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Abstract— The fusion of multi-sensor information for state
estimation is a well studied problem in robotics. However,
the classical methods may fail to take into account the mea-
surements validity, therefore ruining the benefits of sensor
redundancy. This work addresses this problem by learning
context-dependent knowledge about sensor reliability. This
knowledge is later used as a decision rule in the fusion task
in order to dynamically select the most appropriate subset
of sensors. For this purpose we use the Mixture of Experts
framework. In our application, each expert is a Kalman filter
fed by a subset of sensors, and a gating network serves as
a mediator between individual filters, basing its decision on
sensor inputs and contextual information to reason about the
operation context. The performance of this model is evaluated
for altitude estimation of a UAV.

I. INTRODUCTION

State estimation is an essential issue in robotics. For
many systems, it relies on multiple sensors, each one ex-
hibiting an inherent observation uncertainty, operating range,
and context dependent performance. Uncertainty due to the
observation noise received considerable attention over past
decades and is commonly handled using Bayesian filtering
[1]. It is also well known that the use of redundant sensors
significantly improves estimation accuracy and reliability.
However, such methods do not provide any satisfying way
to assess the validity of sensor measurements.

In the context of multi-sensor state estimation, most at-
tempts to deal with this issue lead to self-contained systems,
relying on information theoretic framework [2] or rejection
schemes designed after experience on the system behaviour
[3]. This work is motivated by the fact that an intelligent
system should not only be able to select the sensor -or
subset of sensors- based on an online performance measure,
but should also encode knowledge about the reliability of a
perception modality according to the current specific context.

This implies the ability for the system to discover the
implicit operation contexts the robot is likely to encounter,
based on the a priori unknown performances of each sensor
in these contexts. Attributing belief about the reliability of a
sensor in these contexts then requires a complex reasoning
on information acquired about the environment. Except for
simple cases (reduced set of sensors, known environment)
one can not easily implement such decision rules by hand.
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Fig. 1. The basic mixture of experts framework

Addressing this problem introduces the need for the system
to learn how to achieve the sensor selection task. For this
purpose, we propose to use a supervised learning algorithm
to learn a mapping from sensors measurements input space
(and any relevant information) to sensors reliability proba-
bilities.

A well-designed robotic platform should exhibit various
perception modalities relying on different but complemen-
tary physical principles. Consequently the set of perception
modalities embedded on a robot does not provide direct
commensurate measurements, and it is often easier and more
modular to fuse information at a state vector level [4].
Furthermore, binding different subset of sensors to different
estimation filters allows to map the sensor selection problem
to the bank of Kalman filter approach. This method assumes
that optimal filtering can be expressed by dynamically se-
lecting the most suitable filter among a bank of filters. This
approach emerged with the Magill’s filter bank [5], and has
been subsequently improved leading to general pseudo Bayes
(GPB) methods and interacting multiple models (IMM) [6],
the latter being more computationally efficient. Although
some authors decided to augment the IMM with context-
dependent information [7], this algorithm fundamentally
relies on the exploitation of internal estimates and a known
transition probability matrix between different filter models.
Thus introduction of a knowledge about context dependent
model reliability is not straightforward, especially if the user
wants the system to learn this information. An analogous
approach can be found in [8] in the context of fault diagnosis.
Based on a jump Markov linear model, this method requires
a priori knowledge of the different regimes of operation for
the learning step, while we want our system to discover these
different contexts by itself.
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Aiming at learning how to combine some complementary
experts, the Mixture of Experts (ME) framework lends
itself very well to the problem as it basically computes
an optimal output through a weighted sum of individual
experts. To achieve this mediation task, the ME relies on
a gating network in charge of providing gating probabilities,
equivalent to reliability coefficients over the set of experts
(Fig. 1). When experts are replaced by estimation filters, this
approach is known to be an efficient alternative to the filter
bank approach [9] [10].

This article aims at showing how the mixture of Kalman
filter for implicit sensor selection can be applied to the
altitude estimation task for a UAV, and is based on the two
following contributions :

• Application of the localized gating network to the
mixture of Kalman filters

• Application of the bank of Kalman filter approach for
implicit sensor selection

It is organised as follows: Section II introduces the ME
framework and concept of adaptive Kalman filtering for
sensor selection. Section III focuses on the gating model
and the training phase of the ME. Section IV conveys the
experimental results obtained for simulation and real data
scenario. Concluding remarks are finally made in section V.

II. THEORETICAL BACKGROUND

A. The mixture of experts framework

The mixture of experts approach basically consists in
decomposing a complex problem into subtasks, each of
which being handled by an appropriate expert. Traditionally
used for regression or classification problems, the model
learns to split the input space into overlapping regions within
which assigned experts are active.

The standard ME framework [11] consists in a set of
K experts modules and a gating network (Fig. 1). Each
expert k = 1...K associated with parameters λk looks at
input vector y and computes a local output xk through
a function fk(λk, y). In a probabilistic interpretation, the
output of an expert k can be viewed as the mean of a
probability distribution P (x|y, λk) with x the desired target
value associated to sample y. Assuming that the different
experts may be more competent in different regions of the
input space (i.e. they have higher probability to produce the
desired target x), the gating network mediates the outputs
of the bank of experts by producing for each expert k a
probability of its output xk to be equal to the desired output
x. This results in a set of gating probabilities gk weighting
the output of all experts while satisfying constraints gk ≥
0, k = 1...K, and

∑K
k=1 gk = 1.

Given an input vector y and a target vector x, the prob-
ability of observing x is then written in terms of gating

probabilities and experts outputs (using product rule) as

P (x|y,Θ,Λ) =

K∑
k=1

P (x, k|y,Θ,Λ)

=

K∑
k=1

P (k|y,Θ)P (x|k, y,Λ)

=

K∑
k=1

gk(y, θk)P (x|y, λk) (1)

where {Θ,Λ} denotes the set of all parameters, with Θ =
{θk, k = 1...K} the set of gate parameters and Λ = {λk, k =
1...K} the set of experts parameters.

ME implementations then differ in three main points: the
experts model, the gating model, and the inference method
[12]. Our model for the gating framework is justified in
section II, and expert models are set as Kalman filters in our
case. In this paper we use a common learning method based
on the maximum likelihood principle, quickly described
hereafter.

Given a training set {x,y} we try to maximize the
likelihood L of the data set with respect to the model pa-
rameters. If samples are considered identically independently
distributed, this is equivalent to maximize:

L =
∏
n

p(xn, yn)

We then define the usual cost function C as the negative log
of the likelihood function, such that maximizing likelihood
is now equivalent to minimize C:

C = −
∑
n

ln(p(xn, yn))

Different methods for determining max likelihood have
been developed. The standard gradient descent methods can
be applied. More recently, sampling, variational inference
and several Expectation Maximization (EM) algorithms have
emerged [12] and have shown good performances.

B. Adaptive Kalman filtering for sensor selection

We implicitly solve the sensor selection problem through
the filter bank approach. In classical implementations, the
bank is composed of a finite number of filters differing in
transition model, transition noise and observation noise. A
weighting function then assigns weight factors to the output
of each individual filter, giving highest weight value to the
best performing filter. In our case, models differ only in
observation matrices (and corresponding observation noise),
acting as a selector on the sensors (Fig. 2). By this mean
we implicitly select the most appropriate subset of sensors
through the filter selection process.

III. ME FRAMEWORK FOR SENSOR SELECTION

A. Motivations

A micro-UAV is often brought to deal with changing
environment. The simple take-off and landing phase of a
micro-UAV already brings many different regimes in term
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Fig. 2. Mixture of experts framework for sensor selection. Each filter can
be wired to a different subset of sensors. The gating network can share
experts inputs and use any useful additional contextual information.

of sensor performance for altitude estimation. Ultrasonic
sensors are for example quite reliable and accurate until
they reach a given maximum range. They also easily provide
outliers measurements, e.g. because of multiple reflections.
Vision may start to provide information after reaching a
given altitude, depending on camera characteristics and on
the ground texture. Barometric pressure sensors provide
wide measuring range with quite constant accuracy but also
require to estimate a bias due to changing atmospheric
conditions, while GPS provides signal dependant precision,
and is more likely to be reliable for high altitudes, also
depending on environment characteristics. These specificities
raise the need to create decision rules for selecting an active
sensor subset given a specific context.

In [3] the authors report for example that indoor/outdoor
transitions result in outliers classical methods can not reject.
Therefore, a mechanism for sensor selection is proposed,
giving ability to the system to switch to the sensor that works
well in the current environment. The selection rule relies
on the strong assumption that the sensor with the smallest
measurement variance is the more reliable. If this approach
turns to be efficient in this specific transition context and
sensor setup, it is not generic at all.

An important capability of the ME model, which moti-
vated this work, relies in the gating network ability either to
share the experts inputs or to use additional information. This
allows to base decision on context-dependent information of
any kind. Under the assumption that the training set contains
enough samples, the learned gating network then ensures
adaptation to the different environments, providing a partial
assessment of sensors reliability.

B. Using Localized gating network to encode decision rules

Besides adapting the perception modalities, we also aim
at switching smoothly between experts. This requirement
especially makes sense in flight context, where hard tran-
sitions between sensors (consequently between estimates)
are not admissible, as it directly impacts the robot safety
in cluttered environments. In the standard model, the gating
network is a single layer linear network, hence the decision
boundaries consist of ’soft’ hyperplanes and inevitably create
overlapping regions [13], within which only one expert

may be needed (i.e. only one sensor subset is effective).
Consequently we adopt a specific model for the gating
network, known as localized ME [14], which consists of
normalized Gaussian kernels (or any density function from
the exponential family) :

gk(y, θk) = P (k|y) =
αkP (y|θk)∑K
j=1 αjP (y|θj)

(2)

with

P (y|θk) =
1

(2π)d/2| Σk |1/2
exp

(
−

(y −mk)T Σ−1
k (y −mk)

2

)

where θk = {mk,Σk} the mean and variance of the
Gaussian kernel distribution.

The Gaussian kernels allow to divide the input space
into soft hyper-ellipsoids. These ellipsoids can overlap, or
create localized regions of expertise where a single sensor
is trustworthy. The choice of Gaussian kernels also impacts
the learning step, as it yields a one-pass maximization step
when using the EM algorithm. EM is proved to have a
faster convergence rate than gradient ascent methods [15],
and provides guaranteed convergence due to the single loop
maximization step when used with Gaussian kernels: hence
we learn the gating parameters with the EM algorithm.

C. Learning the mixture parameters

The basic idea of the EM algorithm is to make the
assumption that some variables are hidden, in our case the
probability that the nth target sample xn was generated by
expert k. Hence we introduce an indicator variable z :

znj =

{
1 if target sample xn is generated by expert j
0 otherwise

This hidden variable induces mutual competition among
experts. It also models the existence of unknown operating
contexts which for different subsets of experts are reliable.
To obtain a one pass calculation for the gating parameters,
we complete maximum likelihood estimation on the joint
density p(x, y) [14]. Rewriting equation (1) with the new
gating function and noting the kth expert output conditional
density function φk(x|y):

p(x|y,Θ,Λ) =

K∑
k=1

αkP (y|θk)∑K
j=1 αjP (y|θj)

φk(x|y) (3)

we obtain the joint density

p(x, y) =

K∑
k=1

αkP (y|θk)φk(x|y) (4)

using Baye’s rule on (2) to obtain p(y) =
∑K

j=1 αjP (y|θj).
Finally, introducing the indicator variable z to mediate

mutually exclusive experts, the joint distribution over hidden
and observed variables takes the form :

p(x, y, z) =

K∏
k=1

(αkP (y|θk)φk(x|y))zk (5)
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which by maximum likelihood leads to the cost function:

C = −
∑
n

K∑
k=1

znk ln(αkP (yn|θk)φk(xn|yn)) (6)

Now the specificity of EM algorithm enters. In the expec-
tation step we replace the hidden variable z by its expected
value :

E(znk ) := p(znk = 1|xn, yn)

=
p(xn|znk = 1, yn)p(znk = 1|yn)

p(xn|yn)

=
αkP (yn|θk)φk(xn|yn)∑K
j=1 αjP (yn|θj)φj(xn|yn)

= hk(xn, yn) (7)

Then the maximization step maximizes the expectation
of the cost function by substituting zk by its expectation
hk(x, y).

E(C) = −
∑
n

K∑
k=1

hk(xn, yn)ln(αkP (yn|θk)φk(xn|yn))

(8)

As we can see this cost function can be separated in
two terms. The first one corresponds to the cost function
relative to gating parameters (αkP (yn|θk)) and the second
term corresponds to the expert network parameters.

D. Achieving mixture of Kalman filter

In our context each expert is a particular Kalman filter
providing its own estimation based on observation input ynk
and parameters λk describing specific sensor observation
noise and observation selection matrix. Hence φk(xn|yn)
is obtained by evaluating the output distribution of the
kth Kalman filter at point xn. The maximization step then
consists only in minimizing the first term of result (8).
Setting partial derivatives w.r.t to αk (and using Lagrangian
multiplier to introduce the constraint

∑
k αk = 1), mk and

Σk to zero, we obtain new estimates [13]:

αk =
1

N

∑
n

hk(xn, yn) (9)

mk =

∑
n hk(xn, yn)yn∑
n hk(xn, yn)

(10)

Σk =
1

d

∑
n hk(xn, yn)‖ yn −mk ‖2∑

n h(xn, yn)
(11)

Using these new parameters, we then repeat the EM steps
until convergence.

One common problem with mixture of Kalman filter is that
the exact belief state grows exponentially in time. For a set
of K filters, at iteration t = T , the exact distribution of the
state is a mixture of KT Gaussian distributions. To deal with
this exponential growth we use the GPB collapsing method
of order 1, and approximate the mixture of filters output
distribution with a single Gaussian distribution. At step n, if
each filter k provides an output distribution of mean µk and

variance σk we obtain the mixture distribution mean µmix

and variance σmix [16]:

µmix =

K∑
k=1

gkµk

σmix =

K∑
k=1

gk[σk + (µk − µmix)(µk − µmix)T ]

The next transition step is then based on this mixture output,
hence accumulating the error introduced by the approxima-
tion at each time step. However, it has been shown in [17]
that the process error remains bounded indefinitely, avoiding
the mixture output to become irrelevant.

Some drawbacks of the approach are now discussed. In
its original implementation the ME framework inputs are
synchronized, and the gating network bases its decision on
a joint set of observations. For experiments, we simulated
synchronous observations by forcing sensors to provide mea-
sures at a defined frequency. As we will see, this approach
does not affect the framework ability to make decisions,
mainly because difference between inputs frequencies are
small – however large differences would not provide relevant
decisional capabilities.

An other constraint, directly imposed by the Gaussian
kernel model, is the unimodal distribution of the regions of
expertise. Under specific configurations, some sensors may
need to be active in separate regions of the input space. This
would require to model gating probabilities with more com-
plex models, like Gaussian mixtures or Gaussian processes
[12] – we will however notice that in our application context
the localized Gaussian kernels provide good behaviour.

IV. EXPERIMENTS

A. Simulation

We first illustrate the system ability to learn decision rules
according to sensors characteristics. This simple example
reproduces the take-off and landing phases of a UAV. Three
sensors provide direct measures of the altitude with different
characteristics, such as observation noise, outliers occur-
rences and measurement range thresholds (Fig. 3). Each sen-
sor is fed to one filter, and all filters share a common constant
velocity transition model. We train the gating network on a
dataset of 12000 samples reproducing two subsequent take-
off/landing sequences. The EM algorithm takes 50 iterations
to converge with a convergence threshold of 10−5.

The final estimate and associated uncertainty boundaries
for the validation set is shown in Fig. 5(a). As we can see, the
gating network learned to switch between sensors in order
to reject outliers and to take into consideration each sensor
measurement range. As expected from mutual competition
between experts introduced during the learning step, the
gating network tends to assign binary weights. Hence mixing
only operates during transition phases. As a consequence, the
system output provides consistent estimation but does not
benefit from estimation uncertainty reduction that could be
provided by direct measure fusion.
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Fig. 3. Altitude measurement provided by three sensors. Sensor 1
reproduces typical ultrasonic measures, low observation noise, outliers
occurrences and maximum range threshold. Sensor 2 permanently provides
measures with high observation noise. Sensor 3 does not provide relevant
measures below 2 meters.

0 2000 4000 6000 8000 10000 12000

0

0.2

0.4

0.6

0.8

1

1.2

Expert 1

Sample number

H
is

to
ry

 o
f 
g
a
ti
n
g
 w

e
ig

h
t 
g

1

0 2000 4000 6000 8000 10000 12000

0

0.2

0.4

0.6

0.8

1

1.2

Expert 2

Sample number

H
is

to
ry

 o
f 
g
a
ti
n
g
 w

e
ig

h
t 
g

2

0 2000 4000 6000 8000 10000 12000

0

0.2

0.4

0.6

0.8

1

1.2

Expert 3

Sample number

H
is

to
ry

 o
f 
g
a
ti
n
g
 w

e
ig

h
t 
g

3

Fig. 4. Gating weights history on validation dataset.
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Fig. 5. Estimated altitude on validation dataset.

We compared the ME approach with a classical Kalman
filter enhanced with 3-sigma rejection on all sensors. As
shown Fig. 5(b), this approach can provide similar results
with appropriately tuned filter parameters. However, the
efficiency of such methods proves to be unsound, especially
as small changes in filter parameters or rejection threshold
can lead to strong divergence of the estimation output. While
we observed that changes in filter parameters significantly
modifies the localization of Gaussian kernels in the input
space, the ME approach turns to homogeneously produce
consistent output thanks to its adaptation capability.

B. Real Data

We now use datasets acquired on a paparazzi quadrotor
UAV [18]. Datasets consists of 50Hz synchronized altitude
measures provided by an ultrasonic sensor and a barometer
as well as accelerations on 3 axis provided by the embedded
IMU. Altitude truth is given by a motion capture system.
As we can see Fig. 6, ultrasonic sensor presents strong and
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Fig. 6. Gating network inputs and altitude truth for validation dataset.
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Fig. 7. Altitude estimation and uncertainty boundaries using mixture of
Kalman filters on validation set.

frequent outliers we know to be related to thrust level. We
also suppose that an external filter gives us an estimation of
the barometer offset.

Without additional understanding of the perturbations gen-
erated on ultrasonic sensor measures, we apply the mixture
of experts framework to show its ability to learn to filter
these outliers, and improve estimation accuracy. For this
application we use 3 different experts: one expert based on
ultrasonic measures, an other based on barometer measures,
and a last one based on both ultrasonic and barometer
measures. As we know the presence of outliers in ultrasonic
observations is correlated to the thrust, we provide 3 inputs
to the gating network: both sensor measures and the thrust
command. We compare this method to a Kalman filter
using 3-sigma rejection scheme on ultrasonic and barometer
measures. All these filters share the same constant velocity
transition model and observation noise. We train the system
on a dataset of 5000 samples. After 50 iterations the EM
algorithm reaches the convergence threshold fixed to 10−6.

Experiments show that the learned parameters generalize
well on different validation sets, always providing similar
performances. As we can see Fig. 7, some outliers are not
perfectly filtered. These outliers are presumably localized in
unexplored regions of the input space, implying that rejection
capability could be improved by using a larger training set.
On the validation set corresponding to Fig .6, the system
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Fig. 8. Estimation error relative to altitude truth for mixture of Kalman
filter (in red) and Kalman filter with 3-sigma rejection (in blue).
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Fig. 9. Weights history for expert 1 (ultrasonic sensor + barometer), expert
2 (ultrasonic sensor) and expert 3 (barometer).

provides the best RMS estimation error with a value of
0.135. The filter with rejection provides an RMS error of
0.207. With a gating framework basing its decision on sensor
measures only, we found an RMS error of 0.150. This result
attests of thrust impact on ultrasonic measures, and of the
ability for the framework to take it into account as well.

The estimation error improvement provided by the mixture
approach (shown Fig. 8) can be explained by the sensor
selection process. For example our model learned to assign
more weight to the ultrasonic sensor as the UAV gets closer
to the ground, and usually promotes the barometer for higher
altitudes, where outliers on ultrasonic measures are more
likely to appear. Note that due to its estimation latency, the
barometer measures are more relevant for small velocity.
This is why, based on the strong thrust command value,
our approach reduces estimation error by now choosing the
ultrasonic sensor during the fast transition phase between
sample 3000 and 4000. The error difference provided by the
Kalman filter here again results from its sensitivity on filter
parameters. The noise term on the transition model should
reflects the dynamics of the UAV, but as rejection is based
on the innovation term, high noise terms reduce rejection
capability on small outliers. At the same time, low values
can conduct to correct measurement rejection during high
dynamic maneuvers. This explains the highest error peaks
on Fig. 8 where estimation latency introduced by the use of
the barometer punctually becomes coherent with ultrasonic
outliers, and make the filter diverge until altitude decreases.
In this more complex example, all the sensor specificities
can not be handled by an appropriate parameter tuning, and
more subtle decision rules as encoded in the gating network

prove to be more suitable.

V. CONCLUSION

We demonstrated that the mixture of expert framework
can be applied to the sensor selection problem. The gating
network discovers the different operating contexts and en-
codes knowledge about sensor reliability through the gating
probability distributions parameters. This enables the system
to automatically select the best suited estimation output,
improving robustness regarding filter parameters inaccuracies
and sensor characteristics.

An interesting direction for future work would consist
in using more complex models for decision boundaries
and extend the method to richer information sources like
laser range data or images. In the current implementation
the mixture process ignores previous gating weight values.
Extending the gating network to its dynamical version would
also improve performances of the approach.
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