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Abstract—This paper presents a state estimation approach
for legged robots based on stochastic filtering. The key idea
is to extract information from the kinematic constraints given
through the intermittent contacts with the ground and to fuse this
information with inertial measurements. To this end, we design
an unscented Kalman filter based on a consistent formulation of
the underlying stochastic model. To increase the robustness of
the filter, an outliers rejection methodology is included into the
update step. Furthermore, we present the nonlinear observability
analysis of the system, where, by considering the special nature
of 3D rotations, we obtain a relatively simple form of the
corresponding observability matrix. This yields, that, except for
the global position and the yaw angle, all states are in general
observable. This also holds if only one foot is in contact with the
ground. The presented filter is evaluated on a real quadruped
robot trotting over an uneven and slippery terrain.

I. INTRODUCTION

As the research in legged robotic design and control is
resulting in increasingly performing platforms, the aspect of
state estimation and perception of such machines becomes
more and more important as well. In order to be able to leave
structured and controlled lab environments and go into more
uncertain, rough and difficult terrain, it is indispensable to en-
dow legged robots with precise state estimation and perception
capabilities. Consequently, different research groups explored
the integration of perception devices on legged platforms
[14, 19, 21]. In the present paper however, focus is set on the
proper extraction of information contained in the kinematics
of the robot and obtained from inertial sensors. While for most
legged robots such data is readily available from on-board sen-
sor devices, it also represents a very valuable source of high-
bandwidth information for state estimation. In our opinion, the
exploitation of this information is a prerequisite for fast and
elaborate control of legged robots in unstructured and difficult
environments and represents an important foundation for the
inclusion of further sensor modalities like vision or LIDAR.

Roston et al. [18] presented one of the earliest navigation
system which extracts information from leg kinematics. By
matching the foot positions between two consecutive timesteps
they compute the incremental motion of the main body. Fur-
ther, they introduce a slip detection method which relies on the
invariance of the distance between feet that are in contact with
the ground. Several groups extend this idea, e.g., Gassmann
et al. [4] introduce fuzzy weights, based on different sensor
measurements, in order to describe how well a certain foot is in
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contact with the ground and fuse the resulting legged odometer
with GPS data. Along similar lines Lin et al. [13] present a
leg strain-based odometer and use an inertial measurement unit
(IMU) for handling flight phases of their hexapod robot. Again
based on contact point matching, Görner et al. [5] present a
legged odometer where joint torques are used to estimate roll
and pitch of a fully actuated hexapod. A common drawback of
these methods is that the associated legged odometer requires
at least 3 non-colinear feet in contact with the ground.

Other approaches range from data-driven methods to model
based observers. For example, using joint encoders, pressure
sensors, and IMU data, Reinstein and Hoffmann [17] search
for significant sensory based indicators in order to determine
stride length. While it requires training of the state estimation
for new locomotion scenarios, it enables the handling of cases
with significant foot slippage. Based on a two dimensional
dynamic model, Lebastard et al. [12] designed a high-order
sliding-mode observer for estimating the 2D posture of their
bipedal robot during a walking gait. Assuming planar spring-
mass running, Gur and Saranli [6] propose a generic, model-
based state estimation technique. The major issues of these
approaches are the requirement for a precise dynamic system
model and the possible restriction to a specific type of motion.

The detection of outliers in the context of legged robotic
state estimation has only scarcely been studied. Most ap-
proaches use some additional force sensing on the foot level
and compare desired and actual forces in order to detect
slippage [11]. More recently, Okita and Sommer [16] con-
sidered slip events being anomalies which can be detected by
employing appropriate filtering methods. In a simplified 2D
stick-slip experiment they showed how to detect slippage using
smoothed innovation in an Unscented Kalman filter (UKF)
setup. Detecting anomalies or outliers in general filtering
frameworks has been very widely analyzed. Ting et al. [22] as
well as Agamennoni et al. [1] present outlier robust Kalman
filtering by introducing more flexible noise models which
allow the co-estimation of update noise parameters. Others
investigated the use of non-Gaussian distributions which are
less susceptible to outliers [20, 23].

The present paper is an extension to our prior work [2].
While following a similar overall approach, in the sense
that accurate estimates of the full body pose are obtained
by fusing information from an on-board IMU and kinematic
measurements, the presented approach extends and improves
different aspects of the previous methodology. By deriving
velocity constraints from the feet that are in contact with
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the ground, simple measurement equations are obtained which
reduce the size of the state and which are more suitable for
slippage detection. Further, a robot-centric formulation of the
state space is chosen in order to appropriately partition the
filter states and avoid problems with unobservable states.

A thorough nonlinear observability analysis is provided for
the presented filter. A novel method for handling rotational
states is presented which significantly simplifies the analytical
evaluation of the unobservable subspace and corresponding
rank deficiency. Based on the nonlinear observability analysis
of Hermann and Krener [7] we present a method for handling
states which are elements of the special orthogonal group
SO(3) by exploiting the local homeomorphism to 3D real
vector space. With this we show, that up to some singular
robot motions, all states of the robotic platform are observable
except for the yaw angle around the gravity axis and the global
position (which are not essential for the local control of the
robot). This also holds for the case where only one leg is in
contact with the ground and thus the state estimator can be
applied for dynamic locomotion as well.

The presented filter is implemented and evaluated on our
quadruped robot StarlETH [9]. We show results from exper-
iments where the robot is trotting over uneven and labile
terrain with occurring foot slippage. For all experiments the
control of the robot fully relies on the estimates from the
filter. No previous information on the shape of the terrain is
required and the external motion capture system is only used
for groundtruth comparison.

The paper is structured as follows. In Section II we start with
some brief prerequisites. Subsequently, Section III discusses
the specific filter setup and the outliers detection. In Section
IV the observability analysis is performed and in Section V
the experimental setup and obtained results are presented.

II. PREREQUISITES

For better readability we give a short overview on the
employed notations and conventions. The coordinates, ex-
pressed in a frame A, of a vector from a point P to a
point Q are denoted by ArPQ. If B is a second coordinate
frame, then CBA maps the coordinates expressed in A to the
corresponding coordinates in B. The rotation between both
frames is generally parametrized by the unit quaternion qBA.
Throughout the paper, we add a subscript k to a quantity
v, if we want to talk about its value at a time tk, i.e.,
vk = v(tk). Two coordinate frames are of interest: the world
fixed coordinate frame W and the main body frame B.

In a filter setup, mathematical operations are employed
which are not defined for 3D rotations (especially addition
and differentiation). In order to handle this issue we exploit
the homeomorphism between the 3D manifold SO(3) and 3D
vector spaces. For a more thorough discussion on the topic
please refer to the work of Hertzberg et al. [8]. In short we
use the exponential mapping, q = exp(θ), between a 3D
rotation vector, θ ∈ R3, and the corresponding quaternion
q ∈ SO(3). This mapping is surjective and thus an inverse
exists, θ = log(q), which is called the logarithm. These maps

are used for introducing the boxplus and boxminus operators:

� :SO(3)× R3 → SO(3), (1)
q,θ 7→ exp(θ)⊗ q,

� :SO(3)× SO(3)→ R3, (2)

q1, q2 7→ log(q1 ⊗ q−12 ),

where the boxminus operator expresses the difference between
two quaternions by returning the error rotation vector between
both, and where the boxplus operator applies a small rotation,
expressed by a rotation vector, onto a unit quaternion.

Based on the above definitions we introduce special differ-
entials on unit quaternions. Given a function q : x 7→ q(x)
which maps from some real vector space RN to the set of
unit quaternions, we define the differential(

∂q

∂x

)
i

:= lim
ε→0

q(x+ εei) � q(x)

ε
, i = 1, . . . , N, (3)

and if f : q 7→ f(q) is a function which maps from the set
of unit quaternions to some real vector space we define(

∂f

∂q

)
i

:= lim
ε→0

f(q � εei)− f(q)

ε
, i = 1, . . . , 3. (4)

Let C(·) be the mapping between unit quaternions and corre-
sponding rotation matrices, then following identities hold:

∂/∂q (C(q)v) = − (C(q)v)
×
, (5)

∂/∂q
(
q−1

)
= −CT (q), (6)

∂/∂q1 (q1 ⊗ q2) = I, (7)
∂/∂q2 (q1 ⊗ q2) = C(q1), (8)

∂/∂q (log(q)) = Γ−11 (log(q)), (9)
∂/∂t (qBA(t)) = BωBA(t), (10)

where the subscript × is used to denote the skew-symmetric
matrix of a vector and where ωBA is the rotational rate vector
of frame B with respect to frame A. We also made use of
the auxiliary quantity Γn(θ) :=

∑∞
i=0

θ×i

(i+n)! . It draws on the
series expansion of the matrix exponential and, consequently,
Γ0(θ) represents the rotation matrix corresponding to the rota-
tion vector θ. There exists a closed form expression for Γn that
can be efficiently numerically evaluated (similar to Rodrigues’
rotation formula). The above special differentials strongly
simplify the handling of analytical Jacobians, especially in the
context of nonlinear observability analysis including rotational
quantities. It can be proven that the chain rule is valid. Please
note that the formulation of the identities can vary slightly
depending on the employed conventions.

III. FILTER SETUP

A. Filter States and Measurement Models

The overall structure of a filter strongly depends on the
choice of the underlying filter states. In our case we chose
a set of robot-centric states in order to describe the motion
of the robot’s main body. The state includes the position of
the world frame with respect to the body frame, BrBW , the
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negative velocity of the main body expressed in the frame B,
−BvB , the attitude of the main body parametrized by qWB ,
as well as the bias terms of the accelerometer and gyroscope,
Bbf and Bbω . In short, the state x will be defined as

x :=
(
r,v, q, c,d

)
(11)

:=
(
BrBW ,−BvB , qWB ,Bbf ,Bbω

)
. (12)

Building on this, process and measurement equations need
to be formulated which properly capture the behavior and
uncertainties of the underlying system. The choice of the mod-
els is a trade-off between simplicity and accuracy, whereby
all stochastic quantities will be modeled as continuous white
Gaussian noise or as discrete Gaussian noise processes. This
is in accord with the prerequisites of most filtering methods
and deviation from the real system can be handled to a certain
extent by increasing the corresponding covariance matrices.

The proper acceleration measurement f̃ and the rotational
rate measurement ω̃ of the IMU are assumed to be affected
by additive white Gaussian noise, nf and nω , as well as by
the additive biases c and d:

f̃ = f + c+ nf , (13)
ω̃ = ω + d+ nω. (14)

Both quantities do not directly depend on the states of the
filter but rather measure the corresponding rates. Considering

f = C(qBW ) (W v̇B − g) , (15)
ω = q̇BW , (16)

where g is the gravity vector in W , the IMU measurements
will later be directly included into the prediction step of the
filter. For simplicity, we assume that all inertial measurements
are obtained with respect to the body frame B.

Encoders in each of the robot’s joints provide access to the
corresponding angular measurements α̃ and their derivatives
˙̃α. Considering the forward kinematics BrBFi

(α̃) = si(α̃),
we can compute the absolute location of the ith foot Fi:

WrWFi
= WrWB +CWBBrBFi

(α̃) (17)
= C(q)(si(α̃)− r). (18)

If foot i is in contact with the ground and assuming that it
remains stationary with respect to the world frame W , the
differentiation of the above kinematic identity yields

0 =− v + ω×si(α̃) + J i(α̃) ˙̃α+ ns, (19)

where J i(α̃) = ∂
∂α̃si(α̃) is the Jacobian of the forward

kinematics. The discrete Gaussian noise term ns ∼ N (0,Rs)
incorporates different sources of noise, including errors from
the encoder measurements as well as imprecise kinematic
modeling. This is mainly done because the noise on the
encoder measurements causes only a minor part of the full
measurement noise of (19), where modeling errors and foot
contact effects are more important. In order to avoid the
complex modeling of such effects, the covariance matrix Rs

incorporates all stochastic errors together and represents one
of the main tuning parameter of the filter.

As mentioned earlier, the IMU measurements are linked to
the rates of the filter states and are thus included into the
continuous time differential equations of the prediction model.
Using equation (15) and (16) and carefully evaluating the total
derivatives we can write:

ṙ =− (ω̃ − d− nω)×r + v, (20)

v̇ =− (ω̃ − d− nω)×v − f̃ + c+ nf −CT (q)g, (21)
q̇ = C(q)(ω̃ − d− nω), (22)
ċ = nc, (23)

ḋ = nd. (24)

The additional continuous white Gaussian noise processes nc
and nd model a certain drift affecting the bias terms. For all
white Gaussian noise processes, the corresponding covariance
parameters, Rf , Rω , Rc and Rd describe the magnitude of
the noise. The covariance parameters can be identified by
considering the Allan plots of the IMU measurements [3].

B. Unscented Kalman Filter

The different measurements are fused within an unscented
Kalman filter framework. While the resulting computational
costs are slightly higher than for a corresponding extended
Kalman filter, the UKF is in general more robust against
nonlinearities. However, for the case at hand, our choice was
mainly motivated by the simplicity of handling correlated
noise between prediction and correction step. The correlation
can best be seen by considering the discretized filter equations.

Discretization of the stochastic differential equations (SDE)
(20)-(24) is a difficult problem and is, in general, not ana-
lytically solvable without approximation. The most common
approach is to linearize the equations and to integrate the linear
SDE. Here, we discretize the deterministic and stochastic part
of the SDE separately. This allows the analytical solution of
the corresponding system of deterministic differential equa-
tions and thus keeps our rotational state in the 3D manifold
SO(3). Using the abbreviation ∆tk = tk−tk−1 and applying
the method of variation of parameters we obtain:

rk = ΓT0,k

(
rk−1 + ∆tkvk−1 −

∆t2k
2

(
2Γ2,k(f̃k

− ck−1 − nf,k) +C(qk−1)g
))

+ nr,k, (25)

vk = ΓT0,k

(
vk−1 −∆tk

(
Γ1,k(f̃k − ck−1

− nf,k) +C(qk−1)g
))

, (26)

qk = qk−1 ⊗ exp
(

∆tk(ω̃k − dk−1 − nω,k)
)
, (27)

ck = ck−1 + ∆tknc,k, (28)
dk = dk−1 + ∆tknd,k, (29)

with

Γn,k = Γn

(
∆tk(ω̃k − dk−1 − nω,k)

)
. (30)

6060



The various discretized noise quantities are distributed with
N (0,R/∆tk) where R is the corresponding continuous co-
variance parameter. The new discrete Gaussian noise term nr,k
is used to model errors that occurred during discretization.

While equations (25)-(29) are used for the prediction of the
filter, the update step is based on the kinematic identity (19).
This is applied to every leg i that is in contact:

0 =− vk + (ω̃k − dk−1 − nω,k)×si(α̃k)

+ J i(α̃k) ˙̃αk + ns,k. (31)

The recurrence of the gyroscope measurement noise nω,k in
the update equation correlates the noise between prediction
and update step. In an UKF setup this can be handled very
easily. The basic outline of the filter looks as follows. Given
the a-posteriori estimate xk−1 and its covariance matrix P k−1
at time tk−1, sigma points are sampled in such a manner that
they represent the joint distribution of the state estimate and
all noise quantities. This results in a set of sigma points of the
following form:

X ik−1 =
(
xik−1,n

i
r,k,n

i
f,k,n

i
ω,k,n

i
c,k,n

i
d,k,n

i
s,k

)
. (32)

Whereby using the same sampled rotational rate noise during
prediction and update automatically handles the stochastic
correlation between both steps. For a more detailed discussion
on the employed UKF please refer to [10]. Also, please note
that throughout the filter the boxplus (1) and boxminus (2)
operators have to be employed where appropriate.

C. Outliers Detection

Kalman filters have the drawback that they can be very
sensitive to outliers. While outliers are often caused by non-
modeled effects or other anomalies, their appearance is in
most cases only difficultly predictable and the corresponding
observations draw generally from a significantly different
probability distribution. The sensitivity is caused by the light-
tailed underlying Gaussian distribution which leads to the
minimization of squared error terms. In order to handle outliers
caused by foot slippage we propose to employ a simple thresh-
olding based on the Mahalanobis distance of the innovation.
This employs the predicted covariance of the innovation and
classifies a measurement as an outlier if the Mahalanobis
distance exceeds a certain threshold. This has the drawback
that the threshold needs to be hand-tuned, however, if it is
appropriately chosen this leads to near-optimal filtering [22].

Let yi,k be the innovation induced by the kinematic
constraints of the ith leg at timestep k (31) and Si,k the
corresponding predicted covariance matrix. We classify the
observation as an outlier if the Mahalanobis distance is larger
than a certain threshold parameter p, i.e., if yTi,kS

−1
i,kyi,k > p

is met. Under the assumption of Gaussian distribution the
left hand side of the inequality will be χ2 distributed with 3
degrees of freedom. In our case the threshold p = 16.27 was
chosen in order to obtain a rejection rate of 0.1% for inliers.
If the above threshold is exceeded, the kinematic constraints
are ignored and not taken into account during the update step

(like for all legs that are not currently in contact with the
ground). An analogous approach was employed by Mirzaei
et al. [15] for rejecting visual feature measurements within a
Kalman filter based IMU-camera calibration.

IV. NONLINEAR OBSERVABILITY ANALYSIS

Similarly to Hermann and Krener [7], we employ the notion
of locally weakly observability which qualifies whether each
point of a system can be instantaneously distinguished from
its neighbors. As a slight technical difference we consider our
system to have no external control input and interpret the
rotational rate as well as the proper acceleration as system
parameters. The subsequent nonlinear observability analysis
should reflect the observability characteristics of the system
in dependence of those parameters.

Lets consider the following state-space representation of a
smooth nonlinear system:

ẋ =f(x,u), (33)
z =h(x), (34)

with process function f and measurement function h. For a
given state x and input parameters u we can now evaluate the
observability matrix

O(x,u) =

∇L
0
fh(x)

∇L1
fh(x)
...

 , (35)

based on the gradient operator∇ and Lie derivatives [7]. Infor-
mally it describes the effect of infinitesimal state perturbations
δx on the instantaneous measurement z and its derivatives:δzδż

...

 = O(x,u)δx. (36)

Perturbations δx which do not cause any change in the corre-
sponding measurements are intrinsically not observable. Con-
sequently, the nullspace of the observability matrix O(x,u)
is equivalent to the unobservable subspace of the system at a
state x and for a given input parameter u.

The novelty in the presented nonlinear observability analysis
is the seamless integration of rotational states into the observ-
ability analysis by means of the special derivatives introduced
in equations (3) and (4). Using the identities (5)-(10) and
applying the chain rule, the Lie derivatives can be easily
evaluated, whereby the entries in the observability matrix cor-
responding to 3D rotational quantities will exhibit the proper
number of dimension (which should be 3) and accurately
reflect the observability characteristics of the system. This is
best explained at hand of a concrete example: for the filter
presented in this paper the sequence of Lie derivatives and
corresponding gradients together with the observability matrix
will be evaluated for the case of a single foot contact with the
ground. For the sake of readability the indexes are omitted
where possible and the noise terms are left out (they do not
influence the observability analysis). In short we will also use
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s̃ = s(α̃), ω̂ = ω̃ − d, f̂ = f̃ − c and C = C(q). The
process function (equations (20)-(24)) can be written as:

f(x,u) =


−ω̂×r + v

−ω̂×v − f̂ −CTg
Cω̂

0
0

 . (37)

The sequence of Lie derivatives and corresponding gradients
can be evaluated to:

L0
fh(x) =− v + (ω̃ − d)×s̃+ J(α̃) ˙̃α, (38)

∇L0
fh(x) =

[
0 −I 0 0 s̃×

]
, (39)

L1
fh(x) = ω̂×v + f̂ +CTg, (40)

∇L1
fh(x) =

[
0 ω̂× CTg× −I v×

]
, (41)

...

Lnfh(x) = − ω̂×
n

v − ω̂×
n−1

f̂ − nω̂×
n−1

CTg, (42)

∇Lnfh(x) =
[
0 −ω̂×

n

−nω̂×
n−1

CTg× ω̂×
n−1

∂Lnfh(x)/∂d
]
. (43)

With this, the Observability matrix (35) can be constructed
and simplified in order to obtain the following term:

O(x,u) =

0 −I 0 0 s̃×

0 0 CTg× −I v× + ω̂×s̃×

0 0 −ω̂×CTg× 0 (ω̂×v + f̂ + 2CTg)×

0 0 0 0 (ω̂×v + f̂ +CTg)×ω̂×

0 0 0 0 (ω̂×v + f̂ +CTg)×ω̂×2

0 0 0 0 (ω̂×g)×

0 0 0 0 (ω̂×2g)×


In this example, the input parameter u is given by the
rotational rate ω̂ and the proper acceleration f̂ which describe
the motion of the robot main body. Our goal is to obtain the
observability characteristic in dependence of those parameters,
rather than asking the question whether there exists some input
parameter which make our system observable.

As mentioned above, the nullspace of the observability
matrix corresponds to the directions of disturbances which
can not be observed at the output of the system. Up to a few
singular cases, the rank of the nullspace is 4 and is spanned
by the following matrix:

U(x,u) =

[
I 0 0 0 0
0 0 gT 0 0

]T
, (44)

where the first row describes unobservable disturbances on the
robot position and where the second row represents rotation
around the gravity axis (yaw angle). The emergence of those
unobservable modes could have been predicted as we do not
use any global positioning system. However, there are singular
cases where more directions become unobservable. Those
can also be evaluated analytically based on the observability

ω̂ = 0 ω̂ ⊥ CT g ω̂ ‖ CT g Rank deficiency

x x x 5 (f̂ = −2CT g)

3 (f̂ 6= −2CT g)
x 1

x 1
0

TABLE I
RANK DEFICIENCY IN DEPENDENCE OF INPUT PARAMETERS.

matrix. In the scope of this paper the singular cases are listed
in table I together with a brief discussion (if a cross is set the
above equality is fulfilled). As can be observed, the rank loss
depends on the relation between gravity vector and rotational
rate vector. If there is no rotational motion in the system,
the filter can not distinguish between inclination angles (pitch
and roll) and a bias on the proper acceleration measurement.
Furthermore it will not be able to estimate the gyroscope bias
around the gravity and we thus get a total rank deficiency of
3 for this case.

In a less intuitive way the system loses two further ranks
if it does not exhibit any rotational motion and, at the same
time, accelerates with −g in the world frame (f̂ = −2CTg).
This represents a rather unrealistic situation our robot might
find itself in. In the general case the system will rarely be
perfectly at a singular point and thus the corresponding filter
should be able to observe all state except for the globally
unobservable position and yaw angle. Also, please remember
that the above table describes the case where only a single
foot is in contact with the ground and that the rank deficiency
tends to be smaller if more contacts are available.

V. RESULTS AND DISCUSSION

The presented filter was implemented and evaluated on
our quadruped platform StarlETH [9]. For the experiments
the output of the state estimation was used to stabilize and
control the robot. We illustrate the filter performance at hand
of an experiment where the robot trots over uneven and
highly slippery terrain. Figure 1 shows a sequence of images
depicting the trajectory of the robot. It covers a distance of
approximately 3 m in roughly 15 s.

In Figure 2 a detailed sequence of snapshots shows a slip
situation towards the end of the experiment (around the last
image of Figure 1). For this sequence we plotted the results
of the outlier detection algorithm of Section III-C in Figure 3.
The three distinct blocks in the figure correspond to the stance
phases of three subsequent steps of the left hind leg. While
the light gray surface represents the contact detected by the
contact sensor, the dark gray surfaces represent the detection
of outliers. The first block corresponds to the slip situation of
Figure 2, where the dark gray phase towards the beginning
of the stance phase represents detected slip (the contact is
also lost for a very short instant). There are a few unexpected
outlier detections throughout the dataset. They often occur
at the beginning or towards the end of stance phase where
the foot is not well in contact with the ground and where
oscillations can occur due to the compliance of the foot. In
contrast to our previous work [2], where an estimate of the
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Fig. 1. Trotting sequence over uneven and slippery terrain. The robot requires about 15 s for traversing the 3 m long area covered with loose wooden planks.

Fig. 2. A sequence of snapshots illustrating the substantial slip that is occurring during the experiment. If looking at the plank beneath the left foot one can
observe that it is moved by approximately 10 cm. Time between snapshots: 32 ms.

20 20.5 21 21.5

0

1

time [s]

 

 

Contact Sensor

Outlier Detection

Fig. 3. Binary outputs from contact sensor and outlier detection of the left
hind leg. Light gray: flag of contact sensor (1 = contact). Dark grey: outlier
detection (only detect outliers if the contact sensor flag is true). Three stance
phases are displayed. In the first stance phase slippage is detected which
corresponding to the slip event illustrated in Figure 2.

foothold is initialized at each new step, the present filter is
much less susceptible to fast switching foot contacts.

Figure 4 and Figure 5 show the resulting estimates for the
attitude and the velocity of the robot main body. From the
point of view of the local controller those quantities are of
high importance in order to enable the stabilization of the
main body. As pointed out in Section IV the angle around
the gravity axis (yaw) is not observable and consequently the
filter estimate will drift away. However, for the remaining two
degrees of freedom (pitch and roll) very precise results are
obtained with RMS values below 0.01 rad if compared to the
motion capture data. The plotted 3σ covariance bounds of
the attitude estimates roughly captures the uncertainty of the
system and the motion capture attitude remains between the
bounds for most of the time (there are some outliers in the
motion capture data).

The velocity estimates are more difficult to evaluate due
to noisy numerical differentials of the motion capture system.
Still, one can observe a nice overlay between both trajectories.
Here, all three quantities are observable and after a very quick
initial convergence the covariance estimates remain more or
less constant. The obtained RMS values are around 0.05 m/s,
whereas a large amount is caused by the noisy motion capture
estimates. If compared to the filter presented in [2] the RMS
errors for the velocity estimates as well as for the roll and pitch
angles are roughly halved for this experiment (for pitch there
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Fig. 4. Roll, pitch, and yaw angles of the main body for the sequence depicted
in Figure 1. Red: estimated values. Red dashes: 3σ covariance bounds. Blue:
motion capture data. The RMS values for the roll, pitch, and yaw estimates
are: 0.0086 rad, 0.0056 rad, 0.0693 rad.

is even a factor 10). This comes at costs of accuracy on the
position and yaw angle. However, as mentioned earlier those
quantities are of secondary interest and their estimation could
be improved by integrating more suitable sensor modalities
like vision or LIDAR.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a novel state estimation approach
for legged robots based on kinematic velocity measurements
at the ground contacts. The obtained information is fused
with measurements from an on-board IMU by means of an
unscented Kalman filter. The provided nonlinear observability
analysis shows that, for general robot motions, all states
are observable except for the global position and the yaw
angle. This results in a filter which accurately estimates the
inclination angles (roll and pitch) as well as the velocities of
the robot. It also avoids unnecessary assumptions on the shape
of the floor or on the employed gait pattern and is robust to a
certain amount of foot slippage. Implemented on our legged
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robot StarlETH, it enables dynamic locomotion over uneven
and labile terrain.

While the position and the yaw angle of the robot are
quantities which are less critical for a local stabilization of
force controlled legged robots, they are important for global
navigation. Future work will thus include evaluating different
methods for integrating further sensor modalities which are
more suited for navigation and terrain perception.
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