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Abstract— Finding an optimal path for a redundant robotic
system to visit a sequence of several goal placements poses
two technical challenges. First, while searching for an optimal
sequence, infinitely many feasible configurations can be used
to reach each goal placement. Second, obstacle avoidance has
to be considered while optimizing the path from one goal
placement to the next. Previous works focused on solving a
discrete formulation of this optimization problem where only
few configurations are used to represent each goal placement.
We instead model it as a Traveling Salesman Problem with
Neighborhoods (TSPN), where each neighborhood is defined
as the set of the infinitely many configurations corresponding
to the same goal placement. A solution procedure based
on a Hybrid Random-key Genetic Algorithm (HRKGA) and
bidirectional Rapidly-exploring Random Trees (biRRTs) is then
proposed. Finally, experimental tests performed on a 7-Degree
Of Freedom (DOF) industrial vision inspection system show
that the proposed method is able to drastically reduce the cycle
time currently required by the system.

I. INTRODUCTION

Industrial manipulators can be used to perform a sequence
of multiple tasks during an operating cycle. If the robotic
system is redundant there is an infinite number of possible
configurations that can be used to place the manipulator
end-effector at the specific position and orientation, i.e.,
goal placement, required to perform each task. In order to
optimize the overall cycle time, not only an optimal sequence
of the goals has to be defined, but also, for each goal,
an optimal configuration has to be chosen among infinitely
many possibilities. Moreover, the actual cost for the system
to move from one configuration to the next depends on many
factors, such as obstacle avoidance or joint limitations, and
can be calculated only through the employment of specific
path planning techniques.

A formulation of this optimization problem based on the
classic Traveling Salesman Problem (TSP) can not fully cap-
ture its mixed combinatorial and continuous nature. Indeed,
due to the redundancy in the system each vertex of the graph,
i.e., the configuration corresponding to each goal placement,
is not fixed but can move within a continuous domain, called
neighborhood. Therefore, not only an optimal sequence has
to be found that visits each neighborhood once, but also the
optimal position of each vertex in its neighborhood has to be
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Fig. 1. Collision-free near optimal tour for a TSPN instance. Obstacles
are shaded in red/yellow and one-dimensional neighborhoods are shaded in
bright blue.

defined, as shown in Figure 1. This problem is commonly
referred to as the TSP with Neighborhoods (TSPN) [1], and
the combination of an optimal sequence and optimal vertices
is called optimal tour.

Heuristic approaches for solving a discretized version
of this optimization problem are proposed in the robotics
literature. In [2], a small set of discrete samples for each
neighborhood is first extracted. A near optimal solution for
the resulting Generalized TSP (GTSP) is then calculated by
using a minimum group spanning tree as a special case
of the Steiner tree problem and by performing a preorder
tree walk. In [3], the authors propose to find first a near
optimal sequence in three steps: (1) cluster the representative
placements in the workspace, (2) solve the resulting TSP
in each cluster, and (3) concatenate the resulting paths.
Then each neighborhood is sampled, and a configuration is
chosen for each neighborhood by combining a greedy nearest
neighbor method and the Dijkstra algorithm using a rough-to-
smooth procedure. Finally, the problem of finding a solution
to the redundant task-constrained path planning is discussed
in [4], where the sequence of goals is not considered in
the optimization problem but is predefined as an equispaced
sampling of the trajectory in the task space.

The cited approaches are limited by the fact that the
procedures used to search for a near optimal sequence (if
not fixed) and for near optimal configurations are solved
separately and not integrated [3], [4]. Moreover, the con-
tinuous neighborhoods are replaced with small clusters of
nodes [2], [3], resulting in drastic reduction of the opti-
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mization potential. We instead model the TSPN using a
Mixed Integer Non-Linear Programming (MINLP) formula-
tion [5], where the neighborhoods are defined as continuous
domains. We then propose a solution procedure based on
a Hybrid Random-Key Genetic Algorithm (HRKGA) [6].
Furthermore, bidirectional Rapidly-exploring Random Trees
(biRRTs) are embedded in the HRKGA using an ad-hoc
single/multiple query planning scheme to ensure the near
optimal tour to be collision-free.

Finally the proposed approach is tested on 7-Degree of
Freedom (DOF) robotic system used to perform vision
inspection of assembled industrial components. The sys-
tem consists of a 6-DOF robotic manipulator and 1-DOF
turntable. Results show that the proposed method is able to
improve the traveling time currently required to complete a
32-goal cycle up to 30%.

The rest of the paper is organized as follows. The proposed
TSPN formulation and the HRKGA are presented in Sec-
tion II. The procedure to evaluate the objective function and
to calculate a collision-free near optimal tour in Section III.
The procedure to define the continuous neighborhoods and
the experimental results in Section IV. Finally, Section V
contains conclusions and discusses potential future work.

II. TSPN FORMULATION AND SOLUTION PROCEDURE

If m is the dimension of the configuration space, Q, of
the robotic system, a Symmetric TSPN (STSPN) instance is
given by a set V = {1, 2, . . . , n} of the indices of the goal
placements, by a set Qi ⊆ Rm for i ∈ V of neighborhoods,
and by a symmetric nonnegative cost function d(u,v) for
all u,v ∈ Rm, called edge weighting function.

As illustrated in [5], the STSPN can be formulated using n
configurations qi ∈ Rm for all i ∈ V and n(n− 1)/2 binary
variables ξij for all i, j ∈ V with j > i such that ξij = 1
only if neighborhood j is visited just after neighborhood i or
viceversa in the tour, otherwise it is zero. Figure 1 illustrates
a STSPN instance, and the complete MINLP formulation is
given by:

minimize :

n∑
i=1

n∑
j=1
j>i

ξij d (qi, qj) , (1)

subject to :

i−1∑
j=1

ξji +

n∑
j=i+1

ξij = 2 ∀ i ∈ V , (2)

∑
i∈S

( ∑
j∈V\S
j<i

ξji +
∑
j∈V\S
j>i

ξij

)
≥ 2

∀S ⊂ V \ {1}, |S| ≥ 3 , (3)

qi ∈ Qi ⊆ Rm ∀ i ∈ V , (4)

ξij ∈ {0, 1} ∀ i, j ∈ V, j > i , (5)

qi ∈ Rm ∀ i ∈ V . (6)

The assignment problem constraints (2) ensure that each
vertex is visited exactly once. The subtour elimination con-
straints (3) ensure that no subtour is present in a solution.
Constraints (4) define each neighborhood, i.e., the set of
infinitely many configurations corresponding to the same
goal placement. It is worth noting that the actual formulation
of these constraints depends only on the kinematic charac-
teristics of the redundant robotic system , not on the edge
weighting function or metric used in the formulation. Finally,
constraints (5) and (6) define the domain of the instance.

The objective function (1) is a non-convex function of
both the binary and continuous variables. Therefore, an
exact solution procedure is computationally very expensive
and only small instances with convex neighborhoods and
a norm based edge weighting functions can be efficiently
solved to optimality [5]. Some heuristic approaches have
been proposed in the literature to deal with larger scale
instances but only simple neighborhoods have been used,
such as balls in R2 or R3 [7]. To overcome these limitations
we adapt the HRKGA proposed in [6] to the path planning
problem discussed in this work. The HRKGA can handle
large scale STSPN instances without any limitation on the
nature of the edge weighting function or on the definition of
the neighborhoods.

As for standard genetic algorithms, the HRKGA maintains
a large pool (population) of near optimal tours (chromo-
somes), and low cost operations are performed to improve
each chromosome in the pool. Random-key coding is cho-
sen for the chromosomes to guarantee feasibility during
crossover operations. Moreover, the convergence rate of
the algorithm is drastically improved by replacing mutation
operators with two ad-hoc heuristics as illustrated in [6].
First, the position of each vertex is fixed, and their sequence
is improved by using the Lin-Kernighan heuristic. Then
the touring heuristic optimizes the position of each vertex
by solving the Non Linear Programming (NLP) instance
resulting from fixing their sequence, i.e. the binary variables,
in the original MINLP formulation (1) to (6). In the next
Section we show how this standard scheme of the HRKGA
can be adapted to the multi-goal path planning problem
discussed in this work.

III. OBJECTIVE FUNCTION EVALUATION

A. Traveling time

The edge weighting function, d (qi, qj), i.e., the traveling
time for the robotic system to move from configuration qi
to configuration qj needs to be calculated to evaluate the
objective function (1). Given the simultaneous motion of the
joints, a fast estimate can be obtained using the weighted
maximum norm [3]:

d (qi, qj) = max
k=1,...,m

{ |qi,k − qj,k|
ωk

}
, (7)
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where ωk is an average velocity set by the controller for joint
k. Alternatively, the quadratic norm can be employed:

d (qi, qj) =

√
(qi − qj)

T
Q (qi − qj) , (8)

where Q is a diagonal matrix with elements
[1/ω2

1 , . . . , 1/ω
2
m].

Since the heuristic procedure proposed in this work does
not aim to prove optimality, the above two norms are used
as surrogate edge weighting functions to efficiently per-
form crossover and heuristic operations within the HRKGA.
However, since the path connecting qi to qj might not be
a straight line in the configuration space due to obstacle
avoidance and to better match the behaviour of the actual
system, the final value of objective function (1) is obtained
using a more precise model. If we consider a point to point
motion from a generic start configuration qs to a generic goal
configuration qg along the path from qi to qj , the traveling
time can be estimated as:

d (qs, qg) = max
k=1,...,m



2αk|qs,k−qg,k|−2ω2
k+q̇

2
s,k+q̇

2
g,k

2αkωk

+
2ωk−q̇s,k−q̇g,k

αk

if |qs,k − qg,k| > 2ω2
k−q̇

2
s,k−q̇

2
g,k

2αk

√
4αk|qs,k−qg,k|+2q̇2s,k+2q̇2g,k−q̇s,k−q̇g,k

αk

otherwise
(9)

where αk is an average acceleration set by the controller for
joint k, and q̇s,k and q̇g,k are the initial and final joint veloc-
ities, which are considered to be positive in Equation (9). If
an inversion in the joint velocity has to be modeled, a middle
configuration with zero joint velocity is introduced.

B. Obstacle avoidance

To obtain a realistic evaluation of the path followed by
the robotic system to move from configuration qi to con-
figuration qj collision avoidance has to be considered. This
additional requirement drastically increases the complexity
of the optimization problem and requires the employment of
an ad-hoc path planning technique.

Probabilistic sampling-based planners have been inten-
sively used to solve single query or multiple query mo-
tion planning problems in high dimensional configuration
spaces [8]. Single query motion planners are used when
the planning procedure has to be performed only once, and
the configuration space is explored using a single or a bi-
directional tree. Rapidly-exploring Random Trees (RRTs)
are an example of this planning approach [9], [10]. When
the planning procedure has to be repeated more than once
possibly with different start and goal configurations, multiple
query motion planners are used. An example of such a
planner is the Probabilistic Roadmap Method [11]. Recent
attempts have been proposed to integrate these two methods
for large scale motion planning. An example is the Sampling-
based Roadmaps of Trees (SRT) [12].

In the HRKGA a path planning step has to be executed n

Algorithm 1 BiRRT based Single and Multiple Query Path
Planner for the STSPN.

In: tour qπ(i), i = 1, . . . , n, edge weighting function d(·),
indicator matrix Mconn, sampling threshold lsamp,
distance matrix D, and roadmap G = (VG, EG)

Out: collision-free tour length O, updated D and G

1. O ← 0
2. for i = 1 to n do
3. if |VG| > lsamp and Mconn[π(i), π(i+ 1)] = 1 then
4. if qπ(i) 6∈ VG then connect(G, qπ(i))
5. if qπ(i+1) 6∈ VG then connect(G, qπ(i+1))
6. vs ← index(VG, qπ(i))
7. vg ← index(VG, qπ(i+1))
8. if vs 6= NIL and vg 6= NIL then
9. if D(vs, vg) = −1 then
10. D(vs, vg)← short path(G, qπ(i), qπ(i+1))
11. O ← O +D[vS , vG]
12. else
13. O ← O +∞
14. else
15. VP ← {qπ(i), qπ(i+1)}
16. EP ← ∅
17. P = (VP , EP )
18. if local planner(qπ(i), qπ(i+1)) then
19. EP ← {(qπ(i), qπ(i+1))}
20. else
21. biRRT planner(P,G, qπ(i), qπ(i+1))
22. if |EP | > 0 then
23. if connect(G,P ) then
24. Mconn[π(i), π(i+ 1)]← 1
25. O ← O + length(P )
26. else
27. O ← O +∞
28. return O

times for each chromosome in the population since in each
tour there are n distinct edges. Thus, a multiple query planner
seems to be the best choice to efficiently handle this large
number of requests. However, a preprocessing step to fully
explore the collision-free configuration space, Qfree, would
be extremely expensive in terms of computational cost.
Similarly to the SRT approach, single query planners are
instead used to simultaneously answer the initial queries and
incrementally build a roadmap G = (VG, EG) over Qfree,
which afterwards is used to answer multiple queries. A high-
level description of the proposed approach is provided in
Algorithm 1.

First, the neighborhoods sequence is decoded from the
chromosome into a permutation π(i), with π(n+1) = π(1).
Afterwards, for each edge in each tour, (qπ(i), qπ(i+1)),
the algorithm checks if the number of configurations in
the roadmap, |VG|, is larger than a given threshold, lsamp,
and if the corresponding neighborhoods Qπ(i) and Qπ(i+1)

have been previously connected at least once by using an
indicator matrix Mconn. During the initial calls these two
conditions are not verified, and thus a single query planner
is invoked adding the extracted collision-free path to the
roadmap G. Once the roadmap is completed according to the
given criteria, then a multi query planner is used and edge
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Algorithm 2 Function biRRT planner(P,G, qs, qg).

In: collision-free path P = (VP , EP ),
roadmap G = (VG, EG) in Qfree,
start configuration qs, goal configuration qg ,
first tree T1 = (VT1 , ET1),
second tree T2 = (VT2 , ET2),
number of attempts to merge the trees lmerge, and
resolution for collision avoidance qres

Out: updated P and G

1. VT1 ← {qs}; ET1 ← ∅
2. VT2 ← {qg}; ET2 ← ∅
3. for l = 1 to lmerge do
4. let qrand be a randomly chosen configuration in Q
5. qnew,1 ← extend(T1, qrand)
6. if qnew,1 6= NIL then
7. qnew,2 ← extend(T2, qnew,1)
8. if qnew,2 6= NIL and

‖(qnew,1, qnew,2)‖2 < qres then
9. if local planner(qnew,1, qnew,2) then
10. P ← extract path(T1, qnew,1,
11. T2, qnew,2)

connect(G,T1); connect(G,T2)
12. EG ← EG ∪ {(qnew,1, qnew,2)}
13. return TRUE
14. swap(T1, T2)
15. return FALSE

costs calculated using Equation (9) are stored in a sparse
distance matrix, D.

1) Single Query Planner and Roadmap Construction:
The function local planner, is used to verify if the
point to point motion along the line segment defined in
the configuration space by the two configurations qπ(i) and
qπ(i+1) is collision-free.

If the line segment between the two configurations
qπ(i) and qπ(i+1) is not collision free, then the function
biRRT planner, described in Algorithm 2, is used to find
a collision-free path between these two configurations. Two
RRTs, T1 rooted at a start configuration qs = qπ(i) and
T2 rooted at a goal configuration qg = qπ(i+1), are grown
towards each other to build the collision-free path. Initially
a random configuration, qrand, is generated as follows:

qrand =


ql + ((1 + 2η)U − η)|qg − qs|

if l < lloc or u < ploc
qMIN + U(qMAX − qMIN)

otherwise

(10)

where ql,k = min{qs,k, qg,k}, qMIN and qMAX are the joint
limits vectors, u is a uniformly distributed number in [0, 1],
U is a diagonal (m × m) matrix with diagonal entries
uniformly distributed in [0, 1], the parameter η defines a
reduced sampling domain, lloc is the minimum number of
configurations sampled from the reduced domain, and ploc
is the probability to sample from the reduced domain.

Afterwards, the procedure attempts to merge the two
trees using the functions extend and local planner
until the maximum number of attempts, lmerge, is reached.

1 2

3 4

5 6

qi,1

qi,2
qi,3

qi,4
qi,5
qi,6

qi,7

Fig. 2. Robotic vision inspection system: four different configurations for
neighborhood i = 14 that correspond to the same relative placement of the
camera with respect to the component.

If the trees can be merged a path P = (VP , EP ) is
extracted and smoothed by the function extract path.
Moreover, the trees are added to the roadmap G by the
function connect: the root nodes, the last added leaf nodes,
and the internal nodes are connected to the correspond-
ing closest node in the roadmap G by using again either
the function local planner or, if it fails, the function
biRRT planner. Finally, the function length returns the
path cost calculated using Equation (9).

2) Multiple Query Planner: If the neighborhoods corre-
sponding to the two configurations qπ(i) and qπ(i+1) have
been connected at least once by the single query planner, and
if the number of configurations, |VG|, added to the roadmap,
G, is larger than the threshold lsamp, then G is used to find
a collision-free path between the two configurations.

First, if the two configurations are not in G the function
connect is used to find a collision-free path between them
and the corresponding nearest configurations in G. Then,
using the function index, which returns the index of a
configuration in G or NIL if the configuration is not in
G, the corresponding entry in the sparse distance matrix
D is checked. If the entry has not been assigned yet, the
function short path is used to calculate the shortest path
in G between the two configurations. For fast convergence
the nearest neighbor and shortest path operations are imple-
mented using kd-trees [13] and the surrogate edge weighting
function (7) or (8). Finally, the distance matrix D is updated
using the path cost calculated with Equation (9)

IV. EXPERIMENTAL RESULTS

The application analyzed in this work is a robotic system
by DENSO WAVE, Inc., used for inspecting assembled
industrial components, such as engine blocks or evaporators.
The system consists of a 6-DOF robotic manipulator and
1-DOF turntable. The component that has to be inspected
is placed on the turntable, and a camera is mounted at
the end-effector of the manipulator. The goal is to rapidly
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black x-marks.

inspect a predefined set of features on the component surface
using the camera and a real time image processing software.
To perform this task, the component is rotated and the
manipulator is simultaneously actuated to locate the camera
at all the relative placements with respect to the component
surface where the required images have to be acquired from.

Since the sequence of the inspection locations is not fixed,
the overall cycle time required to acquire all the images
can be optimized by searching for an optimal sequence.
Moreover, since the configuration space is seven-dimensional
(m = 7), this system has one degree of redundancy. Figure 2
shows four among the infinitely many configurations that
correspond to the same relative placement between the
camera and the component, and thus to identical images.
By exploiting this redundancy in the system, the cycle
time can be further improved by searching not only for
an optimal sequence, but also for an optimal sequence of
optimal configurations.

A. Neighborhood definition

For each image i, i.e., for each relative placement between
the camera and the component, the position and orientation
of the manipulator end-effector can be represented in the
turntable frame by a fixed homogenous transformation (i)Tt

e.
If the rotation axis of the turntable is aligned with the z-axis
of the manipulator base frame, if pbt is the origin of the
turntable frame with respect to the manipulator base frame,
if qi,7 is the turntable rotation angle, and if rot(ez, qi,7)
is the elementary rotation matrix about the z-axis then
each neighborhood, i.e., each constraint (4) in the original
formulation, can be defined as:

IK
([

rot(ez, qi,7) pbt
0 0 0 1

]
· (i)Tt

e

)
= [qi,1, . . . , qi,6]

T , (11)

where IK(·) is the inverse kinematic function of the manipu-
lator. This definition does not depend on the edge weighting
function used to define the objective function.
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Fig. 4. Multiple query planner convergence as function of the parameter
lsamp. Direct tour is the lower bound for the optimal value of the objective
function.

The inverse kinematic of a 6-DOF manipulator can have
up to 8 different solutions, called figures. Therefore, con-
straint (11) represents a set of possibly non-connected curves
in a seven-dimensional configuration space. However, since
the focus of the present work is investigating how to exploit
redundancy due to the additional DOF in the system, not
due to the inverse kinematic of the manipulator, only one
manipulator figure is considered. In particular, the left-
handed shoulder, over-handed elbow, and normal wrist figure
is used [14], leaving at most only one solution possible to
the inverse kinematic for a given value of qi,7. Using this
figure all the required relative placements for the considered
inspection problem can be reached. Moreover, by varying
the value of qi,7 each neighborhood is represented now by a
unique curve in the seven-dimensional configuration space.

To preserve the continuous nature of the TSPN formu-
lation while reducing the computational cost of the opti-
mization procedure, piecewise cubic hypersplines are used to
obtain a closed form definition of each neighborhoods. The
inverse kinematic is solved for a set of values of qi,7 with
a 5 degree resolution, and the corresponding values of qi,1
to qi,6 are used to fit piecewise cubic splines, as illustrated
in Figure 3. If 4 × n × np spline coefficients sk,i,p ∈ Rm,
where np is the number of polynomial pieces, and n spline
parameter ti ∈ [0, 1] are employed for the parametrization,
constraints (11) can be redefined as:

np∑
p=1

1p(ti)
(
s0,i,p + s1,i,p (ti − ti,p) + s2,i,p (ti − ti,p)2

+ s3,i,p (ti − ti,p)3
)
− qi = 0 ∀ i ∈ V ,

where ti,p for p = 1, . . . , np + 1 are the spline breakpoints,
and 1p(ti) = 1 if ti ∈ [ti,p, ti,p+1), 0 otherwise. For the
considered experimental setup 8 polynomial pieces guaran-
tee enough approximation accuracy while joint limitations,
unfeasible configurations, and obstacle avoidance are used to
define the limits of each hyperspline.

B. Planner Parameters

The parameter lsamp, i.e. the minimum number of con-
figurations in the roadmap G, strongly influences the perfor-
mance of the proposed path planner, and an ad-hoc method is
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proposed to optimize its value. A roadmap is built repeating
Algorithm 2 on randomly generated tours of random con-
figurations until the threshold lsamp is reached. Afterwards,
a predefined fixed tour of fixed configurations is analyzed
using the multiple query planner. This procedure is repeated
10 times for each value of lsamp to provide information about
average and standard deviation of the results. Figures 4.a and
4.b illustrate how quadratic norm and cycle time of the fixed
tour evolve as function of lsamp. Based on these numerical
tests the parameter is fixed to lsamp = 100, 000 hereafter,
which seems to guarantee a sufficient quality in the retrieved
solution without resulting in excessive computational cost.

The other parameters used in the algorithm are: η = 0.3,
ploc = 0.1, lloc = 10, qres = 0.08, and lmerge = 1, 000.
Discussion on the influence of these parameters on the
performance of single query planners can be found in the
literature [8]. Finally, the indicator matrix, Mconn, is re-
initialized every time the best known chromosome in the
HRKGA does not improve for a certain number of consec-
utive iterations.

C. Tested scenario

The proposed procedure is tested using a set of 31 relative
placements (i)Tt

e and one depot placement. qMIN, qMAX,
ωk, and αk are obtained from the DENSO VS 6577E-B
manipulator specification sheet [15]. For the turntable, i.e.,
joint 7, two sets of parameters are tested to simulate high
and low rotational inertia scenarios: low and high angular
speed, labeled “LS” and “HS”, with values 2.88 rad/s and
6.98 rad/s, respectively. Collision evaluation is performed in
a hierarchical fashion, first checking the bounding capsules
containing the components of the system for intersection
[16], and then using bounding-volume trees defined using
triangular meshes [17], [18].

In the adapted HRKGA 60 chromosomes are used for
each population, and the algorithm is terminated after 150
iterations. Figure 5 illustrates the convergence rate of the
algorithm. The best known chromosome is usually improved
after large immigration cycles, i.e., when the population aver-
age increases due to the introduction of new genetic material.
On average, an improvement of the best known chromosome
is observed in 51 iterations, 197,500 configurations are added

TABLE I
SIMULATION AND EXPERIMENTAL RESULTS FOR THE 7-DOF VISION

INSPECTION SYSTEM.

Norm Orig. TSP TSPN LS TSPN HS
norm [s] 5.640 4.440 3.135 2.515
impr. - 21.3% 44.4% 55.4%

Weight. sim. time [s] 13.86 11.80 10.14 9.40
Max. impr. - 14.9% 26.8% 32.2%

sys. time [s] 10.62 8.92 8.35 7.88
impr. - 16.0% 21.4% 25.7%

Quadr.

norm [s] 7.390 5.911 4.728 3.561
impr. - 20.0% 36.0% 51.8%
sim. time [s] 13.86 11.74 9.98 9.13
impr. - 15.3% 28.0% 34.1%
sys. time [s] 10.62 9.10 7.87 7.42
impr. - 14.3% 25.9% 30.1%

to the roadmap, 18, 100 calls are made to the Single Query
Planner and 162, 400 to the Multiple Query Planner.

Table I illustrates the results of four different solution
procedures. The column with label “Orig.” reports the results
obtained with the original sequence, which was extracted
by DENSO WAVE using a proprietary operator-guided pro-
cedure. These are used afterwards as reference values. The
results reported in the column with label “TSP” are obtained
by finding an optimal sequence of the original configurations.
First, a distance matrix is calculated by using the planning
procedure illustrated in the previous Section on all the pos-
sible edges of the full graph defined by the 32 original con-
figurations. Then, the resulting TSP is solved to optimality
using the exact TSP solver CONCORDE [19]. These results
constitute an important benchmark for the proposed approach
since they represent the best cycle time attainable with
available optimization methods for this problem. Finally, the
results reported in the columns with labels “TSPN LS” and
“TSPN HS” are obtained using the proposed optimization
procedure for low and high turntable speed, respectively.

In Sections III-A and III-B.2 it was illustrated that the
weighted maximum norm or the quadratic norm is used to
drastically reduce the computational cost of the algorithm
internal operations, and Equation (9) is used to evaluate the
cost of the chromosomes only at the end of each iteration.
To investigate the influence of the selected norm on the
overall performance of the algorithm, for each one of the four
solution procedures and for each one of the two norms three
different objective function values are reported: the norm-
based objective function value, i.e., the cost of the extracted
near optimal tour calculated using the two norms, which
is labeled “norm”, the corresponding cycle time calculated
using Equation (9), which is labeled “sim. time”, and the
experimental cycle time, which is labeled “sys. time”.

If the quadratic norm is used the actual cycle time can be
reduced by 26% for low turntable speed or by 30% for high
turntable speed. In this scenario the optimization achieved
searching only for an optimal sequence of the original
configurations is about 14%. Figure 6(a) shows the original
tour, Figure 6(b) shows the tour of the original configurations
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Fig. 6. Optimization results obtained using the quadratic norm. The black
line corresponds to the turntable joint angle.

optimized using the TSP solver, and Figures 6(c) and 6(d)
show the near optimal tours obtained with the proposed
procedure for the two turntable speeds.

If the weighted maximum norm is used the actual cycle
time can be reduced by 21% for low turntable speed or by
26% for high turntable speed. In this case the optimization
achieved using only the TSP solver is about 16%. These
results confirm that both norms well represent the behavior
of the actual system for the purpose of cycle time minimiza-
tion, whereas the quadratic norm seems to lead to better
optimization results.

Finally, we observe that the simulated cycle time is usually
larger than the one measured on the actual system. The values
calculated with the kinematic model defined in Equation (9)
are larger than the actual ones on average by 20%, if
the weighted maximum norm is used, and by 25%, if the
quadratic norm is used. The actual dynamic performance
achieved by the manipulator with a light camera mounted
on its end-effector is probably higher than the one predicted
using the standard kinematic parameters. However, the im-
provement trends of simulation and experimental results are
consistent, i.e., high turntable speed always leads to shorter
cycle time than the one obtained using low turntable speed
or the TSP based optimization.

V. CONCLUSION AND FUTURE WORK

In this work the Traveling Salesman Problem with Neigh-
borhood (TSPN) is used to model the multi-goal path
planning problem for redundant robotic systems. A Hybrid
Random-Key Genetic Algorithm (HRKGA) is integrated
with a probabilistic single/multiple query path planning
technique based on bidirectional Rapidly-exploring Random
Trees (RRTs) to better estimate the cost of each edge in
the tour while generating collision-free paths. The proposed
procedure is then tested on a 7-DOF robotic vision inspection
system, where the neighborhoods are approximated using
piecewise cubic splines in a seven-dimensional configuration

space. Experimental results show that cycle time can be
drastically reduced.

In future work we want to investigate the possibility not
only to optimize the cycle time while exploiting the redun-
dancy in the system, but also to minimize the total energy
used while allowing a longer cycle time. Moreover, the
proposed approach should be tested on robotic systems with
higher degree of redundancy to understand how the algorithm
scales in larger configuration spaces. Finally, it might be
worth studying how a definition of the neighborhoods based
on the forward kinematics could affect the computational
cost and broaden the applicability of the proposed approach.
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