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Abstract— Finger exoskeletons, haptic devices, and aug-
mented reality applications demand an accurate, robust, and
fast estimation of finger pose. We present a novel finger pose
estimation method using a motion capture system. The method
combines system identification and state estimation in a unified
framework. The system identification stage investigates the
accurate model of a finger, and the state estimation stage tracks
the finger pose with the Extended Kalman Filter (EKF) algo-
rithm based on the model obtained in the system identification
stage. The algorithm is validated by simulation and experiment.
The experimental results show that the method can robustly
estimate the finger pose at a high frequency (greater than 1
Khz) in presence of measurement noise, occlusion of markers,
and fast movement.

I. INTRODUCTION

Accurate, robust, and high-frequency estimation of finger

pose is critical in many applications including finger ex-

oskeletons [1][2], haptic devices[3][4], and augmented real-

ity tools [5] used in medical operations, hazardous material

handling, rehabilitation, and other applications. For example,

kinematic loops of the hand rehabilitation robot inherently

include a robot system and a human finger [6]. Therefore

the kinematics modeling and estimation of the finger pose

significantly affect the performance of the entire system.

A motion capture system is a powerful solution for mea-

suring the pose of human finger [7]. Unlike mechanical

systems, measuring the pose of the human finger is chal-

lenging, since it is hard to install mechanical elements such

as encoders on a finger. In addition, installing mechanical

components may significantly change the characteristics of

finger dynamics. In this regard, the motion capture system is

a desirable alternative because it only requires the attachment

of a few markers on a human finger. Furthermore, modern

motion capture systems can provide highly accurate and

precise position information superior to the other contactless

methods such as computer vision algorithms [8].

Nevertheless, the estimation of finger pose with a motion

capture device has several challenges. The first challenge

is associated with the kinematic modeling. An inaccurate

kinematic model of the human body and markers degrades

the accuracy of kinematic chain containing both the human
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Fig. 1: Accurate, robust, and real-time estimation of finger

pose with a motion capture system.

body and robotic system. However, the modeling of a hu-

man finger and relation with markers is not easy because

we cannot directly measure kinematic parameters such as

bone lengths and markers’ locations relative to finger joints.

Moreover, mechanical joints cannot exactly describe human

biological finger joints [9]. The second obstacle is related

to robust estimation. The robust estimation is the foremost

and essential condition for safe human-robot interaction.

However, the estimation of finger pose is deteriorated by

various factors such as occlusion of markers, deformation of

human skin [10], limitation of modeling with idealized joints

[11], and the noise in marker measurement data. The last

obstacle is that the configuration of system may be different

for different estimation trials. Different fingers have different

kinematic parameters, and markers may not be attached at the

same position for experiments. Therefore, finger model needs

to be recalibrated before estimation. In other words, both

accurate system identification and robust estimation need to

be performed in a unified framework.

The most common method for the estimation of finger

pose with a motion capture system is to first attach markers

at predetermined positions (typically on the joints) and then

calculate the finger’s pose from the geometric relation of

markers with a deterministic inverse kinematics method

[12][13]. Several researchers, particularly in biomechanics,

have developed more accurate kinematic modeling methods

to investigate the dynamic biomechanical properties of the

human finger. However, their estimation methods were not

robust [11][14]. Many computer scientists have studied ro-

bust estimation algorithms of the human hand for the purpose

of gesture recognition [16][17], but they do not include the

accurate modeling of the finger. Their kinematic models were

simplified and not subject-specific because they assumed

incorrect geometric relation between the marker and joint
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center, and each person has different shape of finger [14].

Till date, only Todorov has presented an augmented state

estimation method for the simultaneous system identifica-

tion and robust pose tracking of a generalized articulated

multi-joint system [18]. However, the large dimension of

the augmented state (61-dimension including joint angles

and system parameters for two fingers) restricts the fast

calculation of the state estimation, which is essential for the

real-time control. Also, its tracking performance is highly

dependent on the initial state due to the severe nonlinearity

of the system.

To address the need for an accurate, robust, and fast esti-

mation of finger pose, this paper presents a novel framework

containing a system identification stage and a state estimation

stage. The system identification stage investigates the optimal

solution for the kinematic model parameters for the finger

and markers. The estimation stage tracks the pose of a finger

with Extended Kalman Filter (EKF) algorithm based on the

optimal model obtained in the system identification stage.

This two-stage method realizes accurate, robust, and high-

frequency estimation of finger pose with a motion capture

system. The unified system configuration enables the use

of an accurate optimal model in the estimation procedure.

The separation into two stages allows for the real-time

estimation at high sampling frequency (faster than 1Khz).

The prediction model in the EKF, which is based on the jerk

minimization theory [19][20], and the stochastic estimation

algorithm estimate the finger pose robustly against the sensor

noise, skin stretch, occlusion of markers, and the system

modeling error. Furthermore, the EKF provides a quantitative

confidence level for the estimates, which is important for the

human-robot interaction.

II. SYSTEM IDENTIFICATION STAGE

Before the estimation stage, the system identification stage

is carried out offline to determine the optimal model of the

system consisting of the human finger and the markers of the

motion capture system. Specifically, the model contains the

kinematic model parameters of the finger and the location

of markers relative to finger joints. After collecting a fixed

number of marker data points while the finger moves freely,

an optimization algorithm searches the optimal parameters

minimizing the least square error between the actual marker

positions and the estimated marker positions.

A. System Modeling

The human finger is modeled based on a previously pre-

sented method [21]. The metacarpophalangeal (MCP) joint is

modeled with a saddle joint to represent two DOF motions of

the abduction/adduction and flexion/extension. The proximal

interphalangeal (PIP) joint and the distal interphalangeal

(DIP) joint are modeled by a hinge joint to represent one

DOF flexion/extension motions. A total of seven markers

are attached to a finger. Two markers are attached on the

metacarpal, proximal phalange, and intermediate phalange;

one marker is attached on the distal phalange (Figure 2).

To develop a complete model of the above system, we

need three types of parameter sets. The first set contains

the translation (x,y,z) and rotation (roll, pitch, yaw) param-

eters to describe the relation between the world coordinate

(OWOR, or the coordinate of a motion capture system) and

the local coordinate attached on the metacarpal OMET. The

second parameter set is for the lengths of the proximal and

intermediate phalanges. The last set is three-dimensional

locations of seven markers in the local coordinates attached

on the joints and metacarpal (e.g., xyz positions of m3 in

the coordinate OMCP). The parameter sets are used to build

a kinematic model of a finger and markers, and is indicated

by p. Joint angles of MCP adduction, MCP flexion, PIP

flexion, and DIP flexion are the state variables of this system,

and are indicated by x. The three dimensional positions of

seven markers in the world coordinates are estimated by a

measurement function h with the model parameter p and the

state variable x, and its relation is shown in (1).

ẑ = h(p, x) (1)

where ẑ is a vector indicating the estimated marker position

in the world coordinate.

B. Optimization of Kinematic Model Parameter

The goal of the system identification stage is to identify

the best model parameter p for the system, and is achieved by

an optimization method. For the optimization, first, several

measurement sets are collected with a motion capture system.

Then, the optimal model parameter is selected to minimize

the error between the estimated and actual marker positions.

The optimization problem can be expressed by (2):

argmin
p,x1...xN

J = (∆z⊤∆z) (2)

∆z =







ẑ1 − z1
...

ẑN − zN






=







h(p, x1)− z1
...

h(p, xN )− zN







Fig. 2: Configuration of the kinematic modeling. MCP joint

is modeled with a saddle joint, and PIP, DIP are modeled

with a hinge joint. A total of seven markers are attached

on metacarpal and phalanges. Each phalange and metacarpal

have their local coordinates.
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where N is the number of measurements for the optimization.

zi is a vector indicating the three dimensional positions

of seven markers acquired at the i-th measurement from

a motion capture system, and has 21-dimension. xi is the

state vector indicating joint angles at the i-th measurement.

In normal cases, the above type of optimization problem

is a challenging global optimization problem which has

many local minimums and demands considerable amount of

calculation time due to its large dimension and nonlinearity

of the measurement function. However, the model parameters

and states can be initialized based on the rough estimates

obtained from the anthropometric constraints and the mea-

surements. For example, the origin of coordinates of metaca-

pal is located around the mid-point between the markers m2

and m3. The marker m4 probably is located on a phalange

whose length is less than 10 cm. These initial guesses and

constraints in the optimization problem dramatically reduce

the calculation time and helps in avoiding inappropriate local

minimum.

III. ESTIMATION STAGE

The goal of the state estimation stage is to estimate the

state of finger robustly at high sampling rate under the

presence of occlusion, noise of markers, and deformation

of skin. The Extended Kalman Filter (EKF) algorithm is

selected to achieve the above objectives. The EKF is a

linearized version of Kalman Filter (another name is Lin-

ear Quadratic Estimator) and a probabilistic state tracking

algorithm which has been widely verified through various

research and industry applications [22] due to its robust and

fast calculation performance. The EKF algorithm works in a

two-step process. In the prediction step, it predicts the system

state based on the system motion model, and the update step

corrects the state based on the measurement data.

A. Prediction Step

The prediction step in the EKF predicts the state of the

finger between the measurements or without measurements

(during the occlusion of markers). Because the prediction

step has to estimate the system state without measure-

ment, it needs an information to “predict” the state at the

next time step. Generally in Robotics, a control input and

corresponding motion model are used as an information.

However, in this application, we cannot acquire any control

input such as subject’s intention. Therefore, here we use the

jerk minimization theory [19][20] which claims that human

motion tends to minimize the jerk, defined as a derivative

of acceleration with respect to time. It acts as a prediction

model for the finger motion. Based on the jerk minimization

theory, the jerk term is regarded as a small white noise. The

state x representing the random variables of four joint angles

is augmented to express the jerk ∆ẍ = ẍk − ẍk−1 as shown

in (3):

y =
[

x ẋ ẍ
]⊤

(3)

where y is the augmented state. The augmented state is

predicted by the model in (4).

ȳk = Ayk−1 +N (0, Q) (4)

A =





I3 ∆t 0
0 I3 ∆t

0 0 I3



 , Q =





σ2

v 0 0
0 σ2

a 0
0 0 σ2

j





where the bar (̄·) indicates a predicted state before the update

step, ȳk is the predicted state at the kth time step, A is

a motion model for the prediction, Q is a process noise

matrix, I3 is 3×3 identity matrix, and ∆t, σ2

v , σ
2

a, and σ2

j are

three dimensional diagonal matrices whose elements are the

sampling time, and model noises for velocity, acceleration

and jerk, respectively. The mean and covariance are predicted

using (5) and (6).

µ̄k = Aµk−1 (5)

P̄k = FPk−1F
⊤ +Q (6)

where µ and P are the mean and covariance of y, respec-

tively. F is the Jacobian of A with respect to the y. The

predicted state x̄k = N (µ̄, P̄ ) is corrected by the update step,

but if there is no measurement in the k-th step, it becomes

the current state, xk = x̄k.

B. Update Step

The update step in the EKF corrects the predicted state

by the measurements, which are obtained from the motion

capture device. The updated mean µk and covariance Pk are

calculated using (7) and (8).

µk = µ̄k +Kk(zk − ẑk) (7)

Pk = (I −KkHk)P̄k (8)

Kk = P̄kH
⊤

k Ψ−1

k , Ψ = HkP̄kH
⊤

k +Rk

where z and ẑ are the measurements and estimated measure-

ments which are calculated by using (1), K is the Kalman

gain, H is the Jacobian of measurement function h with

respect to y, Ψ is the innovation matrix, and R is the

measurement noise matrix.

The measurement noise matrix R is regulated to handle the

uncertainty of measurement and the occlusion of markers. In

the normal case when a motion capture system successfully

provides the position of markers, the elements of R are

filled with the square of average error of marker positions

containing device errors and skin stretch. However, when

it fails, in most cases due to occlusion, the elements of

R corresponding to the occluded marker are filled with

an infinite number, (practically a very large number). The

infinite size of variance physically means the absence of

observed information, thus the occluded marker data is not

used to correct the predicted state using (7) and (8). The

stochastic and selective update by Kalman gain in (7) and (8)

makes the algorithm robust to the noise of the measurement.
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IV. RESULTS

The system identification and estimation methods were

validated by simulation and an experiment with a subject.

Because it is difficult to know ground-truth values for the

finger pose without an X-ray device, a virtual experiment was

conducted with a computer simulation. Then, an experiment

was also performed, in which the tracking performance and

practical effectiveness are validated with a real-time GUI.

A. Simulation

We developed a virtual finger and a virtual motion cap-

ture system to evaluate the performance of algorithms by

comparing with the ground-truth values. The virtual finger

moved along a predetermined trajectory and the virtual

motion capture device collected the marker positions. The

measurement noise was modeled by a white noise whose

standard deviation is 3 mm.

1) System Identification: For the system identification

of the virtual system, 20 virtual measurement sets were

collected while the finger moved. The optimization was

conducted with a line search algorithm [23], a gradient-based

and constrained optimization algorithm, in MATLAB. The

optimization time was less than 60 seconds with a computer

which has Intel I5 2.5 Ghz CPU and 8 GB RAM. The

performance of the system identification stage was evaluated

by repeating the above procedure 100 times. Fig. 3 shows

the average error compared to the ground-truth parameters.

2) State Estimation: The state estimation algorithm was

validated by moving the virtual finger along the specific

trajectory. The prediction step was executed with 1kHz, and

the virtual marker data were acquired with 480Hz. With the

same trajectory, the state estimation was performed twice

with 10% marker occlusion and 50% marker occlusion.

The occlusion was simulated by eliminating marker data

randomly with the given ratio.

Fig. 4 shows the simulation results for the state estimation

compared with the ground-truth trajectories. The estimation

algorithm was able to track the finger pose quickly while

keeping the errors low. Also, the result shows that the

estimation error of DIP flexion is larger than that of MCP
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Fig. 3: Results of system identification in the simulation. The

height of bars indicates the average error of 100 optimized

model parameter sets compared with the ground-truth values.

flexion. This is because MCP flexion is updated by five

markers’ positions, but DIP flexion is affected by only one

markers’ position. Regarding the occlusion, although in both

cases of 10% and 50%, the estimated joint angles converged

to the ground-truth trajectories, the occlusion increased the

size of error and uncertainty, and reduced the convergence

time as shown in Fig. 4(e) and (f).

B. Experiment

An experiment with a subject was conducted to confirm

the practical effectiveness of the algorithm. A motion capture

device by Phasespace Inc [7] was used, and its seven active

LED markers are attached on an index finger. The system

identification stage and the estimation stage were applied to

the motion capture data (see the video [24] and Fig. 5).

1) System identification: While the subject moves his

finger freely, 20 measurement sets with no occlusion were
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Fig. 4: Results of state estimation in the simulation. A virtual

finger moved along a predetermined arbitrary trajectory, and

a virtual motion capture system provided the positions of

markers with white noise whose standard deviation is 3 mm.

The estimation was performed twice with 10 % occlusion and

then 50 % occlusion cases. (a)-(d) show the tracking results

for the four joint motions. (e) demonstrates the tracking

error averaged over four joint poses. (f) shows the size of

covariance matrix via the second norm.
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Fig. 5: We attached seven active markers on a subject’s index

finger and a motion capture system (Phasespace Inc. [7])

provides the three dimensional positions of markers at 480

Hz.

collected. Then, the optimization algorithm investigated the

solution. Because we do not know the ground-truth value of

parameters, we repeated the system identification stage 100

times and calculated the standard deviation of the optimized

solution. Fig. 6 demonstrates the consistency of the opti-

mized solutions with the small size of standard deviations.

2) State Estimation: The states were estimated based on

the kinematic model parameters obtained in the system iden-

tification stage. The estimation algorithm was implemented

in C++ (RTAI Linux) to ensure hard-real-time performance

with a GUI rendering the finger pose in real-time. The

computational time for the execution of two prediction steps

and one update step was less than 48.2 micro-seconds. It

verifies that the algorithm computational speed is sufficiently

fast for the control of a human-robot interaction device.

Additionally, we built a real-time GUI with QT library and

OpenGL to see the estimated pose of the finger and the real

finger motion simultaneously as shown in Fig. 1.

In the experiment, first the subject moved his finger at a

nominal speed, then after a while a researcher covered mark-

ers, and lastly the subject moved his finger very fast. Fig. 7

illustrates the detailed procedure of the experiment. The real-

time estimation algorithm successfully tracks the subject’s

finger pose even though a researcher intentionally disturbed

the measurement and the subject generated unpredictable fast

motion. Furthermore, when the measurement condition is

not reliable, the algorithm increased the size of covariance,

thus providing the quantitative level of confidence for the

estimation.

V. CONCLUSIONS

We developed an accurate, robust and high-frequency

estimation method for the finger pose with a motion capture

device. The goal of ‘accuracy’ was achieved by finding an

optimized kinematic model of the system before the estima-

tion. ‘Robustness’ was obtained by introducing the jerk min-

imization model as a predictor and by correcting the system

states stochastically. ‘High-frequency’ was accomplished by

separating two procedures (system identification and state

estimation) and by selecting a fast estimation algorithm,
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Fig. 6: Results of system identification in the experiment.

The size of bars indicates the standard deviation of optimized

kinematic model parameters.

namely EKF. The simulation showed that the methods can

identify the accurate system model, and estimate the finger

state robustly. An experiment with the human finger verified

that the method is practically effective and runs at a high

frequency.
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