
RoMPLA: An Efficient Robot Motion

and Planning Learning Architecture

Javier Gonzalez-Quijano, Mohamed Abderrahim, Choukri Bensalah, Silvia Rodrı́guez-Jiménez

RoboticsLab, University Carlos III of Madrid, Spain

jgonza1,mohamed,cbensala,srjimene@ing.uc3m.es

Abstract— Robot motor skill learning is currently one of
the most active research areas in robotics. Many learning
techniques have been developed for relatively simple problems.
However, very few of them have direct applicability in complex
robotics systems without assuming prior knowledge about the
task due to two facts. On one hand, they scale badly to continues
and high dimensional problems. On the other hand, they require
too many real learning episodes. In this sense, this paper
provides a detailed description of an original approach capable
of learning from scratch suboptimal solutions and of providing
closed-loop motor control policies in the proximity of such
solutions. The developed architecture manages the solution in
two consecutive phases. The first phase provides an initial open-
loop solution state-action trajectory by mixing kinodynamic
planning with model learning. In the second phase, the initial
state trajectory solution is first smoothed and then, a closed-
loop controller with active learning capabilities is learned in its
proximity. We will demonstrate the efficiency of this two phases
approach in the Cart-Pole Swing-Up Task problem.

I. INTRODUCTION

Motor skill development in humans being is a very com-

plex process involving many cognitive skills which takes

many years to improve [1]. Neuroscience has taken care of

this concrete aspect for a long time. A very important issue

is about the importance of planning and model learning as

a synergy that guides the exploration process when learning

new motor skills. Planning employs internal models, even

when they are immature. Then, the plan is executed and the

model gets improved using the obtained experience. Later,

a new planning process starts and so on. This planning-

learning phase finishes when the model is good enough to

generate an appropriate action sequence to reach the goal.

During the learning phase, exploration usually does not take

place explicitly. Generally, it is indeed the consequence of

executing actions which are partially invalid due to the

imprecision of the models that where used in the motor

planning process. In addition, it is necessary to realize that

the capability of planning in humans being is not accurate

enough to generate smooth and exact plans to carry out a

certain task precisely. It only provides an initial plan which

must be later refined. In turn, the planning process is carried

out fast enough to allow humans to learn new motor skills in

a short time period. When this raw solution has already been

obtained, some local motor control learning mechanisms

manage to refine the solution, and to obtain robust and

accurate closed-loop controllers capable of tracking such

solution accurately. Some authors claim that these controllers

work in a model-predictive way [2].

The objective of this work is to translate the ideas de-

scribed above into a motor learning architecture capable

of learning new motor learning tasks without assuming

prior knowledge, proving robust closed-loop controllers in

the surroundings of the final solution. The Robot Motion

Planning Architecture (RoMPLA) also follows a two phases

approach. In the first phase, a mixed scheme based on

kinodynamic planning and model learning is proposed. In the

second phase, the solution is first refined using polynomial

fitting and, later, a model predictive controller with active

learning capabilities manages to learn a closed-loop policy

in the proximity of the solution.

II. RELATED WORK

Several different approaches may be applied for learning

motor control tasks. A formidable overview of the whole

problem has been recently performed by Schaal et al. in [3].

Basically, there exist three main learning schemes: model-

free learning, model-based learning and mixed learning

approaches. The most famous ones are related to optimal

control theory, concretely to the dynamic programming

framework [4]. Dynamic Programming has been described as

the most general of the optimization approaches because con-

ceivably it can solve the broadest problems classes. Dynamic

Programming assumes a perfect knowledge about the model

dynamics, thus being indeed considered as a probabilistic

planning technique. Nevertheless, its combination either with

model learning techniques or other types of learning tech-

niques has led to many different learning approaches which

are generally grouped by the term of reinforcement learning

[5]. On one hand, model-based approaches require often

less real interaction with the environment than model-free

approaches, as the behaviour of the system can be simulated

with such models. Furthermore, this learned models may be

reused for learning other different tasks. On the other hand,

there exist a different set of techniques, called model-free

learning, which do not make use of the dynamical model

of the system. Here, a value or an action-value function

may be mainly computed directly using temporal-difference,

Montecarlo or gradient-descend methods. The most well-

known one, which has inspired many other later methods,

is the Q-learning algorithm [6]. Furthermore, it is possible

to find mixed approaches that try to get the best advan-

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2295

tages from model-based and from model-free techniques by

integrated learning, planning and reacting. As an example,

we can mention the Dyna architecture [7]. Nonetheless, the

scalability of this class of algorithms to high dimensional

state and action spaces is still a matter of study, more

in the case of continues state-action spaces. To overcome

this problem, the authors of this publication proposed in

previous work a new model-based learning algorithm, called

KiPLA [8], which handles much more efficiently the curse of

dimensionality problem. This algorithm mixes kinodynamic

planning and model learning for the purpose of finding

suboptimal open-loop policies for achieving a certain task.

The fact that KiPLA does not offer closed-loop policies

solutions, motivates the design of the proposed RoMPLA

architecture, which takes care of this issue. Other types

of methods are not discussed here as they usually operate

locally and can not handle general motor learning problems

without assuming prior knowledge about the task.

Other motor learning techniques are focused on learning

tracking tasks. These methods usually operate locally. Some

important methods, in relation to this work, are based on the

Active Learning paradigm. These techniques aim at maxi-

mizing the information during the exploration process while

reducing the number of real robot-environment interactions.

This relatively new field is helping to improve not only

the general approaches described above but also providing

smart learning capabilities to many classical control tech-

niques. Approaches to active data selection may be based

on heuristics or the optimization of an objective function

[9]. Several mechanisms, which balance the exploration-

exploitation trade-off in Reinforcement Learning, can also

be understood as active learning strategies, such as the

Boltzmann exploration rule. A complete overview on this

problem was done by Robbel [10]. He also presents a new

active learning approach based on the Locally Weighted

Projection Regression (LWPR) algorithm for motor control.

This regression method [11], which is also used in our

proposed architecture, will be discussed in Section IV.

III. BLIND-RRTS

Blind-RRTs are a new modification of classical RRTs

in order to adequate them for their employment in motor

learning problems. This modification is needed as neither

environment constraints nor kinodynamic constraints are

known a priori. Our new kinodynamic planner uses forward

dynamics models which links the knowledge in the following

way: {st, at} −→ {st+1}. When learning the model, real

experimental data are used. This fact makes that not possible

states, being part of the constrained state space, are not

incorporated in the regression training process. Due to this

reason, if we apply a certain action in a certain valid state

st, then the future state st+1 will also be valid. As the tree is

created incrementally, if we can ensure that the starting state

s0 is a valid state, then we can also ensure that the rest of

the nodes of the tree represent indeed valid states which are

not contained in the constrained state space. Inverse model

can not be applied directly to the construction of the tree

due to two reasons. The first one is that they are, generally,

not proper functions and therefore, it is not possible to learn

the model via regression. The second one is that they do not

encode the constraints by themselves. Thus, the employment

of forward models is justified in the context of applying

kinodynamic planners to learning problems.

��

��� ���

���	�

�	
��

Fig. 1. Blind-RRT planning expansion.

The way the Blind-RRT expands its nodes is very similar

to the RRT. Both algorithms select the node to expand in

the same way. A random state is generated, then it finds

the nearest node to this random state in the tree and selects

it. However, there is still a big difference when creating a

new node. Blind-RRTs do not expand in the direction of

the random state used to select the expanding node. This

process is described in Fig. 1. A fixed number of can-

didate actions, accomplishing the action-space constraints,

is gathered randomly. Then, a forward model is used to

create new candidate branches which are represented with

a discontinuous line. In the direct extension of RRTs to

kinodynamic planning, the branch that most approximate to

the random state should be chosen. However, due to strong

biases in the candidate branches, this way of selecting the

best branch does not ensure a good state-space coverage.

Our modification, instead, evaluates the final state of each of

the branches. The best branch is the one which maximizes

the distance of its final state to the nearest node in the

tree. In Fig. 1, the best branch was represented by a red

discontinuous line and the distances of the final state points

of each of the branches to the nearest neighbour (d1, d2 and

d3) is represented by the radius of the drawn circumferences.

IV. MODEL LEARNING THROUGH LOCAL WEIGHTED

PROJECTION REGRESSION

Function approximation techniques can handle the iden-

tification of complex dynamical systems. Machine learning

community has largely contributed to this issue in the past

few years by providing a large variety of regression tech-

niques. In the context of robotics, such techniques should

in many cases fulfill some conditions, mainly related to the

scalability to high dimensional state-action spaces and, also,

to the ability of handling efficiently incremental learning.

In this sense, local approximation techniques have gained

popularity. In this work, we employ the well known Local

Weighted Projection Regression technique (LWPR) to learn

2296

Fig. 2. A generic planning solution is illustrated. The blue lines represent
the planning tree whereas the red discontinues line represent the final
solution.

the robot system dynamics in a forward way. It uses expe-

rience data, denoted by the tuple {xt, at, xt+1}, as training

data for the regression algorithm. The input is formed by

the state and action vectors in an instant time t and the

output, what we want to to generalize, represents the state

change rate. Discrete computation requires the following

approximation:

ẋ(t) ≃
xt+1 − xt

δt

The LWPR algorithm assumes that the objective function

can be approximated using a weighted average of different

linear models:

ŷ(x) =

K∑

k=1

wk(x)ŷk(x)/

K∑

k=1

wk(x), (1)

where yk are the hyperplanes representing the linear

models:

yk(x) = b0k + bTk (x− ck), (2)

and wk represents the kernel function which weights the

influence of each of the linear models:

wk(x) = exp(−
1

2
(x− ck)

TDk(x− ck)) (3)

Given a query point x, every linear model calculates a

prediction yk(x). For nonlinear function approximation, the

core concept of the learning system is to find approximations

by means of piecewise linear models. Learning involves

automatically determining the appropriate number of local

models K, the parameters bk of the hyperplane in each

model, and also the region of validity, called receptive field

(RF), parametrized as the distance metric Dk in the Gaussian

kernel. Local models are then created when needed. A

deeper explanation is found in [11]. The main difference

between this algorithm and other similar ones is that it first

searches for lower dimensional distributions of the training

data and then performs the regression. Thus the number of

local models needed to approximate the whole function are

reduced.

V. DESCRIPTION OF ROMPLA ARCHITECTURE

Mixing planning and learning is not a new idea, as

it is the principle of model-based learning approaches. A

vast majority of model-based learning approaches, which

can handle the learning of motor complex tasks without

assuming prior knowledge, employ methods derived from

the Dynamic Programming framework as the core of the

planning process. Dynamic Programming and its related

methods are not focused on planning open-loop state-action

trajectories. They recursively construct, at the same time,

an optimal closed-loop policy for the entire state-space.

Nonetheless, the computational cost becomes prohibitively

huge, even more in the case of continuous and high-

dimensional state-action spaces. Dynamic Programming is

unlikely to represent really the planning process occurring

in human brains. Some studies support the idea that humans

first learn valid open-loop policies and, then, search for a

closed-loop policy around this solution [12]. Our proposed

architecture, RoMPLA (Robot Motion Planning Learning

Architecture), is inspired in this idea. Two main concepts

make the difference with existing other model-based learning

approaches. The first one is related to the mixed planning and

model learning process occurring in human beings, which

provides only open-loop control policies. In turn, it is capable

of offering very quickly suboptimal solutions. It is necessary

to highlight that this mixed planning-learning concept greatly

reduces the number of real robot-environment interactions.

The second one is related to the motor babbling phase, which

is indeed a post process which refines the trajectory and

provides closed-loop control policies only in the proximity

of the state-action trajectory solution. Existing model-based

learning approaches related to techniques based on dynamic

programming do not need this phase as the planning process

already builds this closed-loop control policy. However, the

proposed two-phases learning scheme, which is shown in

Fig. 3, results in a much faster approach that tends to center

its computational resources in the proximity of the state-

action trajectory solution, just like in human beings learning

procedure.

Fig. 3. Detail of the RoMPLA architecture.

2297

The input is the initial state and the goal state. The output

of the global architecture is a closed-loop controller capable

of achieving the task even in the case of noisy environments

causing perturbations to state transitions.

A. Open-loop Policy Learning Module

The Open-loop Policy Learning Module is focused in

implementing the first main idea of the architecture, the

mixed planning and model learning scheme that provides

an initial raw open-loop policy solutions to the learning

problem. The Kinodynamic Planning and Model Learning

Algorithm (KiPLA) has been developed to face this problem.

The planning process inside KiPLA is carried out by the

Blind-RRT kinodynamic planner. As mentioned before, it

is capable of quickly obtaining suboptimal plans even in

high dimensional state-action spaces and under strong robot

and environment kinodynamic constraints. Most remarkable

innovation behind KiPLA is that it does not make use of

an already known model for the planning process. It begins

planning with an unknown model (randomly initialized)

which result ends of invalid plans. Applying these plans

permits to gather more data which is employed to update

the forward dynamic model. For learning the model, the

LWPR algorithm, already described in Section IV has been

employed. Then, this planning-execution and model learning

cycle is executed several times.

Fig. 4. Overview of the Blind-RRT learning algorithm.

Each time the planner is queried after the model has been

updated with experimental data, the obtained plans make

more sense as such model has been improved. Fig. 5 shows

information of a certain episode during the learning process

in the mountain car problem. In this episode, the forward

dynamical model is still not mature enough to provide valid

solutions. It is possible to appreciate this fact by looking at

the differences between the planned state trajectory (yellow

line), which ends at the goal state, with respect to the state

trajectory followed by the car during the real execution (red

line).

After some more episodes, the planner begins to provide

valid plans which execution is capable of leading to congru-

ent solutions. Then, both lines, the planned state trajectory

and the real execution state trajectory, will match. This fact

can be appreciated in Fig. 9, Fig. 10 and Fig. 11 of Section VI

where results after the learning process has concluded are

shown. This is due to the fact that the learned model is then

−1.5 −1 −0.5 0 0.5 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

car position (m)

c
a
r

v
e

lo
c
it
y

(m
/s

)

Fig. 5. Before KiPLA ends the learning process, there exist a divergence
between the theoretical state trajectory and the real execution of the
trajectory.

mature enough, at least for the given solutions. The most

interesting feature regarding the learning process is that the

exploration is indeed the result of exploiting the immature

model. The main advantage here is that the trade-off between

exploring and exploiting is implicitly guided.

B. Closed-loop Policy Learning Module

The second main idea of this architecture is embedded in

the Closed-loop Policy Learning Module. After the mixed

planning-learning phase that has taken place in Open-loop

Policy Learning Module has provided an initial raw solution

to the problem, this module will be in charge of refining

it. In order to do so, such state trajectory solution is first

smoothed using a minimum least square polynomial fitting

procedure. Then, the Genetic Active Learning Model Pre-

dictive Controller (GALMPC) learns a closed-loop control

policy in its proximity. Learning the closed-loop control

policy implies that the controller explores the state-action

space area in the proximity of the solution using an active

learning motor babbling strategy which will be embedded in

the fitness function.

1) State Space Trajectory Smoothing: After an initial

solution has been obtained with the open-loop policy learning

module, it is desired to smooth the state trajectory solution.

An example is shown in Fig. 6. The initial trajectory solution

is formed by a set of K state reference points:

traj = {S0, S1, ..., SK},

where each of the state reference points are denoted as:

Si = {Si1, Si2, ..., SiN},

and i is the index representing the temporal order of these

trajectory points and N is the number of dimensions of the

state space. For achieving this trajectory smoothing, least

squares polynomial regression is employed. The regression

is applied over each of the dimensions independently, having

each of the polynomial regression functions the following

2298

form:

Sn(t) = a0 + a1t+ a2t
2 + ...+ amtm,

where n denotes the dimension number, t represents the

instant where each of the state points are achieved and m
the polynomial order.

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

time (step number)

s
ta

te
 v

a
ri
a

b
le

 1

Original state trajectory points

Regression function

Refined state trajectory points

Fig. 6. The smoothing of the state reference trajectory solution is performed
with a least squares minimization applied to a polynomial fitting.

A least square minimization procedure is then performed

to calculate the monomials coefficients. Then, a new state

trajectory may be obtained by resampling this function at

the original instant points. The original initial and final

points should be kept as they represent the starting and

end conditions. By adjusting the polynomial order, it is

possible to manage a less or more smooth state trajectory.

The polynomial order, should always be kept below the

number of trajectory points K. As a general rule, good results

may be obtained with a polynomial order equal to a positive

integer number between a 75% and 90% of the total number

of trajectory points. Nevertheless, the best coefficient value

should be related to the degree of smoothness of the state

trajectory solution before the refinement process. If such

trajectory is very rough, the degree should be tuned with

a low value and vice versa.

2) GAL-MPC Controller: After the initial trajectory so-

lution has been smoothed, it is desired to provide a closed-

loop controller capable of tracking this trajectory even in

the presence of stochastic behaviours that could deviate the

robot from its reference. In order to do so, a motor control

architecture combining ideas from active learning and model

predictive control has been designed. The architecture is

shown in Fig. 7.

In the first place, there is a state reference selection

mechanism which chooses the current state reference nearest

to the current state. Afterwards, an optimization engine

employing a genetic algorithm and the learned forward

model calculates the needed action with the ultimate goal

of tracking the desired state reference. Due to this reason,

the fitness in the optimization module is mainly responsible

for describing the error between the state reference and the

Fig. 7. Detail of the GAL-MPC block shown in Fig. 3.

prediction of the forward model. As mentioned previously,

the model is not necessarily mature in the surrounding of

the reference state trajectory. This may cause the controller

not to work properly. Thus, it is desired to improve the

model by exploring in such surrounding areas. An active

learning approach will do this work. It has been encoded

in the fitness function (second term of (4). This approach

forces the system to choose actions that help in reducing the

uncertainty in the model in the proximity of the smoothed

trajectory solution. As long as the model is mature, the active

learning approach will not affect the fitness value, thus the

optimization takes into account only the tracking error. It is

necessary to let this module work for some episodes before

it is possible to track properly the refined state reference

trajectory.

The objective of the optimization problem is to find the

action u which minimizes the following cost function:

J =‖ Sref
t+1− Ŝt+1 ‖ −Kσ(Ŝt+1)D(Ŝt+1+2σ(Ŝt+1), S

ref
t+1)

(4)

where Ŝt+1 is the prediction of the model when being in

a certain state St and applying an action u:

Ŝt+1 = f(St, u)

The term ‖ Sref
t+1 − Ŝt+1 ‖ is the expected error when

applying the action u. The term σ(Ŝt+1) represents the

confidence in the prediction. If the model is mature, then

the standard deviation of the prediction will tend to be zero,

making the whole term null. Therefore, the controller will

be focused in minimizing the tracking error. If the model is

immature, that means the standard deviation of the prediction

is greater than zero, the term will tend to minimize the

total cost, thus making the controller explore to reduce

the uncertainty. However, the function D will balance the

importance of exploring the evaluated action, discouraging

the exploration process if such action could bring the robot

far way from the reference state trajectory, even if the

uncertainty in the prediction is high. The K parameter

may be tuned to decide how far from the state reference

trajectory should the algorithm explore. This function follows

a multivariate normal distribution:

D ∼ N (Sref
t+1, diag(d1, ..., dn)),

2299

which is centred in the the current state reference point.

The covariance matrix is diagonal and has the parameters

d1, ..., dn which weights the importance of being deviated

from each of the n state variable values.

VI. EXPERIMENTAL RESULTS

The Cart-Pole Swing-Up Task problem is very similar

to the Inverted Pendulum Swing-up Task. Both systems are

classical problems in the motor control research field. The

cart pendulum is an inverted pendulum over a cart system

with an horizontal degree of freedom. Unlike the problem of

the Cart-Pole Balancing Task problem, the Swing-up Task

problem is much more difficult as it involves searching for a

complex policy in a large state-space area. One of its main

advantages is that it is widely used as a benchmark for testing

control algorithms. In the original problem, the joint that

connects the pendulum with the cart is passive and it is only

possible to exert an horizontal force on the cart to move it

left or right.

Fig. 8. Cart pendulum system.

Relevant system variables are contained in a four dimen-

sional state space and one action space dimension. The

simulation of the dynamics has been done using (5) and

(6). These equations and their complete development can be

found in [13], where Coulomb friction and viscous friction

are also taken into account. We highlight that these equations

are a correction of other models that have been previously

used in literature. The state vector X(θ, θ̇, ẋ, x) represents

the angular position of the pendulum, its angular velocity,

its linear velocity and the linear position of the cart. The

action vector is only formed by the linear force, F , exerted

over the cart.

θ̈ =
gsin(θ) + cos(θ)[

−F−mplθ̇
2sin(θ)+µcsgn(ẋ)
mc+mp

]− µpθ̇

mpl

l[43 − mpcos2(θ)
mc+mp

]
(5)

ẍ =
F +mpl[θ̇

2sin(θ)− θ̈cos(θ)]− µcsgn(ẋ)

mc +mp

(6)

The cart has mass mc, and the pendulum has mass mp

and length l. Coulomb friction with constant value µc and

viscous friction with constant value µp have also been taken

into account. Gravity is represented by g. The initial state,

in this case, corresponds to the pendulum downwards, at

−π rad, and the cart at linear position x = 2 m. Both the

angular velocity of the pendulum and the linear velocity of

the cart are initially null. The objective is to swing-up the

pendulum vertically, at 0 rad, with null angular velocity. In

addition, it is desired the linear velocity of the cart and the

horizontal position to be zero.

−7 −6 −5 −4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

pole angular position (rad)
p

o
le

a
n

g
u

la
r

v
e

lo
c
it
y

(r
a

d
/s

)

Fig. 9. Projection of the planning tree in the cart-pole system onto the
angular velocity of the pole and the linear position of the cart variables.

−7 −6 −5 −4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

pole angular position (rad)

c
a

rt
lin

e
a

r
v
e

lo
c
it
y

(m
/s

)

Fig. 10. Projection of the planning tree in the cart-pole system onto the
angular velocity of the pole and the linear position of the cart variables.

After some iterations, the learning phase concludes, which

means that the execution of the chosen plan leads the system

along a state trajectory that matches the reference trajectory

(the theorical trajectory associated with the chosen plan).

Fig. 9, Fig. 10 and Fig. 11 show the state-space planning

tree and the state-state trajectories associated with the execu-

tion of the plan. Here, the continuous yellow line represents

the reference trajectory (using the theoretical prediction

model) and the red discontinuous line the followed trajectory

(real execution). In addition, Fig. 12 shows the evolution

of each of the state variables over time. It is possible to

2300

−7 −6 −5 −4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

pole angular position (rad)

c
a

rt
lin

e
a

r
p

o
s
it
io

n
(m

)

Fig. 11. Projection of the planning tree in the cart-pole system onto the
angular velocity of the pole and the linear position of the cart variables.

appreciate that both lines coincide and end in the goal state

position. This fact illustrates that the learning process has

concluded.

0 1 2 3 4 5 6 7 8
−5

0

5

time (s)

p
o

le
a

n
g

u
la

r
p

o
s
it
io

n
(r

a
d

)

0 1 2 3 4 5 6 7 8
−5

0

5

time (s)

p
o

le
a

n
g

u
la

r
v
e

lo
c
it
y

(r
a

d
/s

)

0 1 2 3 4 5 6 7 8
−4

−2

0

2

time (s)

c
a
rt

lin
e

a
r

v
e

lo
c
it
y

(m
/s

)

0 1 2 3 4 5 6 7 8
0

1

2

3

time (s)

c
a

rt
lin

e
a

r
p

o
s
it
io

n
(m

)

����

��� ���	

���� ���	

Fig. 12. Temporal response of the cart-pole system.

A graphical sequence of the cart-pole system achieving

the goal has been represented in Fig. 13. Due to the imposed

constraints in the maximum torque that could be employed,

the policy conducts the pole to balance first to the right

side to accumulate potential energy. Then, the system takes

advance of this extra energy to manage reaching the goal

by balancing to the left side. This behaviour is due to the

constraints of the problem, (i.e. the limitation in the applied

force and the limits in the cart displacements).

A summary of the learning process corresponding to the

first phase, carried out by the KiPLA algorithm, is illustrated

in Fig. 14. The horizontal axis represents the number of itera-

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

Fig. 13. Graphical sequence of the cart-pole system achieving the goal.

tions along the learning process. The vertical axis represents

the module of the final state error vector. Data have been

gathered every 25 iterations. The graph represents not only

the average error in each of the 25 episodes period but also

the minimum and maximum error.

0 25 50 75 100 125 150 175 200 225 250 275 300
0

2

4

6

8

10

12

14

16

episodes

g
o

a
l
s
ta

te
 e

rr
o

r

Fig. 14. Final state error in each iteration along the learning process
performed by the Open-loop policy learning module.

After the initial solution has been obtained within the

first phase, the Close-Loop Policy Learning Module refines

the solution and then a new learning process using the

GAL-MPC controller begins. The tracking error, which is

computed as the mean square error between the current state

and its current reference, is shown in Fig 15. At the beginning

of such process the error is again large, due to the fact that

the smoothing process is forcing the controller to search in

slightly different state space areas where the model is not

mature enough. Nevertheless, this error rapidly decreases.

The large maximum errors do not correspond to tracking

errors, but to complete failures in the tracking tasks. This is

due to the fact that exploring becomes very risky in some

situations, as the systems are not completely controllable,

mainly due to the passive joint and maximum force torque

constraint.

VII. CONCLUSIONS AND FUTURE WORK

This work has proposed a general and new original archi-

tecture to allow complex robotic systems to learn closed-

2301

0 25 50 75 100 125 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

episodes

tr
a

c
k
in

g
 e

rr
o

r

Fig. 15. Tracking error error in each iteration along the learning process
performed by the Open-loop policy learning module.

loop motor control policies for accomplishing new tasks

without assuming prior knowledge. The approach, which

is inspired by motor learning in humans, manages this

learning process in two different phases. The first phase

allows to quickly search for valid open-loop policies. While

this phase is achieved with the KiPLA algorithm, the most

remarkable feature is that mixing kinodynamic planning and

model learning aids at handling the curse of dimensionality

problem better than Dynamic Programming based learning

techniques. The second module, which core concept is imple-

mented with the GAL-MPC controller, is focused on refining

the solution and learning a closed-loop control policy robust

to disturbances. The new proposed active learning strategy,

embedded in the cost function of such controller, seems to be

simple and capable of balancing the exploration-exploitation

dilemma.

While preliminary comparisons with other methods hint

that the architecture seems to be promising, an exact com-

parative study with state-of-art methods needs still to be

performed. There are several other issues related to the

implementation that can be improved. For instance, by pro-

viding KiPLA with methods to use probabilistic information

in the criteria for choosing the policies to be executed in each

of the planning-learning cycles. This information would help

to decide which action sequence should be chosen in order to

improve the model in the regions of interest using less trials.

Finally, an evaluation of RoMPLA on a real experimental

platform is required for the purpose of demonstrating its

efficiency and its potential.

VIII. ACKNOWLEDGMENTS

The research leading to these results has been partially

supported by the HANDLE project, which has received fund-

ing from the European Community’s Seventh Framework

Programme (FP7-231640)

REFERENCES

[1] Handbook of child psychology. Wiley, 2007, ch. Motor Development.

[2] D. M. Wolpert, “Probabilistic models in human sensorimotor control.”
Human movement science, vol. 26, no. 4, pp. 511–24, Aug. 2007.

[3] S. Schaal and C. G. Atkeson, “Learning control in robotics,” IEEE

Robotics and Automation Magazine, 2012.
[4] Dynamic programming. Princeton University Press, 1957.
[5] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,

1st ed. Cambridge, MA, USA: MIT Press, 1998.
[6] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,

Cambridge University, England, 1989.
[7] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,

and reacting,” SIGART Bull., vol. 2, pp. 160–163, July 1991.
[8] J. Gonzalez-Quijano, M. Abderrahim, F. Fernandez, and C. Bensalah,

“A kinodynamic planning-learning algorithm for complex robot motor
control,” in Evolving and Adaptive Intelligent Systems (EAIS), 2012

IEEE Conference on, 2012, pp. 80–83.
[9] S. Vijayakumar and S. Schaal, “Locally weighted projection regres-

sion: An o(n) algorithm for incremental real time learning in high
dimensional space,” in In Proceedings of the Seventeenth International

Conference on Machine Learning (ICML, 2000, pp. 1079–1086.
[10] P. Robbel, “Active learning in motor control,” Master’s thesis, School

of Informatics (University of Edinburgh), 2005.
[11] S. Vijayakumar, D. A., and S. Schaal, “Lwpr: A scalable method for

incremental online learning in high dimensions,” Edinburgh University
Press, Tech. Rep., 2005.

[12] D. W. Franklin and D. M. Wolpert, “Computational mechanisms of
sensorimotor control,” Neuron, vol. 72, no. 3, pp. 425–442, Nov. 2011.

[13] R. V. Florian, “Correct equations for the dynamics of the cart-pole
system,” Center for Cognitive and Neural Studies, Tech. Rep., 2007.

2302

