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Abstract— Pose estimation is a key component for robot nav-
igation. An Unmanned Aerial Vehicle (UAV) that is instructed
to reach certain location requires a way of measuring its pose.
This article presents a method for UAV visual servoing that
uses the 3D pose of the drone as controller feedback. A remote
monocular camera observes the tracked UAV while it moves
and rotates in a 3D space. Pose is obtained from a 3D tracking
process based on a cuboid model. In particular, a simultaneous
face tracking strategy where 3D pose estimations from different
faces are combined is introduced. Face combination was val-
idated using a robotic arm with a cuboid at the final joint.
For the UAV control, hover and path following tasks were
tested. Results show that the proposed method correctly handles
changes in pose, even though no face is always visible. Also,
the UAV maintained a low speed in order to satisfy the small
inter-frame displacement constraint imposed by visual tracking
algorithm.

I. INTRODUCTION

A localization method and a control strategy are determi-
nant elements in successful autonomous navigation tasks for
unmanned vehicles. Visual 3D pose estimation has been an
important topic in literature because cameras have shown to
be a reliable source of environment information. Common
pose estimation approaches depend on depth information by
means of stereo setups [1], [2] or laser range data [3].

With the advent of low cost drones, Unmanned Aerial
Vehicle (UAV) control has become an active research topic.
In particular, visual servoing is a common control approach
to this problem since there are well known methods for
achieving position estimation at image level. For example,
Image Based Visual Servoing (IBVS) algorithms presented
in [4], [5], [6], [7] are based on the tracking of a landmark
placed on the floor. Others utilize IBVS for tracking a
moving target and following it (physically) [8], [9]. Some
approaches are on the context of Simultaneous Localization
and Mapping (SLAM) where multiple sensor information
is fused for more robust pose estimation [10], [11], [12].
Stereo vision is also used for pose estimation [13], [14].
These methods usually rely on data obtained from multiple
sensors on the drone for a robust control system.

3D object tracking can be used to deliver 3D pose infor-
mation to the vehicle controller. This may be accomplished
by using full featured models [15], [16], [14] or by using
approximated models [17]. While full featured models allow
having a very exact model representation, this is not well
suited in some cases, such as when real time performance
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is required. Approximated models can be used to overcome
this constraint. This was validated at theoretical level in [18].

This article presents theoretical and implementation results
on the visual tracking and servoing of an UAV using only
visual plane tracking for 3D pose estimation. This research is
based on the method presented in [18] for 3D pose tracking
using individual planar faces of a cuboid shaped object. For
the UAV visual servoing, the control system used is the one
presented in [19]. In addition to those works, this article
contributes to the state of the art as follows:

• Pose estimation is improved by tracking more than one
face at a time on certain critical poses. Critical poses
are those when a certain face of the cuboid has little
visibility. As presented in [19], when the UAV rotates
with respect to the camera, switching faces usually
introduces perturbations to the system. This is related to
the fact that homography decomposition is affected by
sampling error, which is likely to increase as the area
visible by the camera reduces.

• Full path following experiments are presented. In previ-
ous work [19], the stability of the system was strongly
compromised because of face switching stage. For this
reason, only hover experiments were reported.

• A single tracked element is used to achieve full path
following. Since the camera is remote, the vehicle
can perform more complex exercises without being
restricted by marks on the floor or walls.

This article is divided as follows: section II will introduce
related work to the problem of 3D tracking and UAV visual
servoing. On section III, a method for 3D object tracking
using multiple planar faces is reviewed. Section IV presents
the control strategy used to achieve control over the UAV.
Section V presents the experimental results and a comparison
with other methods used for UAV control. Finally, in section
VI conclusions are remarked.

II. RELATED WORK
In this work, a Position Based Visual Servoing (PBVS)

system is used to control the 3D pose of an UAV.
For tracking and 3D pose estimation, our work relies on

standard 2D plane tracking and homography decomposition
for 3D reconstruction. The plane tracker used was introduced
by Benhimane and Malis in [20].

3D Tracking in the context of image alignment has already
been studied. The method presented by Cobzas et al. [21]
uses standard 2D tracking over a 3D pose parameter space
(6 parameters, one for each DoF). A drawback is that, when
changing the parametrization to handle 3D pose changes,
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it results that even some movements that could be tracked
without problems by tracking planes individually can pro-
duce failure. Another idea introduced by them is to apply
constraints between planes to make tracking more robust.

On the same line of parametrizing directly in Euclidean
space, Panin and Knoll [15] proposed a method for tracking
objects that uses Mutual Information as similarity measure,
instead of the common sum of squared differences (SSD),
and perform a Levenberg-Marquardt optimization. Authors
report performance of 2 fps because of the Mutual Informa-
tion step. Moreover, the method requires a projection of a
full CAD model on each iteration.

Visual servoing of aerial vehicles has been a thoroughly
researched topic. For example, in [5], a pure image based
visual servoing (IBVS) for landing and take-off process
is developed. While this work has the advantage of not
requiring a full 3D reconstruction, it can’t be used for full
object control (executing paths). In [6], a planar patch is also
used for 3D pose estimation of the UAV. This is closer to our
work, but it’s restricted in space. In [10] a monocular SLAM
system is used to eliminate odometry drift. This method
proved to be very robust, but it requires the use of internal
sensors like gyroscopes, accelerometers and cameras. In a
similar manner, in [11] a SLAM algorithm tracks the pose
of the on board camera and an on board PD controller is
used for the attitude control. In [13] the full object pose
is also controlled. However, this approach requires a stereo
setup for 3D reconstruction and uses IMU data for rotational
dynamics. A common pattern in these works is the use of on
board cameras and sensors of the UAV. In our work, we used
a single remote camera without relying on any data provided
by the internal sensors

On the approach of remote sensing and control, in [14] a
quadrotor is controlled using remote cameras and on board
sensors. A binocular system with a previously known CAD
model is used for pose estimation.

III. 3D TRACKING OF OBJECTS USING MULTIPLE
PLANAR FACES

This article presents a method for Position Based Visual
Servoing (PBVS) that uses as feedback the 3D pose (3D
orientation and 3D position) of the UAV estimated using
the 3D tracking method proposed in [18]. This method uses
planar faces as visual tracking targets, over which standard
plane tracking is done [22].

In the tracking method presented in [18], only one face
of a cuboid is tracked at a time. A face selection criteria
is used to determine which face is the optimal for tracking.
Once a 2D homography between the reference template and
the current image is obtained, homography decomposition is
used to obtain a 3D reconstruction of that face. Next, a set
of precomputed 3D transforms between the different faces
of the model allow obtaining a full 3D reconstruction of the
cuboid and the pose of the drone.

Here we propose to use more than once face at a time to
improve pose estimation at critical poses. This occurs when
the pose of the object with respect to the camera allows

Fig. 1. Overview of of 3D tracking process using simultaneous tracking
of planar faces. The number faces that are tracked simultaneously depends
on the shape of the model and the number of visible faces.

viewing and tracking individually more than 2 faces. Then,
multiple poses are obtained which most be combined. A
simple averaging rule is used.

Without the loss of generality, a cuboid model is used for
tracking. Nevertheless, the method can be used with other
polygon meshes of quadrilaterals, considering the relation
between faces are known and that they are large enough to
be tracked without image sampling issues. The full 3D pose
tracking process is shown in Fig. 1.

The proposed method assumes the initial state of the target
object is known. An initial state can be obtained using a
single planar face, for which its initial homography should
be available.

A. Cuboid Model

This work uses a cuboid model for tracking. A cuboid can
be defined in terms of its 6 planar faces as follows:

C = {Pi | 1 ≤ i ≤ 6} (1)

Where Pi refers to the homogeneous transformation ma-
trix for plane πi from its current referential to camera
referential. For all faces in the cuboid C there exist at least
one transformation matrix iTk that maps face referential k
to face referential i. This can be expressed as:

∀πi ∈ C ∃ iTk | Pi = TkPk (2)

In the case of the cuboid, these transforms can be esti-
mated by assuming certain dimensions (up to scale factor)
and then applying the corresponding transform.

B. Face Visibility

From the set of faces of cuboid C, only a subset of 1 up
to 3 of the faces will be visible at anytime, assuming the
cuboid is always visible by the camera. Moreover, there will
be some cases in which, even if the face is visible, tracking
it will not be possible due to image sampling (Fig. 2).

To determine the faces that are visible and suitable for
tracking, a similar criteria to that used in [18] is used. That
subset of faces is obtained as follows:

ν = {i | ∠cni ≥ 0 ∧ ∠cni < ε, ∀i : 1 ≤ i ≤ 6} (3)
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Fig. 2. The UAV used for visual servoing. At the pose shown, two faces
of the cuboid are visible. Anyway, only the face with ‘suns’ should be used,
since the other has a small visible area.

Where c refers to the center of the tracked object relative
to the camera coordinate system. ni is a normal vector
to plane i. Threshold ε sets the maximum allowed angle
between vectors c and ni.

C. Plane Tracking of Planar Faces

The 3D pose tracking method employed is based on
standard plane tracking. In particular, the Efficient Second
Order Minimization (ESM) proposed by Malis [23] was
used. This method has proven to provide higher convergence
rate with less global error [23].

This method works by iteratively updating parameters
p := p ◦∆p where ∆p can be evaluated as:

∆p ≈ −2(J(e) + J(pc))
+(s(pc)− s(e)) (4)

Where p are the current parameters, J is the Jacobian, as
presented in [22], and s is the transformed current image.
e is the identity parameter set, in this case 0. This method
assumes the following homography parametrization:

W(x; p) =

 1 + p1 p3 p5
p2 1 + p4 p6
p7 p8 1

 x
y
1

 (5)

D. Per Face 3D Object Reconstruction

The approach proposed in [18] is implemented to obtain a
3D pose of target object to feed the control loop. Real world
dimensions of the object are provided in order to obtain a
full Euclidean reconstruction.

In the 3D reconstruction stage, two main steps are done.
First, the homography that is obtained using the ESM tracker
is used to calculate its decomposition. Then, using transfor-
mations matrices, the center of the object is computed.

Homography decomposition deals with reconstructing the
3D pose of a planar surface given its projection on image
plane. When working with plane tracking, usually only
8 parameters are used to accomplish tracking, which are
mapped to the 3 × 3 homography transform, as shown in
equation 5.

According to pinhole camera model, the transformation
matrix of extrinsic parameters P = [R | t] is a matrix
composed of rotation R and translation t. In order for P to
be a valid transformation, R must be an orthonormal basis.

The extrinsic camera parameters can be obtained as:

P = [r1 r2 r3 t] (6)

P = α


h11−cxh31

fx
h21−cyh31

fy

h31

h12−cxh32

fx
h22−cyh32

fy

h32

r1 × r2
α

h13−cx
fx

h23−cy
fy

1

 (7)

Where hij are the elements of a homography matrix. cx,
cy are camera center offset parameters. fx and fy are focal
distances of the camera. α can be estimated as 1/||r1||. In
practice it can be necessary to apply an orthogonalization
to the estimated P, since the input homography may ignore
error sources, such as noise, pixelation and camera distortion.

Homography decomposition must be done for each of the
faces that are being tracked, as indicated in Fig. 1.

E. Pose Combination

When camera is calibrated manually, estimated intrinsic
parameters may not be accurate. In such cases, homography
decomposition will not be accurate either, since it depends
on camera parameters. Also, it is well known that cameras
may distort the image. In addition, as the tracked plane goes
farther from the camera, image sampling errors will also
affect decomposition accuracy. For these reason, depending
on the face that is being tracked, different pose estimations
will be obtained.

The objective of pose combination is to merge the avail-
able 3D poses from tracked faces. The combination is done
separating rotation and translation. As a preliminary step of
the combination, plane tracking is checked for convergence.
This done using the average squared error of the plane
tracking stage. Average squared error e is defined as:

e(pc) =
(s(pc)− s(e))2

l
(8)

This equation is related to equation 4, since s(pc)− s(e)
is the error image at any given iteration. This error image is
averaged using the number of pixels l of the template.

The combination of the rotation estimates is done by
converting the available rotations to quaternions and then
averaging. Since in quaternions qi = −qi and poses should
be close each other, the following assignment rule is used:

qi =

{
f(i) q(i) · q0 > 0
−f(i) otherwise ,∀i ∈ ν (9)

Where f is a function that converts rotation matrix esti-
mated using face i to quaternions. From the two possible
quaternion representations, this expression selects the one
that has the signs that correctly average them. Finally, the
averaged quaternion is normalized and returned to the matrix
representation.

For the case of translation, element-wise average of trans-
lation estimations is used.
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IV. UAV VISUAL SERVOING

The objective of this work is having an aerial vehicle
to execute a given trajectory, provided a set of 3D poses
that are part of the path. In the case of the implementation
platform, possible manipulations are: roll, pitch, yaw and
vertical speed. Roll and pitch control allow the UAV to move
horizontally, coplanar to the floor (xy plane, as shown in
Fig. 5). Yaw rotates the UAV in an axis perpendicular to the
xy plane. Vertical speed is used to increase or decrease the
height of the drone.

The xy position control was achieved using a cascade
controller. At the parent level, a PD controller manipulated
the speed in x and y at which the vehicle should move. In
the nested loop, a PID controller manipulated the roll and
pitch variables of the drone. Fig. 3 shows this controller.

Controller design is closely related to the visual method
used to determine the pose of the UAV. This method relies
on standard plane tracking which assumes small inter-frame
displacement. Fast UAV motions can cause the tracker to
diverge. This is important in the case of perturbations, where
it’s desired to return to the reference softly.

Integral component of the speed plays a key role when
perturbations are present. In case of wind gusts, it will help
to reduce the error by increasing the manipulation when the
vehicle is having difficulty to move.

For the yaw and vertical speed, standard proportional con-
trollers were used, since drone built-in orientation and height
control is stable for tracking. Fig. 4 shows the proposed
controller for yaw. A similar controller is also used for height
control.

V. EXPERIMENTAL RESULTS

Experiments were designed to validate that the proposed
combination strategy is able to improve UAV pose estimation
for visual servoing. The pose is estimated visually from a
cuboid shaped object that is installed on the top of the drone
(see Fig. 5).

Fig. 3. Cascade controller controller for xy position.

Fig. 4. Controller for yaw. A similar controller is used for height control.

TABLE I
INDIVIDUAL AND COMBINED ESTIMATION ON CRITICAL POSE

Pose Measured Face 0 Face 5 Combined
roll (deg) 45.0 48.5 42.4 45.4

pitch (deg) 0.0 -1.23 -0.5 -1.2
yaw (deg) 0.0 -5.6 -5.9 -5.6

x (mm) 25.0 27.4 26.9 27.2
y (mm) 700.0 693.9 695.3 694.6
z (mm) 0 -13.3 -13.5 -13.4

First, a validation exercise was carried out to verify how
the combination of faces behave in a controlled setup. In this
experiment, a cuboid shaped object mounted on the last join
of a robotic arm was used. Robot odometry was used as a
ground truth measure.

Finally, experiments to test the visual servoing strategy
using the UAV were run. In these experiments, the UAV
rotated and translated with respect to the camera in order to
verify that the combination of poses can be used in a real
set-up.

A. Controlled Setup for Cuboid Tracking with Simultaneous
Tracking of Faces

For this exercise, a cuboid shaped object was installed
at the end joint of a robotic arm CRS F3. Then, the robot
was instructed to rotate 360◦ over that joint. A calibrated
SONY EVI-D30 VGA camera was used as video source. Fig.
6 shows results from this experiment.

During this experiment, the robot was instructed to stop
at critical orientations to evaluate how the combination
averaged results. Table I shows a sample for one of these
critical poses.

B. UAV Visual Servoing Experiments

The UAV used for visual servoing was a Parrot Ar.Drone
1.0 quadrotor. At the top of it, a cuboid shaped object was
installed. This cuboid was used for 3D tracking and pose
estimation. Control algorithms run from a Intel Xeon E5-
1650 processor workstation, which manipulated the drone
through a WiFi link. The camera used was a Microsoft
LifeCam Studio with a selected output of 1280×720 @ 30fps.

Hover stability was verified. Some wind gusts were ap-
plied to assess UAV response to perturbations and the speed

y

x

z

Camera

Cuboid

xy plane

UAV

z

x

y

z

x

y

Fig. 5. A cuboid mounted on top of an UAV is viewed by a remote camera.
A translation is applied from cuboid to UAV referential to obtain drone’s
pose.
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kept low. This is to avoid divergence problems related to the plane tracker.
Last plot shows the manipulation output for both roll and pitch.

control (Fig. 7). The controller could accomplish the objec-
tive of responding softly to perturbations, regardless large
differences against the reference.

The second control experiment consisted in the execution
of a path with the shape of a ‘C’ with a certain slope, for
a total of 4 setpoints. The target path and the executed one,
as measured by the 3D pose tracking process, are shown in
Fig. 8. Position control is shown in Fig. 9. Yaw and height
control results are presented in Fig. 10.

C. Discussion

Results shown in Fig. 6 confirm that the proposed ap-
proach correctly handles the transition between faces, by
smoothing the pose estimation which ultimately benefits the
control stability. This allowed rotating without significantly
affecting the control.

Another observation is that the UAV maintained a low
speed, regardless of perturbations. This is important since
when perturbations are retired, the vehicle still moves at
constant speed. If speed is increased, paths are executed
better but the probability of divergence of the plane tracking
algorithm increases, specially during critical poses, when two
or more faces are visible.
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Fig. 8. Path executed by the drone in the C-Shaped experiment.
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Fig. 9. UAV xy position control during the execution of C-Shaped path.
Top plot shows how set points were applied and the obtained response.
Some strong changes in pose estimation produced spikes in speed (middle).
Manipulation is shown at bottom.

Performance during pose estimation stage was close to
20 fps. Nevertheless, communication with the drone was at
40 packets per second. The last estimated pose was used to
calculate the control variables.

The response time is a significant difference between this
work and others. In both [10], [11] a hover and a path follow-
ing exercise were presented using a visual SLAM which used
the on board IMU data for attitude control and localization.
This allowed them to react faster to perturbations. For the
presented approach, increasing the speeds compromises the
stability of the visual tracking.

Methods [4], [5], [6], [7] assume a certain mark or
template is always visible. This limits the possible navigation
space, or requires multiple marks to be places along the way.
Our approach instead uses a remote camera, which can have
a larger coverage using a PTZ system.

VI. CONCLUSIONS

In this work, a visual only method for UAV control that
uses the faces of a cuboid as reference was presented. This
approach differ from others since a remote camera is used
to track the 3D pose of the UAV, instead of using on board
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cameras. The choice of the cuboid is related to the fact that,
if using only a plane, there will be configurations in which
it won’t be visible to the camera.

A validation experiment confirmed that a way of transi-
tioning smoothly between faces is needed because of errors
in the homography decomposition process. Also, since plane
trackers may diverge, it was useful to define a criteria for
determining if any given face should be tracked.

Regarding UAV control, we have validated this approach
by executing paths that are in the three dimensional space.
Since we required to have a low speed, a cascade controller
was implemented to have a fine speed control. Unfortunately
it had the side effect of being slow to reach steady state.

At the current state and similar to other works, navigation
is limited to small areas. This is closely related to image
sampling errors that increase significantly when the vehicle
is far from the camera.

An advantage of having a remote camera is that it doesn’t
have image stabilization issues and that it can track multiple
vehicles at the same time. In posterior work, multiple vehicle
tracking and additional face combination criteria will be
evaluated. Another area of opportunity for this research is the
fusion of data from drone IMU and other sensors with that
of the vision. This could help improving the pose estimation
during face combination stage.
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