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I. INTRODUCTION

In brain-machine interface (BMI) prosthetic systems,

recordings of brain activity are used to control external

devices such as computers or robots. BMI systems that

have shown the highest fidelity of control use neural signals

recorded directly from microelectrodes in the brain to control

upper-limb prostheses. These have progressed from allowing

control of 2 and 3 dimensional movement of a cursor on a

computer screen [1], [2] to control of robot arms in first four

[3], [4] and more recently seven degrees-of-freedom (DoF)

(Fig. 1) [5], [6]. These types of systems require methods to

train users to control large numbers of DoF simultaneously.

Shared control is a concept originating in telerobotic and

robotic surgery applications in which operator control of

a robot is modified to keep robot movements within safe

boundaries or enhance task performance [7], [8]. A kind

of shared control system called the “Virtual Fixture” (VF)

was introduced by Rosenburg [9] to describe the concept

of embedded guidance or constraint within human-machine

interactive systems. In systems that use virtual fixturing,

a user controls the general movement of an effector robot

but the virtual fixturing algorithm modulates that movement

to enhance task performance. These algorithms guide the

robot endpoint towards or away from specified areas of a

workspace [10]–[12].

Shared control has been applied to task training in gen-

eral for human-operated robots, where user-controlled ro-

bot movements are corrected towards goal trajectories as

humans learn to control devices independently [13], [14].

The concept of shared control in brain-computer interfaces

has been employed for manipulator stabilization [15], for

cooperative task completion using reinforcement learning

[16], for actuating coordinated robotic hand postures [17],

and for assisting in control of an EEG-guided wheelchair

[18]. In previous BMI work in our laboratory, the related

concept of “deviation gain” was applied to 4-DoF control

[3].

In this paper we present a new method for shared-control

guidance. This method of “Positive-Span” Virtual Fixturing
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Fig. 1: 7-DoF brain-machine interface experiment [5].

extends the concept of Virtual Fixtures to guide both trans-

lational and rotational DoF of a brain-controlled robot hand

toward whole sets of robot poses that would allow an object

to be grasped. This system was used to successfully train

monkeys to operate the 7-DoF BMI [5], leading directly to

the simplified system of “ortho-impedance” used to guide

human subject BMI control in a similar experiment [6].

The specific advantages of the Positive-Span Virtual Fix-

turing method include

1) Extension of Virtual Fixtures to coordinated motion in

high-dimensional control spaces, e.g. to include control

of both manipulator translation and rotation.

2) Motion towards or along irregular fixture shapes or

clouds of points that can be used directly in the positive-

span VF control law, without decomposition of con-

straint surfaces to lines or planes.

The underlying motivation for the creation of the Positive-

Span Virtual Fixturing method comes from the desire

to move towards integration of BMI- or otherwise user-

controlled robotic systems with automated grasp or move-

ment planning systems. These hybrid systems could be

used for training or to enhance overall system performance

in high-dimensional control applications. Grasp planning

systems commonly produce an n-dimensional point set rep-

resenting individual poses within the manifold of poses that

would effectively grasp an object. The Positive-Span Virtual

Fixturing system is compatible with direct constraint of robot

movement towards these n-D point sets or manifolds.

II. POSITIVE-SPAN VIRTUAL FIXTURE CONTROL LAW

In a well-known formulation for Virtual Fixturing [10],

a control law is described that constrains the admittance
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of a human-controlled system in directions defined instan-

taneously by a line or plane. The control law was applied

as a “virtual contact” that governs an anisotropic admittance

for a system that transduces human input force (f ) to robot

output velocity (v). The virtual fixture equation

v = c(fδ + cτfτ ) (1)

decomposes input into its projection to a line or plane

representing the “preferred directions” of an input fixture

(fδ = Dδf ), and its residual fτ = f − fδ , where Dδ

is the projection operator over the input fixture set δ, s.t.

Dδ = δ(δT δ)−1δT . In this formulation, δ contains a

3 × m, 0 < m < 3 time-varying matrix with column rank

corresponding to a 1-D or 2-D orthonormal basis for a line

or plane fixture. Output projections of input vectors to the

line or plane defined by δ were governed by the admittance

c, while orthogonal movements were additionally attenuated

by cτ .

We propose a related control law to generalize fixtures

over complex shapes in n-dimensional control space. Con-

sider the corresponding control law (c omitted)

ν = φ∆ + cτφτ (2)

which is identical to the control law above except that the

projection of the n × 1 input φ is over the “positive span”

of the fixture vector set δ∗. The positive span as defined

by Mason [21] is pos({zi}) = {
∑

kizi|ki ≥ 0} for a set of

vectors {zi}, in this case the subspace of the input reachable

by the basis vectors in δ∗ applied with positive multiplicative

coefficients only. δ∗ is an n × m matrix of any number of

constraints m in any number of dimensions n. The remaining

control equations are

φ∆ = D∆φ φτ = φ− φ∆ (3)

D∆ = ∆(∆T
∆)+∆T (4)

∆ = pos vectors(δ∗,φ) (5)

where ∆ represents a selection of vectors from δ∗ that

positively span the input command vector φ. D∆ is a

projection operator onto these positively spanning vectors

∆. No rank restrictions are imposed on δ∗ and thus ∆.

This new control law has the effect of preserving the portion

of input directed toward the polytope described by δ∗ while

attenuating its orthogonal component. Instead of constraining

movement toward a 1-d or 2-d subspace, movement toward

irregular fixture geometry in 3 dimensions or more can now

be embedded within the VF control law.

As this algorithm relies on the projection of the input to

some set of basis vectors ∆, the basic stability arguments

presented in [10] apply to the fixturing system here, while

noting that in high-dimensional control spaces input in one

domain or type of movement (e.g. translational velocity)

can result in projection to output in another domain (e.g.

rotational velocity). If not desired, individual columns can

take values only over dimensions in which coordinated

motion is desired (for example see Section III-A).

A. Positive Span Vector Determination

The modified VF control law does not specify a particular

projection of the input to the positive span of the δ∗ matrix.

One formulation for a closest-point projection of φ to the

fixture vectors is to the surface of the n-dimensional convex

cone bounded by the columns of δ∗. This is a quadratic

programming problem to maximize the magnitude of the

projection of φ to the δ∗ vectors in

minimize λ ‖λδ∗ − φ‖2

subject to λ > 0

where λ is a diagonal matrix of coefficients corresponding to

each column vector in δ∗. When φ is outside of the convex

cone formed by the columns of δ∗ this can be performed

by taking the convex hull of the origin and extended points

on the lines indicated by δ, then using a closest-point

algorithm to n-D convex hulls such as GJK [22]. Because

of the poor performance of convex hull algorithms beyond

the third dimension, a different projection to the positive

span was used here in which a “greedy” set of fixture

vectors for inclusion in ∆ were selected in turn to each

maximally project onto the input. The algorithm to determine

these vectors is similar to Gram-Schmidt orthonormalization

except that each basis vector is chosen for its individual

maximal projection on φ. The first two basis vectors are

chosen as

∆1 = colmaxδ∗(φT δ∗)

∆̂i =
∆i

‖∆i‖
(6)

φ′ = φ− (φ · ∆̂1)∆̂1 (7)

δ∗′ = δ∗ − (δ∗ · ∆̂1)∆̂1 (8)

∆2 = colmaxδ∗′(φ′ T δ∗)

φ′′ = φ′ − (φ′ · ∆̂2)∆̂2 (9)

δ∗′′ = δ∗
′

− (δ∗
′

· ∆̂2)∆̂2 (10)

(11)

where colmaxδ(y) returns the column of matrix δ on which

y projects maximally. Numerical subscripts refer to matrix

columns. The algorithm terminates when the maximum pro-

jection of φ′...′′ on any column in δ∗′...′′ ≤ 0.

Simple illustrative examples of selecting fixture vectors

δ∗ include movement toward a region of arbitrary shape and

movement along a path. As an example of movement toward

a shape, Fig. 2 (left) shows some translational δ vectors

directed at the vertices of a cube-shaped spatial target. For

rotations, angular velocity vectors in δ can be generated as

infinitesimal rotations from the current manipulator orien-

tation leading towards target orientations. For any type of

control space, if the robot is located on the interior of a target

region, it will move freely if fixture vertices are included in

δ to span control dimensions, as shown in Fig. 2 (right).

The system will behave similarly for movement towards or

inside more complex shapes or point clouds requiring more

δ vectors to define (see examples in Results).
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linear or rotational constraints but not both, i.e. δ∗ = [δ∗t δ∗r ],

where columns in δ∗t =
[

x y z 0 0 0
]T

and columns

in δ∗r =
[

0 0 0 rx ry rz
]T

such that subjects could

move in ranges of linear and rotational DoF without forcing

the manipulator toward individual 6-D grasps (see Section

III-C where coordinated 6-D poses were used).

Fig. 5: Translation target set with δ
∗ vectors. Vectors show

positive span VF output from single input for cτ = {1.0, 0.5, 0}
in {green, yellow, red}.

Nine subjects who had not previously controlled the robot

each performed 80 experimental trials with the Positive Span

Virtual Fixturing-enabled robot control system. cτ values for

all 6 dimensions were initially set to 0.2 such that 80%

of control error was attenuated. During the first 60 trials,

cτ values were increased at a constant rate per trial until

the robot was fully controlled by each subject starting on

the 61st trial. An example of how the Positive Span Virtual

Fixturing method could affect trajectories over a whole trial

when applied with different levels of cτ is shown in Fig. 7.

Subject performance was measured using the average

deviation from direct movement from the starting position

to the target. Rotational deviation from the closest path to

Fig. 6: Rotational constraint. The target region is difficult to
represent, but angular velocity δ

∗ vectors derived from this target
space are shown (blue). Positive span VF output from single input
are shown for cτ = {1.0, 0.5, 0} in {green, yellow, red}.

x

Fig. 7: Translational trajectory for cτ = {1, 0.5, 0} in {green,
yellow, red} given identical whole-trial input recorded from the
experiment.

target was calculated using the Slerp algorithm [23]. The

relationship between error attenuation coefficients cτ and

control error are indicated in Fig. 8 and 9. Subjectively, users

felt that smaller amounts of shared-control assistance (cτ =
0.8) helped to keep the system under control while learning

the task, especially for rotational DoF. Higher amounts of

shared control (cτ < 0.5) were felt by subjects to be too

restrictive and not allow subjects to explore the control space,

even if success rates were higher. These results influenced

the policy regarding adjustment of shared control parameters

during the monkey BMI experiments (see below).

0

0.05

0.1

0.15

0.2

c = 1 1 > c > 0.73 0.73 > c > 0.47 0.47 > c > 0.2

Fig. 8: Error attenuation level cτ vs. mean trial translational
error. Points (x) show performance averaged over trials for
each subject at different assistance levels, and average over
subjects as bars. Improvements in individual performance vs.
no assistance are significant at p < 0.05 for 0/10 subjects
with low assistance, 5/10 subjects with medium assistance,
and 10/10 with high assistance.

0

0.1

0.2

0.3

0.4

c = 1 1 > c > 0.73 0.73 > c > 0.47 0.47 > c > 0.2

Fig. 9: Error attenuation level cτ vs rotational error. Differ-
ences in performance from no assistance are significant at
p < 0.05 for 1/10 subjects with low assistance, 4/10 with
medium assistance, and 7/10 with high assistance.

B. On-Line Brain-Machine Interface Experimentation

In the 7-DoF monkey BMI experiment, the modified VF

system used in the online human control experiment was

applied to monkeys learning to control the device using a

BMI. Instead of control commands originating with a hand-

held controller, the activity of neurons was directly recorded

and output as 6-DoF motion commands that were fed directly

into the modified VF system during training. Due to the

difficulty of training monkeys to perform oriented grasping

tasks, small cτ values were used during initial control trials

in order to allow the monkeys to associate trial completion

with a juice reward delivered at the end of each successful

trial. As the monkeys began to understand the task goal, the

shared control values were adjusted so that success rates were
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kept high enough (>∼ 40%) for the monkeys to maintain

attention to the task. Because of the subjective results from

the human experiment, cτ was raised to around 0.8 as soon

as possible. cτ then remained at 0.8 − 0.95 until monkeys

mastered the task. These brain-machine interface results are

beyond the scope of this paper and reported in [5]. A

simplified version of this system was later used successfully

in a human BMI experiment [6].

C. Offline Grasp Pose Manifold Simulation

A simulation was created to show how this type of

fixturing can be used for more complex grasping tasks.

The GraspIt! grasp planning software system [19], [20] was

used to generate a point set of 6-D grasp translation and

orientation poses that would allow a virtual Barrett Hand

(Barrett Technologies, Cambridge, MA) to be in a form-

closure grasp upon flexing the fingers (see [24]). 10000

random 6-DoF simulated user commands were generated in

the interval ui = −0.5 . . . 0.5. To focus the fixturing method

to grasp pose orientations on the proximal side of the target

object, a heuristic method was used to select the d/3 most

proximal target points as the fixturing points, where d is the

distance from robot to the closest target point (in cm). The

set of 10000 random commands was applied to the robot

starting with the pose shown in Fig. 10 using vectors from

the current robot position to the heuristically chosen points

as VF fixtures for at each time step. Resulting trajectories

at different levels of cτ are shown in Fig. 13. The highest

cτ at which the hand converged on a target was 0.5 (results

shown in Table I). Result poses from the same control inputs

at different cτ levels are shown in Fig. 13.

cτ 0.0 0.1 0.2 0.3 0.4 0.5

Steps 3712 4210 4792 5849 6788 8451

TABLE I: Steps to convergence for different levels of cτ , higher
levels did not converge in 10000 steps.

Fig. 10: Initial pose in mug grasping simulation with Barrett
Hand model.

IV. CONCLUSIONS AND FUTURE WORK

In this work we present a new control law that generalizes

the concept of virtual fixtures to high dimensional control

tasks and to irregular fixture shapes. We show results from

using this novel VF system in an online control task for sim-

ple grasping, then an offline simulation that illustrates its use

in a more complex task. The application of our VF system

Fig. 11: Example initial poses generated by grasp planner.
Spheres are at the center of the palm, lines indicate the direction
normal to the palm and the direction of the thumb.
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Fig. 12: Form-closure grasps exported from the grasp planner into
the Positive-Span Virtual Fixturing system. Orientations chosen
by the heuristic mechanism at the first simulation time step are
shown.

has thus far been in 6 and 7-DoF tasks to be controlled using

a brain-machine interface. For control of robots that could

perform fine dextrous grasping and manipulation through

BMI or any control interface, the VF method described here

prototypes the integration of virtual fixturing with real-time

grasp planning that includes coordinated finger motions [20].

Its generalization of VF over large numbers of DoF indicates

its potential for application to guidance in advanced robotic

surgical and telepresence applications [25]. We intend this

algorithm to provide a basic framework for extension of

shared control to new task domains.
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