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Abstract— The ability of the robot to avoid undesired colli-
sions with humans and objects in its workspace is of importance
in the field of human-robot interaction. In this paper, we
propose an algorithm which allows the robot to avoid obstacles
and to reach the assigned goal as long as the goal does
not lie within obstacles. For this purpose, dynamical system
modulation approach is adopted which ensures the avoidance
of convex and concave obstacles. A modulation matrix can
be calculated directly from the point cloud data of obstacles
in the scene, without the need of analytical representation
of the obstacles. This matrix modulates a generic first order
dynamical system, used to generate the goal. In this way we
guarantee the obstacles avoidance and the reaching of the goal.
The effectiveness of the proposed approach is validated with
numerical simulations and experiments on a 7 DOF KUKA
light weight arm.

I. INTRODUCTION

When a human and a robot are in a close cooperation, the
robot is required to adapt quickly to various situations and to
eventual external disturbances ensuring the operator safety. A
quick adaptation means that the robot has to react to several
kind of external perturbations in real-time. Examples of these
external disturbances are: changes in the goal position to
reach, presence of unknown obstacles, accidental contacts
with the human or with other objects.

A feasible solution for reacting in real-time to the external
perturbations consists in representing the task as a dynamical
system (DS). A DS is robust against perturbations, and it
ensures the convergence to the goal [1][2]. In order to react
to the presence of unknown obstacles and humans, the robot
has to modify its motion quickly to avoid collisions. After the
avoidance, it is desirable that the robot fulfills the assigned
task as long as possible.

The methods for generating collisions free paths can be
divided into two categories: path planning approach and
reactive motion generation approach. The former is complex
global approach which is able to find the shortest collision
free path even in very complex scenarios with multi degree-
of-freedom robots [3]. Despite the possibility to parallelise
the algorithms in order to reduce the computation time [4],
at present the computation time is still too large to apply this
algorithm on-line.

The latter includes local algorithms which change the
robot path in real-time. A widely used approach is based
on an artificial potential field [5]. The idea is to assign an
attractive force to the goal and to shape the obstacles as
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Fig. 1. The KUKA Light-Weight-Robot IV+ goes in and out of a box
avoiding collisions. This task is useful, for example, to ask the robot to
take something in the box.

repulsive forces, so as to reach the target avoiding obstacles.
The potential field technique is applied in [6], where an
algorithm to extract information about the location of the
obstacles directly from the image plane of an RGB-D sensor
is proposed. One drawback of the potential field approach
is that the motion can stop in a local minimum even if a
collision-free path to the goal exists.

A solution to skip the local minima is proposed in [7]
by combining the benefits of the path planning algorithms
with the velocity of the reactive techniques. In this method,
the initial elastic band is computed off-line using a path
planning algorithm, which results in a collision free path. In
the presence of obstacle, the band is deformed by applying
repulsive forces. However, if the path being executed gets
infeasible because of the obstacles coming into its way, the
reshaping method cannot be applied any more, and an off-
line replanning step is needed [8].

Other researchers propose to avoid local minima by mod-
ifying the dynamics of a particular system of differential
equations. For example in [9][10] an additive term is ap-
plied to a discrete Dynamic Movement Primitive (DMP)
[2] in order to deform the trajectory and avoid a point
obstacle. The global stability of the modified system is
proved with static obstacles using the Lyapunov theorem. In
[11] a potential field is applied to a second order system
with varying stiffness that generates a smooth collision-
free path. A combination of potential fields and circular
fields is proposed in [12]. Several experiments show the
good convergence properties to the goal of this approach,
also in very complex scenarios. The mentioned approaches
work only with a specific dynamical system, reducing the
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possibility of encoding many different tasks, such as periodic
motions.

A technique to modulate a generic first order DS is
proposed in [13]. Given the analytical representations of
the obstacles surface, a modulation matrix, which locally
deforms the original system, is computed. This approach can
be applied on a variety of DS (both stable and unstable)
and it guarantees the obstacles impenetrability and it does
not modify the equilibria of the modulated system. The
modulation technique in [13] is a valid approach to combine
safety issues with the robustness of the DS-based motion
generation techniques, since it preserves the convergence
properties of the modulated system. However, the need of
an analytical representation of the surface of the obstacles
reduces the effectiveness of this approach in unknown sce-
narios. Moreover, the algorithm fails in avoiding concave
obstacles.

Our proposed approach is based on the dynamical system
modulation for obstacle avoidance in [13]. In contrast to
the original algorithm, our contributions is twofold. First,
an analytical representation of the obstacles is no longer
prerequisite. Instead, we use the Euclidean distance of a
point from the point clouds of the objects1. This gives us the
possibility to work in real-time. Second, impenetrability of
concave obstacles as well as convex obstacles are achieved in
the proposed approach. This property allows the robot larger
accessible areas, for example free space in an opened box
(Fig. 1). The proposed modulation guarantees the impen-
etrability of the obstacles without changing the modulated
DS equilibrium points. The effectiveness of our approach is
proved with simulations and experiments on a KUKA LWR
IV+. The proposed method is compared with the technique
in [13].

While the original dynamical system modulation method
in [13] is based on the analytical representation of the
object, which has continuous first order partial derivatives,
our proposed algorithm is based on the representation of the
object as a point cloud. Thereafter, in this paper we refer
the one in [13] as Continuous Modulation (CM) and our
approach as Discrete Modulation (DM).

The rest of the paper is organised as follows. Section II
describes the Continuous Modulation and its main features.
In Section III we propose a new point cloud based modula-
tion approach to avoid any geometrically shaped obstacles.
Section IV presents the simulation and experimental results.
Section V states the conclusions and the future works.

II. DYNAMICAL SYSTEMS MODULATION ALGORITHM

This section briefly describes the CM algorithm in [13].
The modulation algorithm is based on the assumption that
the path to follow is generated by a first order dynamical
system. This system can be autonomous (time-invariant) or
non-autonomous (time-variant). Specifying with the state p ∈

1The recent spread of RGB-D sensors makes readily available a repre-
sentation of the robot workspace as a point cloud. The distance from these
points will be used to modulate the DS.

Rn of the system, the DS becomes:

ṗ(t) = φ(p(t)), autonomous (1)
ṗ(t) = φ(t, p(t)), non-autonomous (2)

where φ(·) is a continuous function and ṗ is the first time
derivative of p. To ease notation, we omit hereafter the time
dependence of variables using φ to refer to both autonomous
and non-autonomous systems. Knowing the starting point p0,
the desired trajectory can be calculated by integrating φ:

pi+1 = pi + φδt, i = 0, 1, . . . (3)

where δt is the integration time step2.
By modulating the DS with a suitable matrix M(p)

ṗ = M(p)φ (4)

one can avoid obstacles and keep the stability properties of
the DS. In the following pages, p denotes the generic point,
p̄ a point on the object surface, and p̃ = p − pc a generic
point with respect to the center of the object pc.

A. Modulation Matrix Construction

Assume that only one n-dimensional obstacle is present in
the scene. Its surface can be described as the zeros locus of a
function3 Φ(p̃) : Rn 7→ R. For example Φ(p̃) = p̃T p̃−r2 = 0
is a n-dimensional hypersphere of center pc and radius r.
Assume that the function Φ is continuous and differentiable
so that it is possible to define everywhere the normal to the
surface of an obstacle. The normal vector can be calculated
as

n(p̃) =

[
∂Φ(p̃)

∂p̃1

∂Φ(p̃)

∂p̃2
· · · ∂Φ(p̃)

∂p̃n

]T
. (5)

Moreover, suppose that Φ increases monotonically with
‖p̃‖. The value of Φ in a generic point p is a measure of
the proximity of this point to the surface [14]. In addition,
it holds that: Φ(p̃) < 0 if p̃ is within the surface, Φ(p̃) = 0
if p̃ belongs to the surface and Φ(p̃) > 0 if p̃ is external to
the surface.

Circle

Tangential Hyper-Plane

Limaçon

Tangential Hyper-Plane

Fig. 2. The tangential hyperplane for the circle and the limaçon.

A tangential hyperplane can be defined at each point on
the surface, using the normal vector. By extension, one can

2Assuming an integration time step sufficiently small is reasonable to
use the backward Euler integration method. The use of more sophisticated
methods is also possible.

3In general, a surface in Rn can be represented by Φ(p̃) = s, s ∈ R
[14].

5381



define the hyperplane at all points of the space as Φ(p̃) ≥ 0.
One particular basis of the tangential hyperplane is

vji (p̃) =


− ∂Φ(p̃)

∂p̃i+1
j = 1

∂Φ(p̃)

∂p̃1
j = i + 1 i = 1..n− 1, j = 1..n

0 j 6= 1, j 6= i + 1
(6)

where vji corresponds to the j-th component of the i-th
basis vector. Note that the components of each vi(p̃) can
be directly computed from the components of n(p̃).

The matrix V (p̃) = [n(p̃) v1(p̃) · · · vn−1(p̃)] is an or-
thonormal basis of the n-dimensional space. The normal
vectors and the corresponding tangential hyperplane are
shown in Fig. 2, for a circle and a limaçon4. The yellow
area represents the internal points (Φ < 0), the white one
the external points (Φ > 0).

The diagonal matrix E(p̃) is defined as

E(p̃) =

λ1(p̃) · · · 0
...

. . .
...

0 · · · λn(p̃)

 (7)

where 
λ1(p̃) = 1− 1

|Φ(p̃) + 1|

λi(p̃) = 1 +
1

|Φ(p̃) + 1|
i = 2, 3, . . . n

(8)

The modulation matrix can be calculated as

M(p̃) = V (p̃)E(p̃)V (p̃)−1 . (9)

By modulating (4) with the matrix (9), it is possible to
prove that a trajectory p̃(t) starting from outside an obstacle
can never penetrate the convex obstacle5: Φ(p̃(0)) ≥ 0 7−→
Φ(p̃(t)) ≥ 0, ∀t > 0.

Note that the modulation does not affect the equilibrium
points of the modulated DS, saving its stability properties.
For the sake of brevity we refer to [13] for the proof of the
impenetrability and for the DS stability analysis. Although
the modulation technique might generate spurious equilib-
rium points, a technique to escape this points is discussed in
[13].

The modulation consists basically in a local deformation of
the DS, that generates collision free paths. The effect of the
modulation is maximum at the boundary of the obstacle, and
vanishes for points far from it. In fact Φ(p̃) monotonically
increases with ‖p̃‖ and the matrix converges to the identity
matrix as the distance to the surface increases.

4The limaçon is a plane curve obtained when a circle rolls around the
outside of a circle of equal radius. It is defined by (p̃21 + p̃22 − bp̃1)2 −
a2(p̃21+p̃22) = 0, with b > 0, a ≥ 0. If a ≥ 2b, it is convex. If b ≤ a < 2b,
it is concave. If a ≤ b the curve is no more differentiable.

5Note that the impenetrability does not depend on the choice made for
the base vi.

B. Extension to Multiple Obstacles

The extension of the presented algorithm to guarantee
the avoidance of multiple obstacle is not trivial. Indeed, a
combined modulation matrix M̄ cannot be calculated by
multiplying the modulation matrices of each object, because
this does not guarantee the impenetrability. A method to
overcome this problem is to weight the contribution given to
M̄ by each object according to the distance from the robot.

Assumed the presence of K objects in the scene and
defined as Φk, k = 1, 2, . . .K their analytical representations
(a measure of the distances between the robot position and
the K obstacles), these weights are calculated as

ωk =


1 K = 1
K∏

i=1,i 6=k

Φi

Φk + Φi
K > 1

(10)

where the dependence on p is omitted. The ωk are continuous
positive scalars between zero and one. In addition, on the
boundary of the k-th obstacle, it is ωk = 1 and ωi = 0, ∀i 6=
k. Using these two properties it is possible to demonstrate
that the impenetrability and the equilibria of the modulated
system are preserved (see [13] for further details).

Given the weights, it is possible to construct the k-th
modulation matrix Mk = VkEkV

−1
k . The elements of the

matrix Ek are calculated as follows
λ1,k = 1− ωk

|Φ + 1|
1
ρ

λi,k = 1 +
ωk

|Φ + 1|
1
ρ

i = 2, 3, . . . n
(11)

Repeating this procedure for each obstacle we obtain k
matrices, the product of which will give the combined
modulation matrix:

M̄ =

K∏
i=1,i6=k

Mk . (12)

III. DISCRETE MODULATION ALGORITHM

The Continuous Modulation requires an analytical de-
scription of the obstacle, as a continuous and differentiable
function Φ(p). In a realistic scenario, however, it is not
always easy to get an analytical representation of arbitrary
objects from raw sensory data such as 3D point cloud from
a RGB-D sensor. [13] mentioned how to get an analytical
expression from the point cloud: either by assuming a convex
hull using [15] or by approximating each object with an
ellipsoid for a real-time purpose.

On the other hand, our proposed solution consists in
approximating Φ(p) with the distance between two points.
This approach can work in real-time and find a feasible
collision-free path also in situations where the CM fails. This
algorithm can be generalised for one or multiple obstacles.

A. Distance-based Modulation

Let us consider a single object and a set Pg , g = 1, . . . , G
of points Rn belonging to the obstacle surface. The function
Φ(p) can be approximated with the Euclidean distance of p
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from the surface points. In fact, the distance is zero on the
surface and grows with continuity moving away from it6. So,
the approximated representation of the object surface Φa(p)
is calculated as

D(p) = min

(
n∑
i=1

(P1,i − pi)2, . . . ,
n∑
i=1

(PG,i − pi)2
)
(13)

Φa(p) =
√
D(p) (14)

where Pg,i denotes the i-th component of the g-th point
and pi the i-th component of the current status of the DS.
Hereafter we indicate Φa(p) only with Φ.

To compute the modulation matrix (9), it is necessary to
estimate the normal vector at the point of minimum distance.
This estimation is carried out using a parallel implementation
of the algorithm in [16], which allows to quickly reconstruct
a surface from an unordered point cloud. For each point Pg
a weighted least squares plane πg is calculated using points
in a neighbourhood of Pg . Then, the normal at Pg is chosen
equal to the normal to the plane πg . This algorithm is robust
to noise, which is beneficial when using the RGB-D cameras.
Compared to other approaches, it does not require that the
surface is smooth nor a certain density of points.

Since the density of the point cloud is not fixed, the
direction of the normal vector may vary significantly also
in close points. In order to reduce discontinuities in the
modulated path, we calculate the normal n(Pg) at a point
Pg by using a weighted average on the L points7 closer to
Pg:

n(Pg) = cn(Pg) + (1− c)nav(Pg)

= cn(Pg) + (1− c) 1

L

L∑
i=1,i6=k

n(Pi)
(15)

where the scalar 0 ≤ c ≤ 1. To ensure the impenetrability,
it must be c = 1 if Φ(p) = 0. In addition, c should be
small when the robot is far from the obstacles, and it should
continuously increase as Φ(p) decreases. For this reason c is
calculated as:

c =
1

|Φ(p) + 1|β
(16)

where the scalar β ≥ 0 is a tunable parameter. For β =
0, c becomes 1 and the contribution of nav(Pg) in (15) is
neglected. Fig. 3 shows that greater value of β allows to
obtain smoother trajectories, because the contribution given
to the normal by nav(Pg) is dominant till the proximity to
the surface.

The value of β mainly depends on the number of points
used to represent the obstacle surface. Few points leads

6A more precise approximation is the signed distance from the surface,
so that would be true Φa(p) < 0 if p is inside the surface. This distance
can be calculated as n(Pg)T (p − Pg), where n(Pg) is the unit normal
vector at the point Pg . This approach, however, would create problems in
the task of going into a box. In fact, a repulsive action would be generated
since Φa(p) < 0 for the points inside the box. This would keep the robot
out of the box. In Section IV it will be also shown that the choice of using
the Euclidean distance does not affect at all the obstacle avoidance.

7In experiments we use L = 1% of the number of points.

Fig. 3. Trajectories generated calculating the modulation matrix with
different values of β.

bigger values of β, since the normals can significantly change
between close points. In our experiments, β = 10 gives
acceptable results.

The described distance-based modulation can be directly
applied in a same way, no matter how many obstacles exist
in the work space. We simply calculate the distance from
the closest point (14), (13) and the normal at this point (15),
(16). This means that the number of objects does not affect
the performance of our algorithm. On the other hand, the
CM requires a step to cluster the point belonging to each
obstacle.

Our approximation still guarantees the impenetrability of
multiple convex obstacles and does not change the equilibria
of the modulated DS. Indeed, assume a globally asymptoti-
cally stable DS. So, the velocity vanishes only at the global
equilibrium p∗, i.e. φ(p∗) = 0 and limt→∞ φ(t, p∗) = 0,
respectively for an autonomous and a non-autonomous DS.
When M is full rank, still the velocity vanishes only in p∗,
M(p∗)φ(p∗) = 0 and limt→∞M(p∗)φ(t, p∗) = 0, and p∗

remains an equilibrium point.
On the obstacle boundary, M loses one rank and some

spurious equilibria can appear. To escape this equilibria, a
small perturbation is applied to the state along one of the
hyperplane directions v1 . . . vn−1, until the robot is driven
out from the basin of attraction of the equilibrium. Since
this algorithm is proposed in [13], we refer to that work for
further details.

B. Impenetrability of concave obstacles

In [13], the impenetrability for convex obstacles is shown
by proving that the normal speed at the obstacle surface
vanishes:

n(p̄)T ˙̄p = n(p̄)TM(p̄)φ = 0 . (17)

If (17) holds, the speed in a point p̄ on the boundary of
the object has non-zero components only on the tangential
hyperplane. Since the tangential hyperplane never intersects
a convex surface, the impenetrability of a convex obstacle
can be immediately assumed8.

If the object is concave, the tangential hyperplane can
intersect the surface, as shown in Fig. 4. Therefore, the
point p = p̄ + M(p̄)φδt, calculated by integrating (4), may
be located within the object. To prove the impenetrability,
consider the set I = {pI |Φ(pI) ≥ 0,∀pI ∈ Rn} that is the

8Note that the time discrete implementation of the algorithm can com-
promise the impenetrability if the integration time step is not sufficiently
small. In all experiments, it will be used δt = 1ms.
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set of all the points external or belonging to the surface9. A
subset of I is defined by

Jr(p̄) = {pJr |r ≥ max(p− p̄),∀pJr ∈ I ⊂ Rn} (18)

where p − p̄ = M(p̄)φδt. By construction, Jr(p̄) is an
intersection-free neighbourhood of p̄.

The impenetrability of a concave object is ensured, if
a neighbourhood like (18) exists for each point on the
boundary of the obstacle. If this holds, we can conclude
that each point p, calculated by integrating (4), is external
or belonging to the surface. Therefore, the concave obstacle
will be never penetrated.

Intersection-free 
Neighbourhood

Tangential Hyper-Plane

Fig. 4. In a concave object the tangent plane can intersect the surface. If
the surface is smooth, a neighbourhood of the point of tangency with no
intersections (here is the area between the red dashed lines) can exist.

In order to clarify the concept of impenetrability of a
concave obstacle, a simple example is given. Consider a
box with one open side, as shown in Fig. 1, and a robot
is commanded to move inside the box from its initial
position outside of the box. When the robot reaches the
goal in the box without hitting the box, we can say that
the impenetrability is ensured.

An interesting property of the proposed DM is that we can
find a neighbourhood Jr(p), like (18), for each boundary
point. The normal at a point p, in fact, is the normal of
a weighted least squares plane π, calculated using points
in a neighbourhood of p (see Section III-A). Since π is
the tangential hyperplane and the neighbourhood used to
calculate π is Jr(p), we can guarantee the impenetrability
by setting properly the radius r.

C. Customize the Collision-Free Path

Some parameters were proposed in order to customize the
path according to the object and to the robot properties in the
CM. Herein, we modify those parameters for our purpose.

First, since the robot end-effector is not a point, it is useful
to determine how close to the object the robot can pass. For
this purpose we introduce a safety margin, a positive scalar
α ∈ R, to calculate the new distance from the obstacle Φ(p)′

as:
Φ(p)′ = Φ(p)− α . (19)

The trajectories of the system for three values of α can be
seen in the Fig. 6(a). The dashed line marks the safe area.

9In our approximation it is Φ > 0 both for points internal and external
to the obstacle surface. Since the sign of Φ does not affect what follows,
we still indicate with Φ > 0 the external points.

The value of α depends on the robot end-effector size. In
our experiments on the KUKA LWR we choose α = 0.08.

Note that the CM uses a safety margin for each dimen-
sion αi ≥ 1, i = 1, . . . , n to modify the point p̃ =
[p̃1/α1 . . . p̃n/αn]T . This allows to set different distances
for each dimension. When the object is not symmetric, its
center can be close to the boundary. In such a case, this
can generate a safety area that is too close to the obstacle
surface, as shown in Fig. 5(a). Instead, the modified safety
margin in (19) generates a safety area in which every point
is at distance α from the surface, as in Fig. 5(b).

(a) Con. Mod. (α1 = α2 = 1.2) (b) Dis. Mod. (α = 0.2)

Fig. 5. The safety areas around a limaçon obtained using (a) the CM and
(b) the DM safety margin.

Changing the magnitude of the modulation can be useful
to avoid slow-moving objects, because the robot reacts earlier
to the obstacle and it moves away from the trajectory of the
object. Thus, a reactivity parameter is introduced amending
the eigenvalues of the modulation matrix (9) as follows

λ1(p) = 1− 1

|Φ(p) + 1|
1
ρ

λi(p) = 1 +
1

|Φ(p) + 1|
1
ρ

i = 2, 3, . . . n
(20)

As the reactivity parameter ρ increases, the distance at which
the object begins to be perceived increases. This means that
from that distance the matrix M deviates significantly from
the identity matrix. In other words the local deformation of
the DS will start earlier if ρ > 1, or it will be delayed if
ρ < 1. The results obtained modifying ρ are shown in Fig.
6(b). In our experiments on the KUKA LWR we choose
ρ = 0.3, to avoid sudden movements at the beginning of the
motion due to the obstacle proximity.

The last desired property is the ability to interrupt the
modulation once the robot passes the object. The interrup-
tion of the modulation is obtained introducing the boolean
variable m = 0, 1 and redefining the first eigenvalue of the
modulation matrix as

λ1(p) =


1− 1

|Φ(p) + 1|
1
ρ

ṗT p̃ < 0 or m = 1

1 ṗT p̃ ≥ 0 and m = 0

(21)

where p̃ is the position with respect to the center of the
obstacle10. The sign of ṗT p̃ is used to determine if the robot

10Note that in (21) only λ1(p) = 1, since the modulation of the other
components is anyway necessary to ensure the continuity of the velocity.
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is approaching the object (negative sign) or if it is moving
away (positive sign) from it. If the system is continuously
modulated (m = 1) the path follows the obstacle shape also
after passing the obstacle. Fig. 6(c) represents the modulated
trajectories, obtained with m = 1 and m = 0.

Note that the CM uses the sign of n(p̃)T ṗ. The sign of
n(p̃)T ṗ can only be used if n(p̃)T is the normal vector
outgoing from a closed surface. Since we rarely deal with
closed surfaces due to partial occlusion in the RGB-D sensor,
we decided to use (21). The introduced parameters do not
affect the impenetrability nor the equilibria of the DS.

α = 0.0

p1

p
2

α = 0.2

p
2

p1

α = 0.6

p
2

p1

(a) Safety Margin

ρ = 0.3

p
2

p1

ρ = 1.0

p
2

p1

ρ = 3.0

p
2

p1

(b) Reactivity

m = 1

p
2

p1

m = 0

p
2

p1

(c) Modulation Interrupt (Off/On)

Fig. 6. Characterizing the path during the obstacle avoidance. The scalars
α and ρ are used to modify the size of the safe area and the magnitude of
the modulation. The boolean value m is used to interrupt the modulation
after passing the obstacle.

The complete DM is summarized in Algorithm 1.

Algorithm 1 Discrete Modulation
Given a point cloud representing K obstacles and the
normal vector at each point

1. Calculate Φ using (13), (14), (19)
2. Smooth the relative normal using (15), (16)
3. Calculate λ1 using (21) and λi, i = 2, . . . n using (20)
4. Calculate E using (7)
5. V = [n v1 · · · vn−1]

return M = V EV −1

This proposed technique is applied in a two-dimensional
simulation and the simulation results are shown in Fig. 7.
The desired trajectory p(t) is a straight line from the initial
position to a global asymptotically stable equilibrium g in
the case of no obstacles. This equilibrium is generated using

the linear system ṗ(t) = K(g − p(t)), K = 10. For the
simulation, the following parameters were used: β = 10,
α = 0.2, ρ = 1 and m = 0. Starting from different
initial states, the modulated trajectories always reach the
equilibrium point. The algorithm finds a smooth and feasible
path, also when only very narrow passages between the
obstacles exist, as long as the safety margin is ensured.

Fig. 7. Modulation with three obstacle in a 2-dimensional space, starting
from different position. The original path p(t) is a straight line (from the
initial state to the equilibrium g), calculated by integrating ṗ(t) = K(g −
p(t)), K = 10.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

The proposed Discrete Modulation has been implemented
both in Matlab and C++ in order to test in simulated and real
environments. Real experiments are conducted on a KUKA
LWR IV+, controlled at 1kHz by an external PC (Intel I5
quad-core processor) using the Fast Research Interface [17].

The scene is monitored using a Microsoft Kinect RGB-D
sensor, which gives a 640×480 matrix of 3D points. A ROS
(Robot Operating System11) node implements a shader-based
filter12. This node takes as inputs the current point cloud, the
camera frame and the robot geometry, and removes the points
on the robot surface and those outside its workspace. The
filtered points are used to calculate the modulation matrix.
The normal at each point are calculated using the parallel
implementation of [16] provided in the Point Cloud Library
(PCL)13. The update of the modulation matrix occurs every
30Hz.

A second ROS node, which runs at 1kHz, generates the
desired trajectory modulating a DS, sends the collision free
path to the robot and updates its current position. Since the
frequencies of the nodes are different, the DS is modulated
always using the last calculated matrix, so that the robot is
constantly controlled at 1kHz.

This software architecture, consisting of two separated
ROS nodes, allows the execution of each node in a separate
thread with different scheduling priorities. In this way, the
robot control node is not affected from the other operations.

11www.ros.org/wiki
12github.com/jhu-lcsr-forks/realtime urdf filter
13www.pointclouds.org

5385



B. Numerical Simulations

In this simulation, we show a comparison between the
CM [13] and the proposed DM. In the scene there is a 3-
dimensional occluded region which consists of two attached
ellipsoids. The original path is calculated by integrating
ṗ(t) = K(g − p(t)), K = 10. For the simulation, the
following parameters were used: β = 10, α = 0.1, ρ = 1
and m = 0.

As shown in Fig. 8, the DM find a free path to the goal,
while the CM stops at a local minimum. In the CM, we
modelled the obstacle as two ellipsoids14. Because the two
ellipsoids are attached, it can happen that the distances from
the two objects are null at the same time, so divisions by zero
occur in (10)15. It cannot directly deal with concave shaped
occlusions. To avoid the problem with the CM it is necessary
to calculate an analytical representation of the convex hull,
which leads the loss of a lot of accessible free area.

In contrast, the DM does not need an analytical represen-
tation of the obstacle. At each iteration, it simply finds the
closest point and uses this point to calculate the modulation
matrix. So, a smooth and feasible path to the goal is found.

(a) 3D view

(b) Top view (c) Lateral view

Fig. 8. A comparison between the CM and the DM, with an obstacle made
by two attached ellipsoids. The CM fails with connected objects when more
then one ωk = 0 exist.

C. Robot Experiments

Avoiding Multiple Obstacles: In this experiment the robot
must avoid three obstacles in the scene, as shown in Fig.
9(a). The original path is generated using ṗ(t) = K(g −
p(t)), K = 2. The initial position and the goal g, together

14Since we cannot find an analytical representation of the obstacle surface.
15In general this problem arises every time that more then one Φk = 0

at the same time.

with the dimensions of the obstacles, are chosen so that the
robot passes through the obstacles and not above them.

Fig. 9(b) represents the results obtained modulating the
system with β = 10, α = 0.08, ρ = 0.3 and m = 0. The
input point cloud consists of about 14300 points, and the
mean computation time to calculate the minimum distance
and to estimate the normal is 0.32ms. In Fig. 9(b), the
distortion of the trajectory due to the modulation is clearly
visible since the beginning of the movement, since the robot
starts near the obstacle 1. After passing the first obstacle,
the modulated trajectory converges to the original one. In
the final stage the robot remains close to the original path,
managing to pass safely between the objects 2 and 3 (25cm
is the distance between them). Here, the contribution given
by 2 and 3 to the modulation matrix tends to balance being
the obstacles almost equidistant from the original path.

(a) Experiment set-up

(b) 3D view

Fig. 9. Multiple obstacles avoidance. Given the point clouds (yellow points)
of the obstacles, a collision-free path to the goal is found using the DM.

Going into and out of a box: In this experiment the robot
has to reach two goal positions, one of which is located at
the center of a box of size 40cm×35cm×20cm. One side of
the box is open. This set-up is depicted in Fig. 1.

Starting from a point outside the box, the robot is guided
to the first goal g1 inside it by the system ṗ(t) = K(g1 −
p(t)), K = 2. Then, starting from g1 the robot comes out
of the box and reaches the second goal g2 of ṗ(t) = K(g2−
p(t)), K = 2. A collisions free path is found by modulating
this switching linear DS, as represented in Fig. V. The input
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point cloud consists of about 32000 points, and the mean
computation time to calculate the minimum distance and to
estimate the normal is 0.59ms. These results are obtained
with β = 10, α = 0.08, ρ = 0.3 and m = 1.

In this experiment it is necessary that m = 1 in the output
step. If it is not, the robot would hit the box because the
modulation would be interrupted since ṗT p̃ ≥ 0 and, from
(21), λ1 = 1.

Note that, by using the CM, the task cannot be accom-
plished. In this case, the box should be approximated using
a bounding box, thereby preventing the robot to enter. Even if
the box is approximated considering each face as a separate
obstacle, there may be division by zero and the algorithm
crashes (see Section IV-B for further details). Our approach
does not have this problem, because it modulates the system
only considering the closest point at each iteration.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a real-time collision avoid-
ance technique that guarantees the convergence to the goal.
The novelty of our approach lies in the calculation of the
modulation matrix directly from a point cloud. This makes
the resulting algorithm faster than other approaches which
requires an analytical representation of the obstacle surface.
It is shown that this algorithm works with convex and
concave objects without being stuck into local minima. This
approach allows the robot to access all free area outside
of the safety area around the object and leads to relatively
short collision-free path to the goal. We implemented and
evaluated the point cloud based dynamical system modula-
tion approach on a 7 DOF KUKA LWR with comparison
of the original dynamical system modulation approach. The
experimental results show the clear advantages which can
handle connected multiple obstacles and concave obstacles.

In the future, we will focus on extend the Discrete Modula-
tion to a more realistic scenario, in which the robot interacts
with humans and several moving obstacles. This approach
will be extended to avoid collision with the whole robot by
projecting the movements in the robot null space.
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