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Abstract— Sampling-based algorithms have proven practi-
cal in solving motion planning challenges in relatively high-
dimensional instances in geometrically complex workspaces.
Early work focused on quickly returning feasible solutions.
Only recently was it shown under which conditions these
algorithms asymptotically return optimal or near-optimal so-
lutions. These methods yield desired properties only in an
asymptotic fashion, i.e., the properties are attained after infinite
computation time. This work studies the finite-time properties
of sampling-based planners in terms of path quality. The focus
is on roadmap-based methods, due to their simplicity. This
work illustrates that existing sampling-based planners which
construct roadmaps in an asymptotically (near-)optimal manner
exhibit a “probably near-optimal” property in finite time. This
means that it is possible to compute a confidence value, i.e. a
probability, regarding the existence of upper bounds for the
length of the path returned by the roadmap as a function of
the number of configuration space samples. This property can
result in useful tools for determining existence of solutions and
a probabilistic stopping criterion for PRM-like methods. These
properties are validated through experimental trials.

I. INTRODUCTION

Traditional sampling-based motion planning approaches,
such as PRM [9] and RRT [12], efficiently and quickly provide
feasible solutions, even for relatively high-dimensional prob-
lem instances. These methods are probabilistically complete
[4], [8], [11]. Recent progress in the field has also provided
the conditions under which these methods converge to opti-
mal solutions [7]. These properties hold asymptotically, i.e.,
after an infinite amount of computation time. This implies
that when a sampling-based motion planner is practically
terminated after a finite amount of time given a typically ad-
hoc stopping criterion, there is no guarantee for the quality
of the path returned.

This work seeks to identify the finite-time properties
of sampling-based motion planners, so as to address this
limitation. The reasoning in this paper follows a direction
in previous work for analyzing the properties of sampling-
based planners [7], [8]. A set of covering hyper-balls over
optimal paths can be defined as shown in Figure 1. There is
positive probability of generating samples within these balls,
and it is also possible to pairwise connect these samples
through the collision-free configuration space. This results
in a worst-case upper bound for a variant of PRM∗.
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Fig. 1. “Disjoint Balls” are concentric
with their respective “Covering Balls” with
radius r, which is a diminishing function of
the number of samples, n.

The covering ball
upper bound on path
length is not very
useful, as it does
not change as the
number of samples
drawn increases. This
is due to the fact
that even though
the radius of the
balls decreases over
time, their number
increases. In practice, it is well known that a greater number
of samples reduces path length. To understand this behavior,
this work employs a set of disjoint balls, as illustrated in
Figure 1, of a fixed number, M , but of decreasing radius as
a function of the number of samples. Bounds can then be
drawn for the expected length of a path through the disjoint
balls, and a probabilistic stopping criterion to traditional
PRM-like algorithms is defined. This analysis results in the
introduction of a new, proposed property for sampling-based
motion planners, that of probabilistic near-optimality (PNO).
This is a similar type of guarantee provided by survey
sampling, where there is a bound regarding the error of a
poll with a confidence value that the result of the survey
will remain within this error.

This work takes a first step in analyzing the finite-time
properties of sampling-based motion planners and introduces
new interesting questions which warrant further exploration.
A model is drawn and is tested through Monte Carlo ex-
periments, and it is shown that models for probability of
path coverage and expected path length hold well for basic
systems and environments.

II. RELATED WORK

An early technique which popularized sampling-based
planning is the Probabilistic Roadmap Method (PRM) [9].
The method pre-processes a configuration space C , and
produces a roadmap, i.e., a graph in C , which can answer
multiple queries. The method is probabilistically complete in
general setups [4], [8], [11], and there are efforts in showing
solution non-existence [15], [19]. There are also extensions
of the PRM, which attempt to improve path quality, such
as covering different homotopic classes [5], [16]. After the
success of PRM, tree-based analogs, such as RRT [12], were
also proposed.

With the proposal of new sampling-based planners [6],
[7], it was shown that variants of sampling-based planners,
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such as RRT∗ and PRM∗, are asymptotically optimal. These
methods build the most sparse planning structures possible to
achieve optimality, but the resulting graphs are still relatively
dense. If optimality is relaxed, it is possible to construct
even sparser structures by taking advantage of work on
graph spanners [14]. Graph spanners are subgraphs of their
input graphs with guarantees on path costs. This results in
asymptotic near-optimality. An incremental version provides
good path quality [13] and it is possible to achieve such
properties without including all configurations as nodes in
the resulting graph [2], [3].

This work focuses on probabilistic near-optimality. This
property is inspired by a similar guarantee of probably
approximately correct (PAC) algorithms [18]. PAC algo-
rithms yield a probabilistic confidence bound on finding a
solution. The connection between sampling-based machine
learning techniques and sampling-based motion planning has
been examined before [10]. This work seeks to identify the
probably near-optimal (PNO) properties of sampling-based
planners in geometrically complex configuration spaces.

III. SETUP

This section provides definitions for understanding the
proposed property and the corresponding analysis.

Definition 1 (Configuration Space): A configuration
space, denoted C , contains as point elements the
configurations of a moving system. This space is d-
dimensional, where each of the d axes typically corresponds
to a degree of freedom of the robot.

C can be partitioned into two sets; the valid (Cfree) and
invalid (Cobs) system configurations. C is also endowed with
a metric distance function.

Definition 2 (Distance Function): Given two points in
C : qa and qb, the function dist(qa, qb) is a metric function
that returns a real value, i.e., dist(qa, qb) : (C × C )→ R.

The objective of sampling-based methods is to produce
collision-free paths, which travel between points in C .

Definition 3 (Path): A path is a continuous function π,
defined over the domain [0, 1] and range C .

Then, the path planning problem is defined as follows.
Definition 4 (The Path Planning Problem): Given Cfree

and two points within this space, qstart, qgoal, representing
an initial and a goal configuration, find a continuous path
π : [0, 1]→ Cfree, such that π(0) = qstart and π(1) = qgoal.

Paths through Cfree may pass infinitely close to the invalid
set Cobs. A path’s clearance is the minimum distance from a
point in the path to Cobs.

Definition 5 (Robust Feasible Path): A path, πε, is ε-
robust if πε has clearance of at least ε.

Sampling-based planners employ basic primitives, one of
which is a local planner, which in this work produces a
straight-line path, denoted L(qa, qb) where qa, qb ∈ Cfree.
The volume of a set, S, is denoted |S|, where this work
employs the Lebesgue measure.

A. Properties of Sampling-Based Algorithms
It is well-known that sampling-based planners provide

probabilistic completeness [8].

Definition 6 (Probabilistic Completeness): A probabilis-
tically complete algorithm returns a solution with probability
1 if such a solution exists, given infinite computation. If no
solution has been returned, it is unknown if a solution exists.

Another relevant property is asymptotic optimality [6], [7].
Definition 7 (Asymptotic Optimality): As the iterations n

of an asymptotically optimal algorithm increase, the algo-
rithm converges to returning π∗ε .

Asymptotically optimal planners, such as RRT∗ and PRM∗

result in relatively dense data structures. An extension to
alleviate this problem are planners which provide asymptotic
near-optimality [3], [13].

Definition 8 (Asymptotic Near-Optimality): As the itera-
tions of an asymptotically near-optimal algorithm go to
infinity, the algorithm returns a solution converging to path
length |πPNO| upper bounded by ≤ a · |π∗ε |+ b for a, b ∈ R+.

These methods compute compact representations which
are quick to query, and have low impact on path cost.
This work shows that asymptotically (near-)optimal planners
exhibit a similar property in finite time.

Definition 9 (Probabilistic Near-Optimality): At a finite
iteration n, a probably near-optimal algorithm provides a
confidence value, 0 ≤ p < 1, representing the probability
that it can provide a solution πPNO that can be upped bounded
relative to the optimum one, i.e., such that |πPNO| ≤ a·|π∗ε |+b
for known constants a, b ∈ R+.

B. Description of Specific Algorithmic Variant

Algorithm 1: PNO-PRM∗(n, ε)

1 V ← {SampleFreei}i=1,...,n; E ← ∅;
2 for v ∈ V do
3 rm ← max{ 3ε2 , γPRM (log(n)/n)1/d};
4 U ← NEAR(V, v, rm);
5 for u ∈ U do
6 if L(v, u) ∈ Cfree then
7 E ← E ∪ {L(v, u)};

8 return G = (V,E);

This work considers a PRM∗ variant dubbed PNO-PRM∗,
shown in Algorithm 1. The algorithm takes as parameters
n, the number of samples to generate, and ε, the desired
clearance. The value for n is based on a probabilistic
stopping criterion, detailed in Section IV.F. The algorithm
also imposes a minimum connection distance of 3ε

2 for pairs
of samples. This connection distance comes as a result from
the analysis (Corollary 2).

IV. ANALYSIS

The analysis begins with some preliminary material. Fol-
lowing these, individual algorithms are examined in greater
detail where bounds on path cost in finite time are discussed.

A. Probability of Path Coverage

This work follows the terminology used in prior work [7],
[8], which defines a volume around an arbitrary path, π, via
a set of covering balls.
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Definition 10 (Covering Balls): Given a path, π :
[0, 1] → C , define a finite set of covering balls as M =

d 2·|π
∗
ε |
ε e+ 1 hyper balls, {B0(

ε
2 ),B1(

ε
2 ), ...,BM−1(

ε
2 )}, of

radius ε
2 centered along π and satisfying:

• The first ball, B0(
ε
2 ), is centered at π(0), and the last

ball BM−1( ε2 ) is centered at π(1).
• The centers of two consecutive balls are at most ε

2 apart,
and the distance between all consecutive pairs is uniform.

Fig. 2. Covering balls over an optimal
path with radius and separation ε

2
. All paths

L(qi, qi+1) are in the valid part of the
space.

Assume there ex-
ists a robustly opti-
mal path π∗ε ⊂ Cfree,
which answers a spe-
cific query. The clear-
ance, ε, must be suffi-
ciently small in order
for this path to travel
through narrow pas-
sages. Figure 2 gives
an illustration of a
construction of cov-
ering balls over π∗ε .
Consider the proba-
bility of sampling in
each of these balls.

Lemma 1 (Probability of Path Coverage): For some ar-
bitrary ε-robust optimal path, π∗ε , the probability of having
at least one sample in each covering ball is

Pcover =

(
1−

(
1−
|B( ε2 )|
|Cfree|

)n)M
where n is the number of samples produced.

Proof This proof follows a similar argument to that
provided by Kavraki and Kolountzakis [8] but draws a
tighter bound on this probability. If the algorithm generates
n samples, the probability that no sample lies in the ball is
a set of n Bernoulli Trials. The probability with which a
sample falls into a ball is |B( ε2 )|

|Cfree| , resulting in a probability

of (1 − |B( ε2 )|
|Cfree| )

n, to cover this ball. The overall probability
then is another set of Bernoulli Trials, assuming sample
independence. There are at most M = d 2·|π

∗
ε |
ε e+1 balls along

this path. Taking the compliment of the probability of having
zero samples in one ball gives the probability of having one
or more samples in this ball, which is (1 − (1 − |B( ε2 )|

|Cfree| )
n).

M such trials yields the proposed probability. �
Figure 3 provides a Monte Carlo simulation in a corri-

dor environment, which tests the validity of Pcover. After
covering π∗ε , the algorithm must connect samples pair-wise
in consecutive balls. Essentially, the algorithm must test for
connections up to the maximum possible distance between
samples.

Lemma 2 (Distance between Covering Samples): Given
two arbitrary points within consecutive covering balls,
qn ∈ Bn and qn+1 ∈ Bn+1, then dist(qn, qn+1) ≤ 3ε

2 .
Proof Each ball has radius ε

2 , thus, the distance from
samples qn and qn+1 can be no more than ε

2 from the
center of their respective balls, Bn and Bn+1. Furthermore,

Fig. 3. Probability of answering a query in the illustrated environment
according to the model against Monte Carlo experiments for varying
numbers of samples. For the different dimensions of the space, xi, x1 is
bounded by [0, 100] while all other xi are bounded by [0, 2]. |π∗

ε | = 94,
M = 95, r = 0.5. Monte Carlo values are averaged over 1000 trials.

by construction, the centers of these balls are no more than ε
2

apart. It follows then that the distance between qn and qn+1

can be no more than 3ε
2 . �

The paths between the samples therefore lie entirely in the
free space Cfree.

Lemma 3 (Connectivity of Covering Samples): Given
two points within consecutive covering balls, qn ∈ Bn and
qn+1 ∈ Bn+1, then L(qn, qn+1) is collision-free.

Proof Consider two consecutive covering balls, Bn and
Bn+1, as well as the hyper ball centered around the center
of Bn with radius ε as in Figure 2, and call this ball E.
It follows intuitively that Bn ⊂ E. It is also the case that
Bn+1 ⊂ E, as the distance from the center of E to the center
of Bn+1 is no more than ε

2 and Bn+1 also has radius ε
2 . It

follows then that for any arbitrary pair of points, qn ∈ Bn
and qn+1 ∈ Bn+1, that L(qn, qn+1) ⊂ E. By definition,
E ⊂ Cfree, thus, L(qn, qn+1) ⊂ Cfree. �

Combined, lemmas 1 - 3 provide the probability of suc-
cessfully answering a query with a path, which covers a
specific π∗ε and has length at most (3 · |π∗ε |+ ε).

B. Determining Path Length

Analyzing path cost using the above lemmas produces a
length bound invariant of the number of samples in the space.
Any path in the roadmap will be no longer than 3 times the
robustly feasible optimum path. This is because the longest
possible paths between samples in neighboring covering balls
are 3 times the displacement between the balls’ centers ( ε2 ).
Decreasing the displacement between covering balls also
results in a higher number of balls to cover a path, resulting
in constant worst-case bound. In order to create bounds
which depend on n, a set of disjoint balls is defined.

Definition 11 (Disjoint Balls): Given a path π∗ε , define
the disjoint balls as the set of M = d 2·|π

∗
ε

ε e + 1 balls,
{B0(r),B1(r), ...BM−1(r)}, with radius:

r =

(
(d2 )! · |Cfree| · (1− (1− p 1

M )
1
n )

π
d
2

) 1
d
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with B0(r) centered at π(0), BM−1(r) centered at π(1) and
the distance between all consecutive balls is uniform.

The relation between covering balls and disjoint balls
is shown in Figure 1 (Page 1). The analysis discusses the
situation after sufficient samples have been drawn to ensure
r is small enough to guarantee that disjoint balls are in fact
disjoint. The prior lemmas extend to the case of disjoint balls.

Corollary 1 (Probability of Disjoint Coverage): For n
samples, the probability that there is a sample in each of
the disjoint balls over π∗ε is

Pcover =

(
1−

(
1− |B(r)|
|Cfree|

)n)M
.

Corollary 2 (Distance between Disjoint Samples):
Given two arbitrary points within consecutive disjoint balls,
qn ∈ Bn and qn+1 ∈ Bn+1, then dist(qn, qn+1) ≤ ε

2 + 2r.
Corollary 3 (Connectivity of Disjoint Samples): Given

two points within consecutive disjoint balls, qn ∈ Bn and
qn+1 ∈ Bn+1, then L(qn, qn+1) is collision-free.

Again, if a sampling-based algorithm attempts all connec-
tions for samples within the distance in Corollary 2, then
the probability of covering π∗ε is Pcover. To begin reasoning
about the length of constructed paths, a δ value is used.

Definition 12 (δ-value): Consider two consecutive dis-
joint balls, Bn, Bn+1, centered at cn and cn+1 respectively.
Two samples qn, qn+1 are drawn uniformly within these
balls. Then, δ is the ratio of the expected distance between
the samples to the distance between the ball centers, i.e.,
δ = E[dist(qn,qn+1)]

dist(cn,cn+1)
.

Calculating δ is a difficult problem, related to the “ball line
picking” problem [17], for which an analytical solution is not
obvious. Nevertheless, Monte Carlo experiments provided in
Figure 4 indicate this value in Rd. Note that these values are
generated using two samples in unit-displaced hyper-spheres
in obstacle-free Rd-space.

For the remaining discussion, the paper will refer to
“returned”, “average”, and “worst”-case paths. A “returned”
path refers to the path returned by an algorithm. An “aver-
age” path refers to any path, which answers the query, and
whose vertices all lie within the disjoint balls. A “worst”-case
path refers to a hypothetical path, which contains a single
transition vertex in each disjoint ball covering the optimum
path that has maximum length.

C. Finite-Time Properties of PNO-PRM∗

The discussion on the provided bounds in path quality
begins with the PNO-PRM∗ algorithm.

1) Worst-Path Analysis: The worst path constructed
through disjoint balls is bounded in length.

Theorem 1 (Worst Case Path Degradation): For an arbi-
trary query, with probability Pcover, PNO-PRM∗ yields an
answer of length ` ≤ (1 + 2r) · |π∗ε |+ 2r.

Proof Consecutive disjoint balls have separation at most ε2
and radius r. Samples in these balls have maximum distance
( ε2 + 2r). Each of the segments along |π∗ε | is covered with
length at most ( ε2 + 2r). This yields a total length of ( ε2 +
2r)(M − 1) = (1 + 2r) · |π∗ε |. Adding the maximum 2r
additive connection cost yields the above bound. �

Fig. 4. Monte Carlo simulation data for δ in various dimensions. Individual
graphs show different ‘ball radius’-to-‘ball displacement’ ratios. Data was
obtained by sampling in dislocated balls and calculating sample distance.

2) Average-Path Analysis: This analysis employs the δ
value described in Definition 12. This δ value ends up
representing a multiplicative bound on path length.

Theorem 2 (Average Path Degradation): Given the aver-
age relative distance between two points in consecutive
disjoint balls, δ, along some arbitrary path answering an
arbitrary query, with probability Pcover (Lemma 1), the graph
of PNO-PRM∗ contains a path with expected length:

E[`] = δ · |π∗ε |+ 2(
d · r
d+ 1

)

Proof An illustration of an average path over a query
is shown in Figure 5. The expected returned path length
for each segment is the length of this segment times δ.
By construction (Definition 10), there are at most M =

d 2·|π
∗
ε |
ε e + 1 such balls, which yields d 2·|π

∗
ε |
ε e segments to

traverse, each at relative cost δ. This results in a total cost
of δ ·M · |π

∗
ε |
M +2( d·rd+1 ) = δ · |π∗ε |+2( d·rd+1 ), where 2 · ( d·rd+1 )

is the expected additive cost for connecting the endpoints of
the produced solution to the query points. �

Fig. 5. Path cost for a path cov-
ering the optimum is multiplicative
in δ, and incurs an additive cost.

This model is shown in
Figure 6, using the Monte
Carlo simulation data for the
value of δ, shown in Figure
4. The model is used to esti-
mate length of an entire path,
and the Monte Carlo exper-
iments generate a sample in
each of M balls and the total
path length is calculated.

D. A discussion of RRG and RRT∗

RRG and RRT∗ should have similar probably near-optimal
properties but their coverage process is more complex, being
a frontier expansion rather than uniformly random [7]. The
computation of Pcover in this case will also depend on the
shape of the tree and of the free space it is constructed
in. A possible work-around is focusing on slightly modified
versions of the algorithms, where the sampling procedure can
only generate points which are no more than ε

2 from existing
vertices in the planning structure. This should minimize the
effect of the free space’s shape.
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Fig. 6. Monte Carlo simulations for path distance for a problem instance
where M = 95 and |π∗

ε | = 94. Note that noise in the model is due to noise
in the computed δ value. Experimental data is generated by observing total
path costs, as opposed to local path costs as in Figure 4.

E. Finite-Time Properties of Roadmap Spanners

Roadmap spanner techniques (e.g., SRS [14] and IRS

[13]) provide asymptotically near-optimal planning struc-
tures, which are relatively sparse. Because PNO-PRM∗ en-
forces a minimum connection radius, the resulting structure
grows prohibitively large, due to its density, with expected
n2 · B(r)

Cfree
edges. Roadmap spanners are a promising direc-

tion in maintaining probably near-optimal properties, while
providing the benefits of a sparse structure.

1) Worst-Path Analysis:
Theorem 3 (Worst Case Degradation for Spanners):

With probability Pcover, the SRS and IRS algorithms return
a path of length ` ≤ t · (( ε2 + 2r) · |π∗ε |) + 2r.

Proof The output of the SRS and IRS algorithms corre-
spond to roadmap spanners of the output of PRM∗. Pcover
remains unchanged; however, it is no longer guaranteed that
all consecutive sample pairs share an edge. The algorithms
consider each candidate edge, and by extension all edges
between consecutive sample pairs, and ensure that there
exists a path through the roadmap, which is no longer than
t times the length of that edge. Thus, following Theorem 1,
SRS and IRS cannot produce paths more than t times longer
than PRM∗. �

2) Average-Path Analysis: One practically beneficial but
confounding property of roadmap spanners is that paths
through the spanner have much lower cost than theoretical
analysis suggests. This is not well understood, making mod-
eling path length difficult in this case.

F. Extensions

1) Stopping Criterion for PRM methods: Traditionally,
the PRM algorithm has no well-defined stopping criterion,
instead relying on ad-hoc criteria for termination. This work
proposes the following natural stopping criterion for PRM by
performing algebraic manipulation on Lemma 1:

Lemma 4 (A Probabilistic Stopping Criterion for PRM):
The PRM algorithm can be stopped after n iterations to
achieve a p probability of returning a solution within the
bounds drawn in Theorems 1 and 2, where

n =

⌈
log(1− p 1

M )

log(1− |B|
|Cfree| )

⌉
2) Solution Non-existence: Probabilistic completeness

is not a sufficient condition to determine solution non-
existence, though guarantees on solution non-existence have
been studied [15], [19]; however, Lemma 1 yields a proba-
bilistic estimate of solution non-existence.

Lemma 5 (Solution Non-Existence): For some path, π ∈
Cfree, such that π(0) = qstart, π(1) = qgoal, of length `,
where d(qstart, qgoal) ≤ ` ≤ ∞, with probability Pcover
there does not exist a solution of the given ` and ε if the
algorithm has not returned a solution.

Fig. 7. Torus space, T2,
is locally homeomorphic to
R2. If the distance metric
uses differences in angles
and sampling is uniform over
angular coordinates, then the
properties still hold.

3) Extension to Non-Euclidean
Spaces: A concern is whether
the drawn properties hold in non-
Euclidean spaces. Assume a suf-
ficiently small ε, and that the
space is locally homeomorphic to
Euclidean space. Then, there are
both local and global properties,
which must be examined. Local
properties are outline in lemmas
1 - 3, while the global properties
are the combination of these, such
as for Theorem 2.

The critical elements of the lo-
cal properties are the assumptions
on the distance metric and random sampler. The local
homeomorphism to Euclidean space is helpful here. For
example, consider the torus, T2 as illustrated in Figure 7. It is
straightforward to see that if the distance metric is reasoning
over angle differences, then the spheres on the surface of
the torus are regular in R2. Similarly, the sampling should
also reason over angle differences, rather than attempting to
sample uniformly on the surface of the torus embedded in
R3. Any space which is locally homeomorphic to Euclidean
space shares similar properties, but this is not a general result
for all spaces.

When examining the global properties, it is easy to see that
despite the unifications in the space, optimal paths will still
be covered by a set of disjoint balls. The local neighborhood
of those balls still being homeomorphic to Euclidean ensures
connections will be made and eventually a covering path can
be constructed.

V. EXPERIMENTAL VALIDATION

Experiments were run in the Open Motion Planning
Library (OMPL) for point systems [1]. Experiments were
performed in six environments: no obstacles (R2, T2, SE(2),
and SE(3)), 2D corridor, and 3D cube.

A. Probability of Path Coverage

Verifying the accuracy of Pcover is critical to the entire
formulation. Table I shows the automated stopping criterion
thresholds for the environments for confidence intervals 0.90,
0.95, and 0.99 (top), and the ratio of experiments which
completed within this limit (bottom).
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Fig. 8. Environments with obstacles are the Corridor (left) and Cube (right).

Environment n0.90 n0.95 n0.99 M ε
Obstacle-Free 2368 2733 3561 11 1.0

Corridor 662 764 995 11 1.0
Cube 7390 8529 11115 11 1.0
Torus 5845 6746 8792 11 0.4
SE(2) 89337 103110 134368 11 1.0
SE(3) 2891429 3402015 4562985 6 2.0

Environment p = 0.90 p = 0.95 p = 0.99
Obstacle-Free 0.917 0.954 0.985

Corridor 0.898 0.947 0.991
Cube 0.900 0.954 0.991
Torus 0.895 0.951 0.991
SE(2) 0.916 0.965 0.992
SE(3) 0.891 0.952 0.986

TABLE I
EXPERIMENTAL TESTS FOR COVERING π∗

ε .

These results show good correlation with the analysis.
The ratio for |B(r)|

|Cfree| was approximated through Monte Carlo
experiments. The approximation has error, which does affect
Pcover. This ratio could be computed during the construction
of the roadmap; however, this will also increase the error,
which could adversely affect Pcover, as the Monte Carlo
experiments tested billions of samples for high accuracy.

B. Path Cost

The analysis also provides bounds on path length, obtained
with probability Pcover. Figure 9 shows lengths of average
paths extracted from the planning structure. Note that the
data points were taken as soon as coverage of π∗ε was
obtained. Tests in SE(2) and SE(3) deviate from the drawn
bound, likely due to the δ value having been computed for
spheres in Euclidean space.

VI. CONCLUSION

The finite-time properties of sampling-based planners are
examined, and bounds are drawn for expected path cost and
probability of attaining a solution. The analysis allows a natu-
ral stopping criterion for sampling-based planners to produce
probably near-optimal solutions after finite computation. The
models drawn are verified against Monte Carlo experiments
and traditional planning methods.

This work opens many avenues for further investigation.
Critically important is developing a model for “returned”
paths, and extending the work for tree-based planners. Due
to the limitations of PNO-PRM∗, it is pertinent to draw better
bounds for roadmap spanner techniques. It would also be
better to have more reliable and robust models for worst-case
bounds and the required δ value for average-case analysis
even for non-Euclidean spaces.

Fig. 9. Path lengths at various iterations for average paths extracted from
the planning structure. The black line shows the optimal path length, and
the orange is the expected length.
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