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Abstract— Elastic robots have a distinct feature that makes
them especially interesting to optimal control: their ability
to mechanically store and release potential energy. However,
solving any kind of optimal control problem for such highly
nonlinear dynamics is feasible only numerically, i.e. offline. In
turn, optimal solutions would only contribute a clear benefit
for dynamic environments/tasks (apart from rather general
insights), if they would be accessible/generalizable in real-time.
In this paper, we propose a framework for executing near-
optimal motions for elastic arms in real-time. We approach the
problem as follows. First, we define a set of prototypical optimal
control problems. These represent a reasonable set of motions
that an intrinsically elastic robot arm is sought to execute.
Exemplary, we solve the optimal control problem for some of
these prototypes in a roughly covered task space. Then, we
encode the resulting optimal trajectories in a dynamical system
via Dynamic Movement Primitives (DMPs). Finally, a distance
and cost function based metric forms the basis to generalize
from the learned parameterizations to a new unsolved optimal
control problem in real-time. In short, we intend to overcome
the well known problems of optimal control and learning with
associated generalization: being offline and being suboptimal,
respectively.

I. INTRODUCTION

Fig. 1. The DLR Hand-Arm system (HASy) that is fully equipped with
Variable Stiffness actuation in each joint [1].

Generating robot trajectories is one of the largest fields of

robotics research. Initially, it started from purely geometric

(mostly linear interpolation, circular interpolation or polyno-
mial splines) approaches in the early days for calculating

point-to-point or N-via-point motions without taking into

consideration the environment or the robot dynamics. Since
rigid industrial robots were supposed to execute purely

geometric tasks, the low-level controller ensures accurate

tracking behavior of the device, while trajectory generation
remains on kinematic level. A recent very nice overview

on these techniques can be found in [2]. In order to
solve not only the free space problem but also the general

motion planning problem, a vast range of methods for

planning global motions in complex, however mostly static
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environments were developed. They ensure that the robot

can be brought collision free from an initial configuration
to a desired final configuration [3], [4], [5], [6], given a

solution exists. Typically, such planning methods generate

a statically valid path in a timeframe of seconds and are
usually suboptimal (in particular in the dynamic sense).

However, dynamic optimality e.g. in terms of minimal joint

velocity or energy consumption is certainly a desirable
property, which can be expressed on kinematic or dynamic

level, respectively. In fact, for intrinsically elastic systems it

offers entirely new ways to control and will certainly affect
even global motion planning at some point. In industrial

robotics, time optimal motions are of primary concern. For
generating kinematically optimal trajectories in real-time,

several efficient algorithms became available [7]. However,

as all aforementioned schemes work on kinematic level
only (some also up to kinodynamics), they can never fully

exploit the inherent dynamic capabilities of a robot. Strong

insights in this respect were e.g. obtained in [8], [9] by
solving the time optimal tracking problem while taking into

account the rigid body dynamics and the constrained motor

torques. These results allow to execute dynamically optimal
tracking in real-time for non-redundant rigid manipulators.

Further work on solving optimal control (OC) problems for

manipulators, however purely offline, can e.g. be found in
[10], [11]. Discussions and results on full body motions are

given in [12], where the problem of optimal running is solved

with direct methods. Particularly challenging and interesting
becomes the achievement of dynamic optimality if being

faced with intrinsically elastic robots such the DLR Hand-
Arm System (Hasy) [1], see Fig. 1. This is due to the fact that

these systems are able to store and release potential elastic

energy, which is especially helpful for carrying out explosive
motions such as e.g. throwing. The effect was thoroughly

analyzed for 1DoF variable stiffness systems (VSA) in [13],

[14], [15], where analytic solutions could still be derived
for some cases. For multiple degrees of freedom, however,

only numerical solutions can be found due to the strongly

nonlinear and coupled behavior [16]. Nonetheless, as elastic
systems are designed for acting in dynamic environments

at close proximity to humans, it is clear that pure offline

solutions are neither applicable nor sufficient.
An entirely different approach to generate task trajecto-

ries originates from trajectory learning and generalization,
where considerable effort was put into the development

of the learning-by-demonstration (LbD) paradigm. Typi-

cally, a desired motion is taught to an actively or pas-
sively backdrivable robot [17], [18] kinesthetically [19], [20].

Alternatively, human motion tracking is used for gener-

ating trajectories, which are transferred to the robot and
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Fig. 2. Comparison of the overall structure of classical learning approached
(upper) to our OMF (lower).

can then also be refined via kinesthetic teaching [21] or

other iterative learning/optimization techniques. In order to

generalize the demonstrated trajectories, one has to find a
suitable representation that builds on the acquired data. A

particularly interesting one is a dynamical forced system in
the form of a Dynamic Movement Primitive (DMP) [22].

As the trajectories are generated by means of a second,

or higher order differential equation, it is relatively simple
to incorporate disturbance forces for collision avoidance or

retraction [23], [24]. LbD is a very flexible framework, which

can be applied to various types of problems [25], [26].
Nonetheless, there are also natural limitations with existing

schemes, as the generated motions are certainly suboptimal

(both kinematically and dynamically).

This brings us to the main idea of our paper. We intend
to overcome the limitations of each approach by combining

them into a single Optimal Motion Framework (OMF) that

utilizes the advantages of both:

• Implicit representation of the robot dynamics in optimal
control solutions

• Complexity reduction, generalization, and real-time ca-

pability of learning dynamical systems

The paper is organized as follows. Section II introduces
our approach. Sec. III describes the concept of prototypical

optimal control problems. In the following, Sec. IV provides

an overview on how we embed optimal trajectories into
DMPs and then generalize with the help of a distance and/or

cost function based metric. Section V describes various

simulations and experiments that underline the validity and
”near-optimality” of our approach. Section VI concludes the

paper.

II. APPROACH

As one is generally not interested in the solution of
any possible OC problem, we first define a reasonable

set of representative optimal control problems that can be
roughly divided into reaching type motions and tracking

type motions1. The former represent a rather abstract task,

which concrete joint space trajectory for optimally solving
the task (also in operational space) is to be found. The

latter problem is specified by a full (joint or operational

space) trajectory that shall be optimally tracked, i.e. we need
to find the joint space motion that ensures both, minimal

tracking error and possibly other costs, such as energy related

1Please note that we do not claim completeness. It is straight forward to
extend the approach to new problems as well. In this paper we focus on the
methodology.

ones. However, for both motion types we encode a set of
optimal joint space trajectories for each task into a modified

version of the original DMP formulation, whereas for the

latter case a two-staged DMP approach is utilized, one for
generalizing reference motions (in joint or task space) and

one for generalizing the optimal solutions for tracking this
operational space movement. Please note that for sake of

clarity, we focus on reaching type motions in this paper. We

show that the embedding of optimal motions that inherently
capture the robot dynamics leads to the ability to generate

near-optimal motions in real-time for each of the considered

problems. Figure 2 depicts the overall framework target
structure in comparison to the LbD approach. Specifically,

we

1) use dynamically optimal trajectories coming from

solving complex nonlinear optimal control problems
as learning input,

2) encode them into an optimized dynamical system,

3) and use a metric, based on the cost function and/or geo-
metric distance, for selecting a near-optimal parameter

set in real-time for the generalizing step.

A somewhat related approach to ours can be found in

[27], where kinematically optimal trajectories were used as

template trajectories that are subject to situation related costs
for collision avoidance. Together with a situation descrip-

tor these are subsequently generalized via another offline
stage, which, however, does not optimize from scratch and

is therefore considerably faster than the generation of the

original training data. First work on using energy optimal
solutions for catching tasks and applying different learning

approaches for generalization can be found in [28]. There,

optimal trajectories are encoded in B-splines or trapezoidal
functions, which are then generalized with different state-of-

the-art machine learning techniques as e.g. Nearest-Neighbor

(NN) or Support Vector Machines (SVM).

Our approach discriminates from these existing techniques
in the sense that we also consider elastic systems (several

additional constraints and nonlinearities have to be con-

sidered). Furthermore, we combine optimal control (which
offers, in contrast to pure nonlinear optimization, the tools to

give stronger hints for global optimality of a solution) with

generalization algorithms by means of dynamical systems
(DMPs), and also use the cost function of the according

optimal control problem as an underlying generalization

metric. Furthermore, instead of treating only a single motion
control problem, we make an attempt to give a rather general

methodology for a set of control problems that cover most

typical robot motion tasks, which, however, can be easily
extended if needed.

In the following section, we shortly introduce some basics

on optimal control for VSA2 and then describe our selection

of prototypical optimal control problems.
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Fig. 3. 2-DoF intrinsically compliant robot model (right). The used
parameters are taken from the DLR Hand-Arm system (left). Link 1: mass
m1 = 4.6 kg, inertia J1 = 0.0453 kgm2, length l1 = 0.34 m. Link 4: mass
m4 = 5 kg, inertia J4 = 0.0492 kgm2, length l4 = 0.34 m.

III. OPTIMAL CONTROL

A. Optimal control for elastic joints

Let us consider the class of systems that is described by a

set of first order differential equations ϑ̇(t) = f(ϑ(t),u(t)),
where ϑ denotes the state vector and u the control input,
respectively. The initial state is denoted by ϑ(t0) = ϑ0,

the final constraints are φ(ϑ(tf ), tf ) = 0, and the set of

path constraints is c(ϑ(t),u(t), t) ≤ 0. Solving an optimal
control problems aims at finding the control input u∗ that

minimizes a given cost function

min
u(t)
J = h(ϑ(tf ), tf ) +

∫ tf

t0

g(ϑ(t),u(t), t)dt, (1)

with h(ϑ(tf ), tf ) being the terminal and
∫ tf

t0
g(ϑ(t),u(t), t)dt the running cost. This cost function

basically denotes the task to be accomplished and may take

various forms. The dynamics of a full VSA arm can be
described by

M(q)q̈ + C(q, q̇)q̇+ g(q) = τJ (2)

BΘ̈+ τJ = τm (3)

τ J = τJ (Θ,q,σ), (4)

where Θ and q are the motor and link side position,
respectively. The position of the stiffness actuator is denoted

σ, which is treated as a constant parameter in this paper.

M(q), C(q, q̇)q̇, g(q), and B are the link side inertia
matrix, the centrifugal and Coriolis vector, the gravity torque,

and the motor inertia. τm denotes the torque acting through

the positioning motor3. The vector τ J represents the elastic
joint torque, which is a nonlinear function of the elastic

deflection ϕ = Θ−q and σ. Please note that we assume that

for a given σ it is possible to solve (4) for Θ. The optimal
trajectories in this paper are obtained with the nonlinear

optimal control solver GPOPS [29] available in MATLAB.
It uses the hp-adaptive Legendre-Gauss-Radau quadrature

2Please note that we introduce the problem formulation for VSA in
general and not for the elastic case only. The subsquent learning and
generalization, however, is then done for the case without explicit stiffness
control input.

3We neglect the dynamics of the usually significantly smaller and
therefore faster stiffness adjustment motor.

integral pseudospectral method for solving general nonlinear
optimal control problems.

The considered concrete nonlinear dynamics we intend to

solve is a 2 DoF dynamic HASy model, see Figure 3. It
serves as a benchmark problem for an intrinsically elastic

robot with nonlinear torque deflection characteristics. Please

note that in this work we do not make use of the possibility to
change this relation via adjusting σ, i.e. we assume the robot

to be intrinsically elastic but the stiffness adjuster remains

constant. Subsequently, we discuss several problems, which
we consider to be important for elastic systems.

B. Prototypical optimal control problems

By nature, the motion generation problem is infinitely

large and generally poorly defined in the sense of what
a desired motion should exactly look like. Therefore, it

is rather hard to find a general optimal control problem

that inherently contains all possible instantiations and thus
captures the essence of motion. Therefore, we pragmatically

resolve this dilemma by introducing prototypical optimal

control problems. These are sought to find an optimal control
input u∗ that generates a distinct type of motion for a

given robotic system and potentially a secondary system the

robot is associated to (e.g. an object to be manipulated with
another target dynamics). The following classification aims

at grouping motion behaviors according to their “higher-

level” target. We coarsely distinguish between following
main problems:

1) reaching type motion

2) tracking type motion

In the following classification of prototypical OC problems
(see Fig. 4), N (ϑ) denotes the neighborhood of the system

state ϑ according to a suitable metric (typically spatially).

ϑ0, ϑ̇0, ϑf , ϑ̇f denote initial state and velocity, and final

state and velocity.

• Reaching type motions

1) Reaching motion (grasping): ϑ0, ϑ̇0 = 0 →
ϑf , ϑ̇f = 0, considering minimum final error and

minimum energy

2) Explosive motion (throwing motion, catching)

ϑ0, ϑ̇0 = 0 → N (ϑf ), ||ϑ̇max||e, considering

minimum final error (and minimum energy)
3) Explosive target motion (throwing motion, box-

ing, hitting) (dynamic grasping) ϑ0, ϑ̇0 = 0 →
N (ϑf ), ϑ̇f , considering minimum final error

4) Implicit target motion (object manipulation, bal-
listic throw e.g. bucket throw)

ϑ0, ϑ̇0 = 0 → N (ϑf ) while, considering mini-
mum final error and minimum energy

5) Implosive motion (braking motion, stopping catch-

ing) ϑ0, ϑ̇0 → N (ϑf ), ϑ̇f = 0, considering

minimum final error and minimum energy

Please note that we intentionally excluded time optimal
problems, as we leave them for future work.

• Tracking type motions (not necessarily optimal control

problems4)

4Depending on the available degrees of freedom, there might be only a
single solution to the problem and no solution space to be explored.
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1.) reaching

ϑ0

ϑf

min
u
J(err(ϑf )|E, τ J , t)

2.) explosive

ϑ0

|ϑ̇max|e
N (ϑf )

min
u
J(err(e)|t, E, τ J )

3.) explosive target

ϑ0

ϑ̇f

N (ϑf )

min
u
J(err(ϑ̇f )|t, E, τ J)

4.) implicit target

ϑ0

N (ϑf )

min
u
J(err(ż)|t, E, τJ )

ż = g(z, t,ϑf , ϑ̇f )

5.) implosive

ϑ0, ϑ̇0

N (ϑf )

min
u
J(err(ϑ̇f )|t, E, τ J)

6.) tracking

ϑ0, ϑ̇0

ϑf , ϑ̇f

ϑ(t)

min
u
J(err(ϑ(t))|E, τ J)

7.) cyclic tracking

ϑ0, ϑ̇0

ϑ(t)

min
u
J(err(ϑ(t))|E, τ J)

Fig. 4. Grouping of motion behaviors into reaching type motions (1-5) and tracking type motions (6-7).

1) Tracking (gestures, constrained motion primi-

tives): (ϑ0, ϑ̇0)→ ϑ(t)→ (ϑf , ϑ̇f ),
2) Cyclic tracking (stirring, cranking, shaking):

(ϑ0, ϑ̇0) → ϑ(t) with ϑ(t) = ϑ(t − pT ), T =
const., and p ∈ N

+,

Next, we discuss the embedding of the optimal trajectories
into the DMP formulation and how the cost function might

be exploited for generalization.

IV. OPTIMAL MOTION FRAMEWORK

input : motion type, c(q), parameters {ξk}
output: w∗,Φ∗

for k ← 1 to m do

[q∗
k, q̇

∗
k, q̈

∗
k] = min

u
J(motion type, c(q), ξk) ;

for i← 1 to n do

f∗i (ti) = −τ
2q̈∗(ti) + κ(ti)(q

∗(τ)− q∗(ti))−Dτ q̇∗(ti) ;

xi = exp
{

−αx

τ
ti
}

;

xi = [xi; · · · ;xi]dim=M×1 ;

F∗
k = [F∗

k; f
∗T
i (ti)] ;

X = [X; xT
i ] ;

end

[w∗
k,Φ

∗] = minΓ[(Φj ,F∗
k,X)→ wj → f

j
≈]

end

Algorithm 1: DMP generation

Algorithm 1 depicts the overall steps of our OMF. First,

we solve a prototypical OC problem for a certain grid

on the task space (e.g. goal configurations for reaching
motions). The motion type, the constraints c(q), and an

ensemble of task relevant parameters {ξk} (such as m goal

locations) define the optimal control problem to be solved,
see Sec. III-A. Its solution in turn initializes Algorithm 1.

For generalizing a specified task, we need m optimal results
of length n (number of trajectory samples) that represent a

roughly covered grid over the task space. The grid of this task

space of optimized and learned trajectories is experimentally
determined for obtaining reasonable results. Solving the op-

timal control problem yields trajectories defined by optimal

link side position q∗
k(t) ∈ R

M , velocity q̇∗
k(t) ∈ R

M , and

acceleration q̈∗
k(t) ∈ R

M in joint or task space of dimension

M , described in the outer loop of Algorithm 1. Deploying
these trajectories into a second order differential equation

(inner loop) with a total duration of the movement τ , a

stiffness factor κ and a damping term D, we obtain a force
based trajectory f∗i (ti) ∈ R

M . The dynamical force is then

expressed as a function of the canonical system x, which can

be interpreted as a path parameter. x is designed such that it
continuously decreases from 1 to 0, being only parameterized

by its slope parameter αx. The according force function is

then approximated by a Gaussian basis:

f∗(t) ≈ f≈(x) =









N
∑

i=1

w∗
i,lψi(x)

N
∑

i=1

ψi(x)

x









dim=M×1

(5)

It is parametrized by a set of optimal weights w∗
l ∈ R

N

for each dimension l ∈M and an optimal parameter vector
for the Gaussian kernels. The Gaussian basis is defined as

ψi(x) = e−hi(x−ci)
2

with the center points and widths

being ci = e−αx
i−1

N−i and hi = 1
(ci+1−ci)2

, respectively.

The resulting linear regression problem Xw∗
l − f∗l = 0

(with f∗l := F∗(1 : n, l)), which needs to be set up for

every l and k (k is omitted for brevity), can be solved with
efficient existing approaches [30]. Despite this being already

a reasonably well working approach, this system choice

leaves some issues unresolved. In particular, if choosing κ to
be constant, as is typically done, the initial force κ(q0 − g)
produces a very large acceleration force f∗(t = 0) 6= 0,
which is clearly not capturing the essence of a point-to-

point trajectory that is initially at rest. This can be solved by

introducing a time-varying continuously increasing, however,
bounded stiffness κ(t). A possible choice that preserves

stability and convergence is

κ(t) = gκ

(

1

1 + e−gκkκt( gκ
k0
− 1)

)

, (6)

where gκ is the final value of the function, k0 is the initial

value (k0 > 0), and kκ is the slope. Of course, the particular

implementation may be chosen differently.
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Fig. 5. Learning and generalization of optimal reaching movements. The upper left plot depicts sampled optimal reaching movements for the robot
workspace. The 2DoF robot in stretched out configuration is indicated in black. The color value indicates the value of J for every trajectory, i.e. the
consumed energy for the motion. The lower left plot shows a close up around (yz ,yy) = (0.4, 0.95). The optimal trajectories that are used for the
learning step are indicated by the crosses in the corner. The according generalization DMP motion towards the new goal within the rectangle is compared
against the according optimal motion, which was not used for learning. It was generalized inside this section by weighting kernel parameters with inverse
distance weighting (9). The two upper right plots show optimal and DMP trajectories. The randomly generalized trajectory in the section are compared
with the optimal trajectory (checked afterwards). Furthermore, the lower two plots show the difference between purely geometric and cost based weighting.

A further issue when using an original DMP design is the

dependency of number of weights and accuracy-reproduction

of the original input data. To minimize computation time
and disk space, we want to use only few Gaussian basis

functions. As described in [30], this can be solved by

parameterizing the Gaussian widths as hi = βx

ci+1−ci
+ γx,

and finding the optimal parameter vector Φ = [αx βx γx]
by suitable minimization. For this, the error cost metric

Γ = 1
T

∑T
i=1 ||fi − f≈,i|| is to be minimized (an alternative

choice would be Γ = 1
T

∑T

i=1 ||yi−y≈,i||), see the last step

of Algorithm 15. This problem can be solved with standard

SQP solvers. This optimization is carried out for increasing
N and finally, the minimal N that produces a negligible

force error only is selected. After having obtained the optimal

parameter set [w∗,Φ∗], one may then generalize the motion
along t ∈ [0 · · · tf ] for different goals g by solving

q(t) =
1

τ2

tfx

0

f≈(x) + κ(t)(g − q)−Dτ q̇ dt dt+ q(0).

(7)
From (7) we obtain the link position, velocity, and accel-

eration which can then be inserted into (2). The motor
trajectories Θ(t) are obtained by solving (2) for τ J , and

then use (4).

(7) can be implemented in real-time, leading to a scheme
that is capable of producing near-optimal solutions for dif-

ferent start and end configurations based on a finite set of

5For brevity, the index j indicates the required minimization loop.

optimal trajectories. We decided to use DMPs for generat-

ing optimal real-time trajectories because we want to use
force generated trajectories to have the ability to affect the

desired trajectory online, for example collision avoidance

or constraint adherence (this is, however, not part of this
paper). Such requirements cannot be easily complied with a

two staged optimization approach, where the optimal control

problem is solved offline first and generalization is done via
linear optimal control approaches for sufficient closeness to

the offline solutions. Important to notice is that the tracking

type motions (motion type 6.+7. from Fig. 4) can also be
covered with the DMP approach (see [22] for the original

formulation). Our extensions for matching the special needs

of elastic robots, however, are out of the scope of the paper
and therefore omitted for brevity.

Next we discuss our approach to generalization.

A. Generalization for DMP motions

Generalization of DMPs has e.g. been addressed in [31].

In order to make use of the fact that ”close” trajectories
presumably encode more relevant information for a new goal,

distance based weighting is applied for the extrapolation step.

For the reaching movement generalization, we may apply the
method from [32]

w∗
l (yg) =

∑

∀k:σk≤δ

w∗
l (yk)σ

−1
k

∑

∀k:σk≤δ

σ−1
k

, (8)

Equation (8) is a sum of kernel weights multiplied with the

inverse of the geometric or energetic distances between the
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previously learned and the new goal. σk is defined as

σk =

{

||yg − yk||+ ǫ, ||yg − yk||+ ǫ < δ

ǫ ||yg − yk||+ ǫ ≥ δ,
(9)

where yg denotes the new goal position or goal cost function

value, respectively. yk represents the surrounding sample
goal k, δ is a distance limitation and ǫ prevents division by

zero. δ is a chosen metric for selecting close Gaussian bases

of interest and is large enough that at least one Gaussian
basis is used. The introduced metric in (9) is discussed in

Sec. V in more detail.

After having introduced all necessary tools to solve some

exemplary task, we now present simulations and experiments
obtained with the OMF.

V. SIMULATION AND EXPERIMENTS

First, the generalization of energy-like optimal point-to-

point motions with the HASy is shown and different gener-

alization approached compared to each other. Then, optimal
throwing movements are investigated and experimentally

verified on the HASy robot.

A. Learning and generalization of optimal reaching move-

ments

The mostly used movement in robotics is a point-to-

point task. Typically, such reaching motions are generated
by common interpolation schemes. The results are, however

suboptimal (e.g. in the energetic sense). With the OMF, our

solution to the problem is as follows. First, a grid of optimal
solutions with minimal required motor energy is calculated

over the entire workspace, see Fig. 5. The cost function

to solve minimum input energy point-to-point motions is
defined as

min
Θ̇(t)

J =

∫ tf

t0

(

1

2
wΘ1

Θ̇2
1 +

1

2
wΘ4

Θ̇2
4

)

dt, (10)

with wΘ1
= 1, wΘ2

= 1 and Θ̇i being the motor velocity

of joint i = [1, 4]. Ideally, one would choose τT
mΘ̇ to be

the running cost. However, due to safety reasons the input to
the system is practically Θ̇, i.e. τm is not controlled directly.

The virtual input is therefore chosen to be Θ̇d. The equality

constraint q(tf )−qd = 0 is considered to guarantee reaching
qd(tf ). The arising information regarding the cost function

is stored into a database.

Using inverse kinematics, qd(tf ) and q(tf ) are obtained.

A few of the obtained trajectories from (10) are then encoded
into DMPs, see Sec. IV. To represent m = 4 optimal

input trajectories, n = 40 Gaussian bases are used. Further

parameters are gk = 80, kk = 20, k0 = 2 ∗ 10−4, and
αx = 2.8.

Figure 5 depicts the according results over the entire 2-
DoF workspace (upper left plot). A more detailed resolution

of the red square is depicted in the bottom left plot. The
trajectories of moving to the 4 “corners” of the square are op-

timal solutions from (10). The accuracy of DMP trajectories

is shown in the upper right plot as a comparison between OC
and real-time generated DMP trajectories. Finally, the bottom

right plot depicts a comparison between DMP generalized

trajectories and the optimal ones.

1-NN J 1-NN Y 2-NN J 2-NN Y
Jerr % 10.33 12.48 5.03 4.68

Jmax rad2s−2 0.16 0.22 0.10 0.07
3-NN J 3-NN Y δ=0.21 J δ = 0.09 Y

Jerr % 4.61 3.57 5.03 2.66

Jmax rad2s−2 0.08 0.03 0.05 0.02

TABLE I

COMPARISON OF OC TO OPTIMAL DMP GENERALIZED WITH NEAREST

NEIGHBORS (NN) COST J AND GEOMETRIC DISTANCE Y BASED
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Fig. 6. Comparison of cost functions calculated for OC, DMP and IPOL.

To validate the performance of our approach, we give some

comparison to other solutions. A straight forward one is the

application of geometry based Nearest Neighbor (NN). On
the other hand, it is possible to interpolate weights as ex-

plained in Sec. IV-A. The according numerical comparisons

to the offline generated ground truth OC trajectories are listed
in Tab. I6. As a meaningful error metric the relative error with

respect to the ground truth cost is considered:

Jerr =

N
∑

i=1

JDMPi
− JOCi

N
∑

i=1

JOCi

(11)

N is the number of optimized and simulated samples. Jmax

is the maximum error of JDMPi
− JOCi

. The grid in the

experiment was chosen as point-to-point motion from y =
0.9 : 1.0 and z = 0.35 : 0.45 with a step size of 0.02 m
along each direction, see Fig. 5 (bottom left). JOC is the

result of solving the optimal control from (10) and JDMP

is obtained with the OMF and calculating the cost with

J =
j
∑

i=1

∫ tf

t0
Θ̇2

i . In this case, the best generalization

results are obtained with the distance based metric with

δ = 0.09 7. To compare with standard trajectory generation,
a 5th order polynomial trajectory was used to reach the goal

configuration as well [33]. The according Ipol5 routine is

given by
q = a0 + a1t

3 + a2t
4 + a3t

5, (12)

62-NN Y denotes the interpolation between the first and second NN
geometric distance based.

7This value was found by minimization of the relative error using standard
SQP.
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with tf = 1s, a0 = q0, a1 =
20qf−20q0

2t3
f

, a2 =
30q0−30qf

2t4
f

,

a3 =
12qf−120q0

2t5
f

. q0 denotes the start and qf the final

configuration. Figure 6 depicts the overall comparison be-
tween OC generated trajectories, DMPs with best distance

and cost based generalization, and polynomial interpolation

(Average Jerr = 48.03 %). To sum up, the distance based
generalization yields the best results for the examined task.

Next, we discuss how the OMF is able to generate optimal

explosive motions for elastic robots in real-time.

B. Generalized throwing with the DLR Hand-Arm system

The throwing task is an illustrative example for explosive

and implosive movements, see Fig. 4. The procedure, for
executing the throwing task is again to encode optimal

control trajectories as learning references for DMPs. The cost
function for the throwing task (more specifically, the task is

to throw a ball into a bin) is chosen to be

min
Θ̇(t) J = 1

2w1e
2
dis +

∫ tf

t0

(

1
2wu1Θ̇

2
1 +

1
2wu2Θ̇

2
4

)

dt, (13)

with edis = bd− bc being the throwing error. bd is the actual

bin position and bc the achieved throwing distance. The

weights are chosen to be w1 = 100, wu1 = 0.1, and wu2 =
0.1. For carrying out experiments on the real system, we had

to ensure that no constraints of the system are violated. For
this, the generalization was checked in simulation for a given

range prior to the experiments. After releasing the ball the

end effector velocity is very high. In order to not damage
the system thereafter, also the deceleration phase has to be

optimized. For this, the cost function is chosen to be

min
Θ̇(t) J=

+ 1
2

(

wx2,fe
2
x2,f

+ wx3,fe
2
x3,f

+ wx5,fe
2
x5,f

wx6,fe
2
x6,f

)

+
∫ tf

t0

1
2

(

wx2e
2
x2

+ wx3e
2
x3

+ wx5e
2
x5

+ wx6e
2
x6

+ wΘ−1Θ̇
2
1 + wΘ2

Θ̇2
4

)

dt,

(14)

with wx2,f = 1, wx3,f = 1.1, wx5,f = 1, wx6,f = 1.1,

wx2 = 1, wx3 = 1.1, wx5 = 1, wx6 = 1.1 and wΘ1
=

wΘ2
= 0.5. The parameters exi,f , i = [2, 3, 5, 6] are the final

joint positions and velocities q(tf ) = q̇(tf ) = 0 of joints 1
and 4. exi

ensures convergence to the desired position and
velocity over time.

In the considered example, m = 3 trajectories for different

throwing distances were optimized and generalized with
n = 200 Gaussian bases. Furthermore, non-optimized

goals are simulated for a comparison between the desired

and resulting goal positions, see Fig. 7.

The experimental setup is as follows. A bin is placed at a

desired position along the throwing plane. With a Microsoft

Kinect the distance dBin to the bin is measured and then, the
OMF is able to generate the correct trajectory for hitting the

bin in real-time (trajectory planning runs at 1 kHz). Figure 8

depicts a photo series of three different bin distances being
experimentally validated.

Figure 7 shows the entire movement, consisting of the
throwing task and the subsequent stopping motion. These

trajectories visualize the comparison between online OMF

trajectories and optimal ones. Again, the generalized motions
are very close to the true optimal solution. Opening the hand

for releasing the ball is triggered at t = 1s. The repetitive

accuracy to hit the bin is very high (in average > 80 %), if
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Fig. 7. Learning and generalization of optimal throwing movements.
Top left: Optimal and generalized throwing trajectories in Cartesian space
with flight trajectory of the ball. Four upper right: Learned trajectories
and velocities in joint space with resulting optimal motor trajectories and
velocities. Lower four: Generalized throwing trajectories and velocities in
joint space with resulting motor trajectories in comparison with optimal
trajectories.

the ball can be placed repetitively in the hand, which needs

some training. In another experiment, we simply let HASy

throw the ball to our ball catching demonstrator Justin, whose
location is again measured. Justin is then able to track the

incoming ball and catch it accordingly, see Fig. 9. Important

to notice is that the systems are not communicating with
each other.

Fig. 8. Throwing sequence for varying target (bin). The bin is detected
with a Kinect sensor and the distance dBin parameterizes g. All trials were
successful scores.

VI. CONCLUSION

In this paper, we presented an approach for generalizing

optimal motions in real-time based on optimal sample trajec-

tories that are then encoded into a DMP system for gener-
alization. The developed optimal motion framework (OMF)

performs a variety of optimal motions and was validated in

simulation and experimentally on the anthropomorphic robot
HASy. Our results demonstrate the possibility of combining

optimality and generality even for its use in real-time.
Learned optimal trajectories can be exactly reconstructed in

real-time and even the extrapolation to other tasks show near-

optimal behavior. The comparison of common movement
generators and generalized point-to-point movements shows

that the generalized trajectories produce significantly better

results in terms of the considered cost function.
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Ball

Fig. 9. Sequence for throwing to Justin. Justin is catching the ball.
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[1] M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger,
W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hopp-
ner, S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz,
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