approach to approximately solve
quasi-deterministic POMDPs by converting them into con-
tingency planning problems or MDPs. At run time, we use
execution monitoring to repair the plans in order to increase
the plan quality by making the belief state more certain. A
value of information approach is applied to monitor the belief
state and choose observation actions to gain information
about the true state. Our experimental results show that our
approach is fairly close to optimal but is orders of magnitude
faster than using even a state of the art POMDP solver.
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