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Abstract— The development of trustworthy human-assistive
robots is a challenge that goes beyond the traditional bound-
aries of engineering. Essential components of trustworthiness
are safety, predictability and usefulness. In this paper we
demonstrate that the integration of joint action understanding
from human-human interaction into the human-robot context
can significantly improve the success rate of robot-to-human
object handover tasks. We take a two layer approach. The
first layer handles the physical aspects of the handover. The
robot’s decision to release the object is informed by a Hidden
Markov Model that estimates the state of the handover. Inspired
by human-human handover observations, we then introduce a
higher-level cognitive layer that models behaviour characteristic
for a human user in a handover situation. In particular, we
focus on the inclusion of eye gaze / head orientation into
the robot’s decision making. Our results demonstrate that by
integrating these non-verbal cues the success rate of robot-to-
human handovers can be significantly improved, resulting in a
more robust and therefore safer system.

I. INTRODUCTION

Human-assistive robots are machines designed to improve
the quality of our lives by helping us to achieve tasks.
Such robots act within the personal space of a human,
including human-robot shared manipulation of objects and
even direct physical contact. While the actions of a specific
task a robot performs remain largely the same, every single
execution of this task will be slightly different in detail. This
is due to the constant change of the exact situation in which
everyday tasks are performed in human lives and the innate
variability in human performance. Thus, the robot is required
to constantly adapt its behaviour to different situations.

To be genuinely useful, some robots may need to be pow-
erful (e.g. to support the weight of a human) and therefore
are potentially dangerous. This raises concerns about whether
human assistive robots can be trusted with respect to human
safety. To ensure that personal robots entering widespread
use do not pose a serious risk for humans interacting with
them, we here suggest that robots need to be able to take into
account what the human in their close proximity is doing
when planning their own actions.

Imagine, say, a basic scenario in which you wanted a robot
to pass you a cup of hot tea. In contrast to other days, you are
just about to write an important manuscript and would like to
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continue working while receiving your cup. How would you
ensure that the robot knew when you were ready to receive
the cup without disturbing you through asking? How would
the robot pass you the cup without harming you by spilling
tea over your hand or dropping the cup because you were
not grabbing it in time? And how would the robot be able
to take into account the dynamics of your own hand and
arm movements while you reach out for the cup with only a
brief glance? In more general terms, how can the decisions
and actions taken by an autonomous personal robot working
within the personal space of a human be made safe, reliable
and predictable, given the large variability of human actions
for even such a simple task?

How to design robots that are entrusted to act and interact
in an environment constantly modified through the breadth of
human action is a research challenge that requires expertise
beyond the classic fields of robotics. In particular, it is criti-
cally important to utilize the latest findings from joint action
research in the context of human-human interaction [1] when
developing human-assistive robots. Increased understanding
of how humans interact with each other is expected to lead
to more informed engineering decisions during the design
of human-assistive robots; this in turn results in more robust
and therefore safer Human-Robot Interaction (HRI).

Humans constantly move their eyes and orient their heads
toward objects of interest, signals that can be evaluated by
others (or a robot) to obtain information about their counter-
part’s focus of attention and thus indirectly their engagement
in the interaction [2]. In this paper we investigate whether
safety in a basic object handover task from a robot to a
human can be increased, if the robot is able to take into
account non-verbal cues about its human co-worker’s actions.
Our intention is to make the robot-to-human handover task
as natural as possible to increase safety. We use the success
rate of the handover as our metric for safety in this context.

We developed a two-layer system. First, we focused on
the physical aspects of the handover. Based on a model that
captures the different stages during a handover in a set of
distinct states, a learning algorithm was used to assess the
situation at any stage during the interaction and to estimate its
state. To release the object the system was required to be in a
state in which it was considered safe to do so. Information for
the state estimations was obtained directly from the robot’s
arm and hand holding the object. This basic layer provided an
adequate estimate of the handover dynamics. Sensing when
the human applies force is, however, not sufficient for safe
object release, which requires both mechanical pressure and
joint attention.

In a second step, we therefore superimposed a higher-level
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cognitive layer that monitors the humans focus of attention
during the handover task. It captures a model of actions
(including the most likely order of events) characteristic for
an attentive human user in a handover situation, derived from
human-human handover observations. This level includes
evaluation of subtle information such as human eye-head
gaze shifts [3] which provide engagement indicators. The
goal of including this higher-level layer is to increase safety
when the most likely action sequence of normal handovers is
not followed. In such cases the robot then does not release
the object and either puts it back or takes further steps to
ensure the user still wants it. Our experiments demonstrate
that integrating these cues into the decision making process
of the robot significantly increases the success rate of the
handover, and therefore results in a system that is overall
safer than the basic single layer version.

II. BACKGROUND AND RELATED WORK

A critical pre-requisite for humans to accept robotic
assistants acting in their personal space is that they are
demonstrably safe, predictable and hence trustworthy [4].
We hypothesise that robotic assistants can only be trusted
as safe to interact with and will only be accepted into our
homes if they are designed to take human behaviour and
intentions into account when planning their own actions.
This hypothesis is derived from three to date quite separated
fields of research: a) safety within personal robotics, b)
handover tasks as an example of human-robot/human-human
joint action, and c) joint attention. The state of the art in each
of these fields is considered in turn below.

A. Safety

Robotic software architectures are often layered [5], [6].
The low-level layers generally deal with control systems,
while high-level ones deal with the robot’s knowledge, goals,
and plans. While considerable effort has been invested into
assurance of low-level physical safety properties in robotic
controllers, the higher levels at which the decision making
takes place have received very little attention to date.

Current research is focused on methods that guarantee the
functional correctness of robotic systems either by design
time verification or by systematic design. Examples include
the application of model checking to prove that a set of safety
properties is satisfied by an adaptive multi-agent control
system [7]. Other work has focused on ensuring safety
by construction [8]. Using a systematic component-based
design, construction and verification approach can enforce
safety properties by design [9]. Combinations of formal
with simulation-based methods are also being developed for
the verification and systematic refinement of safe robotic
controllers [10], [11].

The critical issue of ensuring the high-level behavioural
safety in HRI, however, remains a challenge. In [12] an initial
set of safety and liveness (a.k.a. usefulness) properties has
been explored as key foundation towards the trustworthiness
of a human assistive robot in an object handover. This

research has highlighted the need to closely integrate the
human’s behaviour into HRI safety considerations.

In practice, the process of confirming that a system satis-
fies its formal requirements (verification), is often separated
from the process of confirming that the system results in the
intended behaviour once it has been integrated in its target
environment (validation). Establishing safety in HRI clearly
calls for a tight coupling of these two processes and a detailed
investigation of the human-robot interface.

Creating trust at this interface necessitates a transfer of
our understanding of human-human interactions into the HRI
context. This is because trust in robots, just like in humans,
needs to be earned. We therefore need to first understand the
properties that humans seek when establishing trust, i.e. those
associated with safety and usefulness of the robot. Once
established, these can be integrated into the robot’s decision
making, resulting in a safer, more trustworthy system.

B. The Handover Process

Two vast, mainly separate strands of literature in psychol-
ogy and the cognitive neurosciences provide crucial insight
into processes underlying object handover in humans: the
first is on visually-guided grasping and handling of objects
(see [13] for a recent review), the second investigates the
mechanisms underlying observing other people perform such
visually-guided actions (see [14] for a recent review). Sur-
prisingly little is known about how these aspects are merged
in human-human social motor coordination / joint action [1],
[15], where one’s own actions have to be precisely coordi-
nated with those of another person. Indeed, only a few studies
have been published on joint action tasks, in particular for
passing an object from one person to another [16], [17],
[18]. These studies concentrated on the physical (primarily
manual) aspects of the handover with its temporal and spatial
parameters. Issues tackled included hand grip and load forces
with their temporal dynamics, arm and upper body movement
trajectories of the people involved in the process, the relative
location of the object between handover partners at the
time of handover, and the velocity patterns of movements
within the transfer. Where exactly the two partners looked
during the handover task, however, had not been considered,
even though both the visually-guided grasping literature and
the literature on observing other people performing tasks,
indicate that visual perception might be a key factor to
improve the precision of the movement and the dynamics
of the manual transfer. Even more importantly, as proposed
by theories on joint action [15], [1], cognitive and social
aspects derived from eye-head gaze direction should provide
invaluable feedback for the two partners of the state of the
interaction, or their partner’s engagement and readiness to
participate in the task.

Even though human-robot handover studies are more
numerous than human-human ones, they show a similar
lack of consideration for human visual feedback mecha-
nisms, primarily concentrating on the kinematics of the hand
movements leading to the handover. In both [17] and [18]
human-like trajectories leading up to the handover have
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been integrated into the design of the robot’s movements.
A comparison of these with non-human like robot move-
ment trajectories showed that interactions were facilitated
when human expectations about natural movement were
considered. This work was later extended to the actual
handover mode [19], [20]. More recently, the impact of the
robot’s posture and its gestures on the handover has been
investigated [21], again confirming that some gestures (which
are more human-like) were more likely to be considered by
humans as handover initiation signal. In particular, certain
robotic reaching gestures were interpreted by the human as
a cue to take the object from the robot [22]. Again, no
information was derived from evaluating where the human
looked during the interaction.

C. Joint Attention — A Fundamental Component for Joint
Action

Should human eye-head gaze direction be evaluated in a
robot-human handover? It makes intuitive sense that ones’
own eye movements should be important to guide ones’
own actions, as they direct our fovea, the point of highest
spatial resolution in our eye, to the location in a visual
scene that is most important for the task at hand. In most
natural viewing conditions, such as visually-guided motor
coordination, spatial shifts of attention and saccadic eye-
movements co-occur, and attention to locations other than
that of the eye-movement is strongly impaired [23]. In other
words, where a person looks during a grasping task, is
where they are attending to and will strongly influence the
successful outcome of the action. Note that larger face shifts
include coordinated head and eye movements [3].

At the same time, eye-head gaze orientation can be used
by an observer to deduce where the acting person is currently
attending to. Moreover, it allows the derivation of informa-
tion about the observed person’s intentions and mental states,
or whether they need us for collaborative action [2]. If we
follow another person’s gaze (receiving) with our own or if
we gaze-cue (send information) ourselves to create a shared
space of attention that could contain objects, other people or
events, we convey important functions that aid the sending
and receiving of social information [24], summarised under
the term “joint attention”. Joint attention plays a critical
role in the development of social cognitive skills, interaction
and communication [25], and is at the core of “Theory of
Mind”, i.e. the attribution of beliefs, goals, and desires to
other people.

In our handover scenario we can then predict that the
human’s eye-head gaze direction can inform the robot about
the human’s current focus of attention and their readiness to
engage in the interaction. Integrating knowledge about the
human user through analysis of their eye-head gaze direction
(i.e. the “Theory of Mind” concept), should thus increase the
safety of the handover because it becomes more predictable.

III. HUMAN-ROBOT INTERACTION SCENARIO

The HRI scenario includes BERT2, an upper-body huma-
noid robot torso, interacting with a human to hand over

Fig. 1. BERT2 during a handover interaction.

a drink as shown in Figure 1. BERT2 was designed to
investigate complex HRI, including verbal and non-verbal
communication, gaze, and pointing gestures in a real world
3D setting [26]. To focus on HRI, as opposed to the
challenges often encountered when using vision systems
mounted on the robot, we used the VICON motion capture
(MoCap) system to detect and localise interaction objects
and the human’s body parts in 3D space, in particular head
orientation as a proxy for human eye-head gaze direction.
The system has sufficient accuracy to follow the motion of
human body parts, environmental features and objects using
retro-reflective markers. The computing infrastructure is up-
held by YARP1, an open-source package that minimizes the
effort devoted to infrastructure-level software development
by facilitating code-reuse and modularity [27]. An essential
component of HRI is spoken language. BERT2 uses the
CSLU Toolkit [28] Rapid Application Development (RAD)
which is based on the TCL scripting language to create
connections between the actions the robot takes and the spo-
ken dialog. RAD uses the Festival speech synthesis system,
and recognition is based on Sphinx-II. BERT2 relies on two
databases to represent the state of the world. The Object
Property Database (OPDB) stores static information of all
objects present in the interaction scenario. The EgoSphere is
a fast, dynamic, asynchronous store of object positions and
orientations. Both can be queried by other modules.

IV. BASIC HRI SYSTEM — HIDDEN MARKOV
MODEL-BASED STATE ESTIMATION

Hidden Markov Models (HMMs) [29] are statistical mod-
els that are routinely used to model sequential, statistical
processes. They have been used successfully for the analysis
of temporal patterns in many areas including speech and
gesture recognition. An HMM includes a set of states, state
transition probabilities and also a set of observable output
symbols together with their observation distribution for each
state. The state in an HMM is not directly visible, but the
output is. Hence, the string of symbols observed on an HMM
of a process allows conclusions about the sequence of states

1YARP is available from http://eris.liralab.it/yarp/.
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Fig. 2. HMM for handover process with non-zero probability transitions.

encountered to generate it. Formally, an HMM is a tuple
λ = (S,V,A,B,π) as follows:
• S = {s1, . . . ,sN} is a finite set of N states. The state at

time t is denoted as qt .
• V = {v1, . . . ,vM} is a finite set of M distinct observation

symbols in the alphabet, corresponding to the output of
the system.

• A = {ai j} is the state transition probability distribution,
where ai j = P[qt = s j | qt−1 = si],1≤ i, j ≤ N.

• B = {b j(vk)} is the observation symbol probability
distribution, where b j(vk) = P[vk at t | qt = s j],1≤ j ≤
N,1≤ k ≤M.

• π = {πi} is the initial state distribution, where πi =
P[q1 = si],1≤ i≤ N.

HMMs are a natural fit our problem. The underlying
state of the system (the state the robot is in with respect
with the cup) is hidden and can be uncovered based on the
robot’s motor current and torque values (which represent the
observations). Each hidden state has a probability distribution
over the possible next states, which models the fact that our
robot moves from one state to another with some probability
based on the values observed in the current state. Moreover,
there is a certain sequence of hidden states that is normally
expected for the present system, which can be computed,
together with the probability of their of occurrence, based
on the parameters of the model.

For the basic system the HRI scenario was modelled
using an HMM as depicted in Figure 2. Analysis of the
handover process identified four basic states (N = 4): the
robot is picking up the cup, the robot is holding the cup
(without the user touching it), the user is grabbing the cup
(joint holding of cup), and the robot is not holding the cup
(has released the cup). A small number of states facilitates
accurate differentiation between them and provides the robot
with a clear indicator on which to base the decision to release
the cup, i.e. the “user is grabbing the cup” state.

Although the model is in principle ergodic, meaning
that each state can be reached from every other state, the
transition probability distribution matrix A was initialized
with some zero values to encourage the system to reestimate
those close to zero, e.g. a transition from the robot not
holding the cup state to the robot holding the cup (without
going via the robot is picking up the cup state) is unlikely, but
could result e.g. from erroneous transmissions of the motor
current values while the robot is picking up the cup.

The initialisation of the observation symbol probability
distribution matrix B is very important for a correct rees-
timation of the model parameters. A representative training
sample of observations, one that incorporated all the usual
transitions between states, was collected and partitioned into
parts corresponding to the four states of the HMM. For each
state the number of occurrences of each symbol was counted;
the values were used to initialize B. This proved to be a sound
technique in that it provided the expected results.

To choose an input signal to use for the HMM, we
recorded several typical handover interactions (5 sets of 20)
and analyzed both the motor current values from the robot’s
fingers and the torque values from the robot’s arm. Based
on the training data and on experimentation with different
signals, including combining some signals (summing the
values), the best results were obtained when using the motor
current values from the robot’s middle finger. This is also
intuitive because the middle finger has a prominent role in
every step of the motion of picking up, holding and releasing
an object.

The number of distinct observation symbols per state
corresponds to the number of values the input stream takes.
Throughout the entire experiments we observed the maxi-
mum value of 120 and therefore M = 120. The initial state
distribution π favours the first state (the robot picking up
the cup). This biases the start of each handover, but does
not influence the reestimation values (a uniform distribution
provides similar results).

The reestimation technique is based on the Baum-Welch
Algorithm, using formulae in [29], with a normalisation
following the formulae from [30] as follows:

Forward Algorithm:

α̂t(i) =
πibi(O1)

∑
N
k=1 πkbi(O1)

(1)

α̂t+1(i) =
bi(Ot+1)∑

N
j=1 α̂t( j) a ji

∑
N
k=1 bk(Ot+1)∑

N
j=1 α̂t( j) a jk

,1≤ i≤ T (2)

where the forward variable αt(i) = P(O1O2 . . .Ot ,qt = si | λ )
represents the probability of the partial observation sequence
O1O2 . . .Ot (until time t) and state si at time t, considering
model λ .

Backward Algorithm:

β̂t(i) = βt(i)
T

∏
k=t+1

ηk, (3)

where ηk is the normaliser

β̂t(i) = βt(i) = 1 (4)

β̂t(i) = ηt+1

N

∑
j=1

β̂t( j) ai j b j(Ot+1),1≤ t ≤ T, (5)

where the backward variable βt(i) = P(Ot+1Ot+2 . . .OT | qt =
si,λ ) represents the probability of the partial observation
sequence from t +1 to the end, given state si at time t, and
the model λ .

The discovery of the most likely state sequence in a
handover was implemented using the Viterbi Algorithm as
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Fig. 3. Recovery of the most likely state sequence. State 1: ”Robot is
picking up the cup.”, State 2: ”Robot is holding the cup.”, State 3: ”Human
is grabbing the cup.”, State 4: ”Robot is not holding the cup.”

described in [29]. A result is given in Figure 3. As can
be seen, the identification of State 3 is critical for the
robot to decide when to release the cup. The value for
the probability that the interaction is in State 3 has been
determined experimentally and has proven to be a good
indicator for the handover actually being in this state.

V. EXTENDED SYSTEM — USER INTENTIONS AND
REACTIONS MODELLING

We have observed that, in a successful handover, the
receiver performs the following sequence of actions: the user
first browses the environment as their attention gets caught
by different objects or people and their attention is not yet
on the task at hand; the user then looks at the object, (the
user might look away), the user grabs the object and the
handover is completed when the robot lets go of the object.
Note that the phase of the human looking away from the
cup after looking at it is optional: a deeply engaged user
might constantly look at the cup, another user might look at
the robot’s head e.g. seeking rapport, and then back at the
cup. Thus, this phase can include alterations of the user’s
behaviour, both between trials with the same user as well as
between users. The system generally detects the user looking
to and away from the object several times during a handover.

The most important element, however, is that the amount
of time passing between the user’s first look at the cup,
and the actual grab does not go above (or below) a certain
threshold which was obtained experimentally. If the time is
too short, this can be considered as a lack of the receiver’s
attention toward the object, if the time is too long, this
indicates most likely that the user lost interest in the object
or got distracted. When the robot detects either one of these
cases, it does not consider it safe to release the cup.

As shown in Figure 4, the robot asks the user if they
would like a drink. If the answer is “Yes”, it “prepares”
a drink (i.e. it gets the cup from a pre-defined pick-up
position), moves it to a pre-defined serving position, and
tells the user to take the cup. At this point, the robot starts
checking the release conditions, i.e. is the user following the
sequence of actions that indicates their engagement in the

Fig. 4. State machine from the robot’s perspective.

interaction: user looks at cup ⇒ (user looks away ⇒) user
touches cup? The module that estimates the human’s focus
of attention works constantly in the background. Therefore,
the main module can obtain, at any time, the moment when
the user first looked at the cup and the moment when he
or she stopped looking at it. The only value needed at this
point is the difference between the current time and the time
at which the user first looked at the object. This basically
includes the first two actions in one interval. If the value is
within the experimentally determined range, the system then
checks for the user touching the cup using the basic HMM
implementation. BERT2 considers it safe to release the object
only when the execution of this sequence is complete.

The module which estimates the human’s focus of at-
tention works by streaming information from the VICON
motion capture system regarding the position and orientation
of a hat fitted with retro-reflective markers, which the user
needs to wear during the interaction with BERT2. The
module obtains this information from VICON and uses it to
compute two vectors: one representing the direction of the
human’s head, and one representing the difference between
the human’s head and the object of interest. If the difference
between these two vectors is small enough, the user’s focus
of attention is estimated to be on the object. This method
of measuring the human’s head orientation proved to be far
more robust than using the gaze-tracking system and the
cameras mounted on BERT2’s head. The only limitation
was that eye movements which are not accompanied by
head movements could not be detected. In everyday tasks,
however, most relevant eye-movements indicating a change
of the focus of attention can be expected to be large and
would thus include head movements [3]. Thus, head direction
is a sufficiently accurate approximation for eye gaze in
the type of physical interaction scenario (reach and grasp)
we investigated, and was therefore considered sufficient as
a proof of concept. For our experiments the advantages
of the VICON regarding robustness outweighed this minor
drawback.

To validate the HMM implementation, we also developed
an alternative to check when the user is touching the cup.
It uses a glove fitted with adhesive copper contacts and
a long-shaped object acting as the cup in the interaction
which is also fitted with copper coating, as well as with

4626



Fig. 5. Alternative setup for detecting when the user touches the cup.

Fig. 6. Overview of the system architecture.

retro-reflective markers (for the VICON system to be able to
track its position). A Phidget interface kit was programmed
to signal to the main module when the user touches the cup.
The set-up can be seen in Figure 5. This method precisely
identifies the exact moment when the human touches the
object and is therefore useful for obtaining clearly defined
intervals for the actions described above.

VI. SYSTEM ARCHITECTURE

The architecture for the HRI system can be seen in
Figure 6. The VICON Motion Capture system detects and
localises the cup object and the user’s head in 3D space based
on retro-reflective markers. The information from the VI-
CON software is captured by the Human Attention Estimator
Module and the Hand Module. The Human Attention Esti-
mator Module works as explained in the preceding section.
The Hand Module obtains information about the position of
the cup object and uses the HMM implementation in order
to estimate the state of the interaction (or the alternative
implementation for precise timings). The information from
both these modules is fed into the Main Module, which
controls BERT2’s movements and communicates with the
voice system, sending and receiving information to synchro-
nize the robot’s actions with the dialog. The main module
also implements the User Intentions and Reactions Modelling
layer, when this is in use for the extended system. The
EgoSphere acts as object position and orientation storage
and the Object Provider Module constantly picks up on
changes to objects’ position and orientation and streams the
information to the EgoSphere database. The dialog between
the robot and the user was based on the state machine
in Figure 4 and was implemented using the state-based
graphical programming environment of the RAD toolkit [28].

VII. EXPERIMENTAL EVALUATION

The experiments required users to interact with BERT2 in
a drink-serving scenario. A user was sat on a chair, in front
of BERT2, with no restrictions on movements as shown in
Figure 1. The participant was then asked to interact with
the robot as naturally as possible, knowing that the goal
of the interaction was to obtain a drink. Experiments were
conducted with 17 participants. The subjects included people
who were familiar with the BERT2 robotic platform as well
as people who had not interacted with the robot before.

The experiments included three testing scenarios. The first
one was a natural interaction scenario in which the user
was asked to interact with BERT2 with the goal of getting
a drink. The second involved interaction while engaged in
another task: the user was asked to start counting from 4
and keep adding 7, saying the result out loudly, while trying
to get the drink from the robot. This scenario is linked to the
concept of cognitive load theory [31] and simulates a real-
world situation in which the user is engaged in a conversation
or in other tasks, while trying to obtain a drink from a robot.
It helps with observing how such a task affects the behaviour
of the user and how much participants trusted the robot when
their attention was divided between it and another task. If the
user can count successfully, this suggests that the cognitive
load of the other task is not too demanding, but if the total
cognitive load of both tasks exceeds the capability of the
subject, the highest risk task would take priority. The third
type of scenario included a surprise distraction: during some
of the natural interaction scenarios, a loud noise was played
just before the user was supposed to get the cup from the
robot. The scenario tested what happens when a user gets
distracted suddenly, by an extraneous event. The safety of
the handover is particularly important in this case: if the user
gets distracted to the point where he or she is not engaged
in the handover process any more, the robot should be able
to detect that it is not safe to release the cup.

The first two types of scenarios contained three runs each.
These were intertwined with a case of surprise distraction
(a larger number would not have had the intended effect,
as the person is already aware a “surprise” might occur
and not react to it any more). This constituted one set of
experiments. Three sets of experiments were run per user:
one testing the basic HMM implementation, one testing the
HMM implementation extended with the model of the user’s
intentions, and one testing the model of the user’s intentions
using the glove to detect when the user was touching the cup.
Participants were asked to wear the glove for all settings to
minimize behaviour changes between experiments.

VIII. RESULTS AND ANALYSIS

No significant difference was found between the two
alternatives of detecting when the user touched the cup while
testing the extended model. The results thus refer to these
two cases as “the extended model” listing six runs for each of
the first two scenarios and two runs for the surprise scenario.

Table I shows a clear improvement from the basic to the
extended model. The percentage of successful handovers
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TABLE I
COMPARISON BETWEEN THE BASIC MODEL AND THE EXTENDED MODEL.

System
Total

number
of tries

Number of
successful
handovers

Percentage of
successful
handovers

Number of
times cup was
not released by

the robot

Percentage of
times cup was
not released by

the robot

Number of
unsuccessful

handovers (cup
was dropped)

Percentage of
unsuccessful

handovers

Basic HMM
implementation 119 74 62.18 34 28.57 11 9.24

Extended with user
intention model 238 180 75.63 55 23.10 3 1.26

TABLE II
TIMINGS FOR THE EXTENDED CASE.

Scenario Minimum
threshold (s)

Maximum
value (s) Average (s)

Natural interaction 0.3 5.0 2.3
Counting task 0.3 5.8 3.7

Surprise distraction 0.3 6.0 2.8

is significantly greater in the extended case than in the
basic one. The number of drops is reduced to 1.26% in
the extended scenario, as compared to 9.24% in the basic
one, see Table I for more detailed results. This is because
the simple HMM implementation only takes into account
values that capture the physical aspects of the handover. It
does not consider engagement in the task nor joint action
expectations. Most drops occurred when the motor current
values were similar to the values typically encountered in
the “user is grabbing the cup” case, but the user was not
actually prepared to take the object (he or she was distracted
or simply hit the cup without grasping it). Our results confirm
that the implementation that integrates a model of what the
robot can reasonably expect a user to do, e.g. following a
specific sequence of actions, can reduce false positives. The
percentage of the times the cup was not released by the robot
in the extended case is higher than that of the times when
the cup was dropped. This is a logical consequence of the
robot using a stricter policy to decide when to release the
cup, thereby emphasizing safety.

In the extended case, the user’s level of engagement is
determined by checking that the time passing between their
first look at the cup and the actual grab lies between a
minimum / maximum threshold. If the value is in that range,
and the user is still touching the cup, the robot completes
the handover. Table II presents values for the two thresholds
obtained in our experiments, as well as the average values
for the three types of experiment scenarios, all expressed in
seconds. Note that these values are experiment specific; they
do not represent absolute values.

The experiments showed that a user needs to look at the
object at least 300 milliseconds before touching the cup for
the handover to proceed successfully. This minimum thresh-
old is the same throughout scenarios because it represents
the minimal amount of time which signifies the participant
actually looked at the cup with the intention of being engaged

in the handover process. The maximum value in the natural
interaction case is 5 seconds, with an average value of 2.3
seconds. The variation occurs because users take more or less
time to look at the cup and then at the robot, before touching
the cup. The scenario in which the test subjects are engaged
in the counting task results in an increased maximum value,
as well as a larger average. This was expected because
participants have to switch between tasks to complete both of
them. The surprise distraction scenario affected participants
differently. The average value is lower than that of the
counting task, but higher than that of the natural interaction.
This is because some users reacted stronger than others, i.e.
inter-individual variability was larger. When the loud sound
was played, some participants would turn their heads and
would shift their focus of attention toward the noise, while
others would simply go on with the interaction and turn
around after the handover was completed. The maximum
value, therefore, is rather high, which is a consequence
of some users’ long periods of disengagement from the
handover process.

The results obtained show that by integrating a model that
captures the behaviour expected from a human in a handover
scenario into a robot’s decision making, the rate of successful
handovers between robot and human can be significantly im-
proved compared to a setting that only considers the physical
aspects of a handover without regard of the cognitive side.

IX. CONCLUSION AND FUTURE WORK

Personal robots can soon become an important part of
people’s lives, helping them cope with various situations
and performing a wide range of tasks for them. Recent
advances in control engineering and robotics have enabled
robots to perform increasingly complex tasks autonomously.
What remains is for humans to gain trust in the resulting
intelligent systems. A pre-requisite for the acceptance of
personal robots is that they are demonstrably safe, predictable
and therefore trustworthy social interaction partners.

The novel contribution of this paper is in taking a first
step toward increasing safety within an HRI scenario by
integrating and evaluating a model that derives information
about the human’s engagement in an interaction based on
a sequence of “joint action signals” humans naturally send
when interacting with each other. Such signals include eye-
head gaze orientation as a sign of a human’s focus of
attention and engagement in a task at hand.
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Compared to a basic setting that estimates the state of
the interaction between human and robot purely by using
values related to the physical side of the handover (e.g.
motor current and torque values), monitoring and considering
the user’s behaviour (which constitutes a “Theory of Mind”
from the robot’s perspective), as we demonstrated in our
extended model, clearly increases the success rate of the
handover. Thus, including human intention into the robot’s
decision process makes a robot-to-human object handover
more robust and therefore safer. Note that we are fully aware
of the fact that human intention on the basis of eye-head
gaze orientation cannot be estimated with absolute certainty
as humans might use gaze to deceive. However, as a first
approximation eye-head gaze direction measures appear to
be sufficiently reliable.

Future research directions include more detailed investi-
gations into the cognitive aspects of joint attention in HRI.
An important area for future work is the exploration of the
“Theory of Mind” concept in the context of HRI, especially
as a basis for developing more advanced social skills in
personal robots. We have also started to develop techniques
towards the verification and validation of HRI systems.
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