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Abstract— This paper presents the dynamic parameter iden-
tification of the 7-DOF WAMTMArm using a novel physically
consistent regression technique. Due to model and data errors,
physically impossible parameters can arise with classical esti-
mations methods. Such infeasible estimations cannot be used in
robot control or simulation. This paper proposes a semidefinite
programming (SDP) reformulation of the classical ordinary
least squares method. This enables the inclusion of constraints
guaranteeing physically feasible solutions only. The SDP method
efficiently finds the feasible solution with the lowest regression
error. Regression data processing issues related to the WAM
robot are also addressed.

Index Terms— Dynamics, Calibration and Identification.

I. INTRODUCTION

This paper presents the dynamic model and parameter
identification of the anthropomorphic 7-DOF WAMTMArm,
a lightweight robot manipulator with seven revolute joints.
Knowledge of robot dynamics enables the design of advanced
control techniques and robot dynamic simulation. A common
method to estimate the dynamic parameters is through linear
regression techniques based on commanded torques and
joint position data. These methods are prone to errors that
can compromise the physical feasibility of the estimated
parameters, resulting in parameter values that are impossible
to be real, e.g., negative masses. In [1] the non-linear
physical feasibility conditions are formulated and a recursive
method to check base parameter feasibility is proposed. In
[2] it is proposed a method to estimate feasible parameters
through the correction of a previous regression estimation.
A nonlinear Bayesian parameter identification method is
presented in [3], where regression optimization is done over
a physically feasible virtual parameter space which has a
nonlinear projection onto the classical parameter space. In
[4] it is proposed an identification method which guarantees
physical feasibility by approximating the robot model with
mass points, thus converting feasibility constraints into linear
constraints.

In this paper we propose novel techniques to address the
physically feasible estimation problem, and apply them to
the identification of WAM robot parameters. The dynamic
model and its classical identification method are introduced
in Section II, while the physical feasibility conditions are
introduced in Section III. In Section IV, we rewrite the
feasibility conditions as a linear matrix inequality (LMI),
enabling the use of semidefinite programming (SDP) tech-
niques. Then the classical regression is also reformulated as an
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SDP problem, and the feasibility constraints are merged into
it. SDP enables the estimation of feasible optimal parameters
efficiently, which is comparable to linear programming. WAM
robot identification is presented in Section V. Control design
and sensor data processing are discussed. Unlike common
industrial robots, the WAM is commanded in joint torque.
Moreover, due to the high backdrivability, the static friction
has a relatively high effect which we reduce through selective
data elimination. Dynamic parameters computed by both
classical and proposed methods are presented. The paper is
concluded in Section VI.

II. DYNAMIC PARAMETER IDENTIFICATION

For a robot with N links, the inverse dynamic model,
which relates joint position q with joint torque τ (N sized
vectors), is given by

M(q)q̈ + c(q, q̇) + g(q) = τ , (1)

where M(q) is the inertia matrix, c(q, q̇) is the Coriolis and
centripetal forces term, g(q) is the gravity force term, and τ
is the generalized torque. Considering that τ includes motor
and friction torques, τc and f(q, q̇) respectively, (1) can be
rewritten as

M(q)q̈ + c(q, q̇) + g(q) + f(q, q̇) = τc . (2)

In this work, only viscous and Coulomb frictions are modeled.
The friction of the k-th joint is modeled by

fk(q, q̇) = fvk q̇k + fck sgn (q̇k) , (3)

where fvk and fck are constants for viscous and Coulomb fric-
tions, respectively. Besides friction parameters, the dynamic
model is also linearly dependent on the inertial parameters.
For each link k, these parameters are the mass, mk, the first
moment of inertia, lk, and the inertia tensor about link frame
Lk. The first moment of inertia is given by

lk = mkrk , (4)

where rk is the center of mass position relative to the link
frame. By the Huygens–Steiner theorem, the tensor Lk is
given by

Lk = Ik +mkS (rk)
T

S (rk) , (5)

where Ik is the inertia tensor about the center of mass and
S (·) is the skew-symmetric matrix operator. The dynamic
model (2) can be written in the linear to parameters form as

H(q, q̇, q̈) δ = τc . (6)
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The vector δ is a vector of size n = 12N which combines
all link dynamic parameters,

δ =
[
δT1 δT2 · · · δTk · · · δTN

]T
, (7)

where each δk is composed by the unique elements of the
inertia tensor, the first moment of inertia elements, the mass
and the friction parameters,

δk = [Lk,xx Lk,xy Lk,xz Lk,yy Lk,yz Lk,zz

lk,x lk,y lk,z mk fvk fck]
T . (8)

The vector δ can be estimated through a linear regression by
minimizing the residual error ε in

HS δ + ε = ω , (9)

where HS is the regressor matrix (size NS × n) obtained by
staking H(q, q̇, q̈) matrices evaluated at a large S number of
robot postures (joint position, velocity and acceleration), and
ω is obtained by stacking the τc vectors measured at those
postures. The classical approach to solve this problem is the
ordinary least squares (OLS) minimization whose optimal
value δ̂ verifies

(HS
THS) δ̂ = HS

T ω . (10)

Since some parameters have no effect on the robot dynamics,
and other parameters have linearly proportional effect, the
matrix HS has null and linearly dependent columns, entailing
that HS

THS is singular and that there are multiple δ̂ solutions.
To overcome this problem it is usual to eliminate and regroup
parameters into the base parameter vector β,

β = δb +Kdδd , (11)

where
δb = Pb

T δ (12)

and
δd = Pd

T δ . (13)

The matrices PbT and Pd
T are truncated permutation ma-

trices which select the independent parameters, δb, and the
dependent parameters, δd, from δ. The dependent parameters
are grouped into the independent ones by the dependencies
matrix Kd. These matrices can be obtained by numerical
methods [5] or by rule based methods [6], [7]. Equation (9)
is then rewritten as

Wβ + ε = ω , (14)

where W is obtained by eliminating the dependent columns
of HS . The regression problem can be written as

minimize
β

‖ω −Wβ‖2 , (15)

whose optimal solution is given by

β̂ =
(
WTW

)−1
WT ω . (16)

III. DYNAMIC PARAMETER PHYSICAL FEASIBILITY

Dynamic parameters represent physical properties which
are limited to physically feasible values. The use of physically
infeasible estimations lead to unrealistic simulation and
intrinsically unstable control [1]. Physically feasible masses
shall be positive, inertia tensors shall be positive definite, and
friction gains shall be positive,

mk > 0

Ik � 0

fvk > 0

fck > 0

for k = 1, · · · , N . (17)

From (4) and (5), the second condition1, Ik � 0, can be
rewritten as

Lk − S (lk)
T
m−1
k S (lk) � 0 , (18)

which also implies that Lk is positive definite. The physical
feasibility condition can be written in terms of δ, hence the
set of δ vectors which verify it can be defined by

D = {δ ∈ Rn : Lk − S (lk)
T
m−1
k S (lk) � 0,

mk > 0, fvk > 0, fck > 0,

for k = 1, · · · , N} .

(19)

Given a δ estimation, its feasibility can be directly checked
with (17) and (18). Nevertheless, estimations are done in β
space and for each β solution there are an infinite number
of corresponding δ solutions (the map from δ to β spaces
through (11) is not bijective). If for a given β estimation
there is at least one feasible δ which maps to it, then such
estimation is feasible [1].

IV. PHYSICALLY FEASIBLE PARAMETER ESTIMATION

We can constrain the estimation (15) to the physically
feasible solution space doing

minimize
(β,δ)

‖ω −Wβ‖2

subject to β = Kδ

δ ∈ D ,

(20)

where

K = Pb
T +KdPd

T , (21)

thus guaranteeing that the solution is the feasible one which
best fits the regression. In a practical view point, (20) has
no simple solution. However, as we will show in the sequel,
the set D can be defined by a linear matrix inequality (LMI),
proving that it is a convex set ready to be used in semidefinite
programming (SDP). This entails optimal global solutions
and enables efficient solving methods.

1M � 0 means that matrix M is positive definite.
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A. LMI Formulation of the Physically Feasible Conditions

The left-hand side of (18) represents the Schur complement
of mkI in the block matrix Dk(δk) defined as

Dk(δk) =

[
Lk S (lk)

T

S (lk) mkI

]
, (22)

where I is the identity matrix [8]. Making use of Schur
complement condition for positive definite matrices we know
that (18) is in fact equivalent to

Dk(δk) � 0 , (23)

which implicitly entails the condition mk > 0. Extending
Dk(δk) to include the friction gains into a matrix Ek(δk)
defined as

Ek(δk) =

Dk(δk) 0

0

[
fvk 0
0 fck

] , (24)

we can write the set D as

D = {δ ∈ Rn : Ek(δk) � 0, for k = 1, · · · , N} . (25)

Collapsing all Ek(δk) matrices into a single block matrix
E(δ),

E(δ) =

E1(δ1) · · · 0
...

. . .
...

0 · · · EN (δN )

 , (26)

we get
D = {δ ∈ Rn : E(δ) � 0} . (27)

Since all elements of E(δ) are linear combinations of δ, the
condition

E(δ) � 0 (28)

is an LMI. LMIs define a class of convex sets which can be
used in SDP.

B. LMI Formulation of the Regression Error

The OLS optimization function of (20) can also be put in
an LMI perspective. Defining a scalar u as being an upper
limit to the regression error,

u ≥ ‖ω −Wβ‖2 , (29)

one can write

u− (ω −Wβ)T I−1 (ω −Wβ) ≥ 0 , (30)

which, by Schur complements, can be written in LMI form2,[
u (ω −Wβ)T

ω −Wβ I

]
� 0 . (31)

In this form, the LMI matrix has a size as big as the number
of data points. However, the size can be reduced performing
the QR decomposition of W . Knowing that

W = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1 , (32)

2M � 0 means that matrix M is positive semidefinite.

it is possible to write the equivalence

‖ω −Wβ‖2 = uo + ‖ρ1 −R1β‖2 , (33)

where
ρ1 ≡ QT1 ω , (34)

and uo is the optimization function value at the optimum,

uo = ‖QT2 ω‖2 . (35)

Equation (31) is then equivalent to[
u− uo (ρ1 −R1β)T

ρ1 −R1β I

]
� 0 . (36)

This LMI is nonstrict (the matrix is positive semidefinite)
while the LMI for the physical feasibility constraint (28) is
strict (positive definite). In a practical sense, it is possible to
write a nonstrict version of (28) as

Ē(δ) � 0 , (37)

by subtracting an infinitesimally small positive scalar ε to
each E(δ) diagonal element,

Ē(δ) = E(δ)− εI . (38)

The nonstrict formulation is advantageous since it is the
standard for SDP.

C. SDP Formulation of the Constrained Regression

Both LMIs can now be merged into a single one. Letting
the matrix F (u, β, δ) be defined as

F (u, β, δ) =

[
U(u, β) 0

0 Ē(δ)

]
, (39)

where

U(u, β) =

[
u− uo (ρ1 −R1β)T

ρ1 −R1β I

]
, (40)

we can write problem (20) as

minimize
(u,β,δ)

u

subject to β = Kδ

F (u, β, δ) � 0 .

(41)

This problem includes both β and δ solution spaces, and the
map β = Kδ between them. Rewriting F in term of u and
δ only,

F (u, δ) =

[
U(u, δ) 0

0 Ē(δ)

]
, (42)

where

U(u, δ) =

[
u− uo (ρ1 −R1Kδ)

T

ρ1 −R1Kδ I

]
, (43)

we can turn the original problem (20) into

minimize
(u,δ)

u

subject to F (u, δ) � 0 ,
(44)

which is a typical SDP problem. For this problem, as for
(10), there are multiple δ optimal solutions. Being δ? one of
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the optimal solutions, we know that it is a physically feasible
solution with minimal regression error. Such δ? has only
meaning as a whole, since some of its elements can take
arbitrary values. Nevertheless, all the δ? multiple solutions
map to single optimal base parameter vector β?,

β? = Kδ? . (45)

Vector β? is the physically feasible base parameter solution
which minimizes the regression error.

V. 7-DOF WAM ROBOT DYNAMIC PARAMETER
IDENTIFICATION

In this section we present the methodologies and results
obtained in the 7-DOF WAM robot parameter identification.
The robot dynamic model (2) and the base dynamic parame-
ters have been computed using the SageRobotics open-source
software [9]. The base parameter combinations are shown in
the first column of Table I.

A. Exciting Trajectory

Parameter identification requires a joint trajectory to
generate data points (position and torque) and a criterion
to evaluate data robustness. To achieve good estimations,
trajectories must excite dynamic parameters as much as
possible. The condition number (i.e., the ratio between
maximum and minimum singular values) of the regressor
matrix W can be used as a trajectory evaluation criterion [10].
Well conditioned trajectories entail small condition numbers.
In this work, we choose to generate the exciting trajectory by
the method proposed by Swevers et al. [11], using regressor
matrix condition number as excitation measure. Each joint k
trajectory is defined by

qk(t) =

L∑
l=1

ak,l
ωf l

sin(ωf l t)−
bk,l
ωf l

cos(ωf l t) + qk0 , (46)

where t is the time variable and ωf is the fundamental angular
frequency. Parameters ak,l, bk,l and qk0 must minimize the
reference trajectory condition number, entailing a nonlinear
optimization problem with 2L+ 1 free variables per joint. In
our setup, parameter L has been set to 5 and parameter ωf to
0.1π. Since robot joint positions, velocities and accelerations
have limited ranges, cost constraint functions have been
used to confine the generated trajectory. To generate the
exciting trajectory a constrained nonlinear optimization by
linear approximation (COBYLA) has been used.

B. Control for Trajectory Tracking

Unlike common industrial robots, the WAM enables the
design of computed torque controllers. Since the robot CAD
model is publicly available, an a priori estimation of inertial
parameters (mk, lk and Ik) can be obtained (see second
column of Table I). Such information has been used to design
and implement a trajectory tracking control to perform the
excitation trajectory. The dynamic model enables feedback
linearization techniques in joint space,

τc = g̃(q) + c̃(q, q̇) + M̃(q)α , (47)

q

ĝ(q) + ĉ(q̇, q)

τc
Σ+

+

M̂(q)
α

+ −

+ +Σ

d
dt

Σ
qr

Gp Gd

Fig. 1. Joint position control scheme. Vector qr is the reference joint
position. Gp and Gd are diagonal matrices with proportional and derivative
gains, respectively.

where τc is the computed torque sent to joint actuators, g̃(q),
c̃(q, q̇) and M̃(q) are estimations of g(q), c(q, q̇) and M(q)
using CAD inertial parameters, respectively. Vector α is the
desired acceleration. Neglecting friction and estimation errors,
the free space plant for each joint is given by (see (2) and
(47))

q̈k = αk . (48)

This is equivalent to a double integrator over which a
controller can be designed. No complete knowledge of
how the command is transformed into real motor torque
is available, however high frequencies are likely to be heavily
filtered. By this reason a proportional and derivative (PD)
controller with low gains has been chosen rather than a
controller with higher dynamic response. Although trajectories
are followed with less accuracy, the frequency in torque
command is decreased entailing better regression data. The
chosen control scheme is depicted in Fig. 1. Proportional
and derivative gains have been tuned for critically damped
response.

C. Experimental Data Processing

Having the designed control and the generated excitation
trajectory, we have performed a 60 seconds experiment
(repeating the trajectory 3 times) for which we have recorded
actuator and sensor data. The WAM provides joint position
measurements but no acceleration nor velocity explicit data.
First and second orders derivatives of position have been
computed so that the regressor matrix could be calculated.
Signals have been filtered with third order low-pass Butter-
worth filters with cut frequency fc = 10ωfL/(2π). Since
this process has been done offline, phase distortion has been
compensated. With this process a regression data set (W and
ω, see (15)) has been obtained.

In the proposed model, static friction is not taken into
account, thus the regression is affected by this unmodeled
effect. Nevertheless, the static friction effect shows up only
when velocity is zero or near zero. If data points with
close to zero velocities are removed from the data set,
such reduced data set is likely to entail better structural
parameter estimation. We have tested the elimination of
data points below several velocity thresholds, comparing the
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TABLE I
7-DOF WAM ROBOT BASE PARAMETERS.

CAD OLS Feasible LS
β (parameter combination) βCAD β̂ β?

L1yy + L2zz 0.132848 0.177710 0.107308
fv1 — 1.494895 1.459656
fc1 — 1.862094 1.904568
L2xx − L2zz + L3zz − 1.1 l3y + 0.300475 (m3 +m4 +m5 +m6 +m7) 1.180983 1.121856 1.185275
L2xy 0.000013 −0.080853 −0.046713
L2xz 0.000117 −0.012934 −0.005783
L2yy + L3zz − 1.1 l3y + 0.300475 (m3 +m4 +m5 +m6 +m7) 1.188985 1.036276 1.029939
L2yz −0.000037 0.086959 0.028633
l2x −0.009183 −0.004968 −0.002468
l2z − l3y + 0.55 (m3 +m4 +m5 +m6 +m7) 2.332826 2.445735 2.437263
fv2 — 2.518510 2.521836
fc2 — 0.630382 0.628597
L3xx − L3zz + 0.002025m3 + L4zz 0.003856 0.200800 0.164187
L3xy − 0.045 l3y −0.000025 −0.055185 −0.024346
L3xz −0.000005 0.026428 −0.000118
L3yy − 0.002025m3 + L4zz − 0.00405 (m4 +m5 +m6 +m7) −0.006954 −0.014311 0.026154
L3yz 0.000005 0.115010 0.095539
l3x + 0.045 (m3 +m4 +m5 +m6 +m7) 0.147625 0.159042 0.157155
l3z + l4y −0.000491 −0.033893 −0.028228
fv3 — 1.199353 1.231224
fc3 — 0.290818 0.281070
L4xx − L4zz + 0.002025m4 + L5zz − 0.6 l5y + 0.092025 (m5 +m6 +m7) 0.114905 −0.014376 0.067822
L4xy + 0.045 l4y −0.000039 0.066292 0.024353
L4xz −0.000082 0.019630 0.002997
L4yy − 0.002025m4 + L5zz − 0.6 l5y + 0.087975 (m5 +m6 +m7) 0.105689 0.102886 0.112864
L4yz 0.000094 −0.005328 −0.006727
l4x − 0.045 (m4 +m5 +m6 +m7) −0.123510 −0.097343 −0.099383
l4z − l5y + 0.3 (m5 +m6 +m7) 0.501024 0.503525 0.506568
fv4 — 0.383216 0.373214
fc4 — 0.952803 0.941412
L5xx − L5zz + L6zz 0.000565 −0.019741 0.000946
L5xy −0.000000 0.005445 0.002364
L5xz 0.000000 0.003058 −0.000556
L5yy + L6zz 0.000653 −0.002980 0.002389
L5yz 0.000001 0.000282 0.001821
l5x 0.000011 −0.014509 −0.014906
l5z + l6y −0.006580 −0.013968 −0.013277
fv5 — 0.229574 0.220504
fc5 — −0.071959 −0.058760
L6xx − L6zz + L7yy + 0.12 l7z + 0.0036m7 0.000615 0.022288 0.014335
L6xy −0.000001 −0.004926 −0.004153
L6xz 0.000002 0.000150 −0.003967
L6yy + L7yy + 0.12 l7z + 0.0036m7 0.000758 0.001841 0.004626
L6yz 0.000222 −0.004198 0.001502
l6x −0.000051 0.000686 0.003062
l6z + l7z + 0.06m7 0.014214 0.015821 0.014443
fv6 — 0.161594 0.153190
fc6 — 0.041832 0.043348
L7xx − L7yy −0.000000 0.005331 0.006061
L7xy 0.000000 0.000603 −0.000133
L7xz −0.000000 0.005237 0.003771
L7yz 0.000000 0.002409 −0.000120
L7zz 0.000074 0.002256 0.003213
l7x −0.000005 0.009813 0.007886
l7y 0.000011 −0.004071 −0.001545
fv7 — 0.020896 0.026854
fc7 — 0.089916 0.075723
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Fig. 2. Variation on the regressor condition number and on the regression
mean squared error for the removal of data set points with absolute velocities
below different threshold values.

regressor matrix condition number and the regression mean
squared error (MSE) variations. As it can be seen in Fig. 2,
removing data points corresponding to near zero velocities
abruptly decreases the MSE while only slightly increasing
the condition number. This has been asserted by comparing
with the elimination of random data points and with the
elimination of data points within other ranges of velocity:
these increase the condition number but gave no reduction in
the MSE. For the final reduced data set a velocity threshold
of 0.01 rad/s has been chosen, entailing a reduction of about
22% on the MSE and an increase of less than 2% on the
condition number. The final condition number is about 48.4,
hence it is well conditioned [12].

D. Results

Given the reduced regression data set, the dynamic base
parameter β̂ estimated by (15), i.e., unconstrained with respect
to physical feasibility, is presented in the third column of
Table I. This estimation has been used to compute inertia
matrix values at thousands of random robot postures. For all
of them, the inertia matrix is not positive definite, therefore β̂
is not physically feasible. In fact, a single non positive definite
inertia matrix is enough to prove physical infeasibility.

An estimation has then been performed by the “Feasible
Least Squares” method proposed in Section IV (SDP problem
(44)). The solution δ? has been obtained using the freely
available SDPA software [13]. Such software finds the
solution in less than one second. The physically feasible
base parameter solution β?, shown in the rightmost column
of Table I, is then obtained from δ? through (45). The
empirical evaluation at random postures has always given
positive definite inertia matrices. The regression MSE of β̂
and β? are 0.148925 and 0.155154, respectively. As expected,
the error of β? is higher. This does not entail that β? is a
worse estimation, rather it can be considered to entail a better
structural model since physical feasibility is guaranteed while
the regression error is kept as low as possible. Control or
simulation performance comparisons between β̂ and β? are
not useful and even not possible since physically unfeasible
estimations are intrinsically unstable.

VI. CONCLUSION

In this work the dynamic parameters of the WAM robot
have been identified. Physical feasibility of the estimated
parameters is guaranteed by a new proposed regression
method. Such method reformulates both the ordinary least
squares and the feasibility constraints into the LMI–SDP
framework. This enables efficient estimation of dynamic
parameters, providing the physically feasible solution which
better fits regression data. Practical identification issues,
including the elimination of static friction effects from the
data set have been discussed.
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