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Abstract— In this paper, we report a fully automated detailed
mapping of a challenging urban environment using single
LIDAR. To improve scan matching, extended correlative scan
matcher is proposed. Also, a Monte Carlo loop closure detec-
tion is implemented to perform place recognition efficiently.
Automatic recovery of the pose graph map in the presence of
false place recognition is realized through a heuristic based
loop closure rejection. This mapping framework is evaluated
through experiments on the real world dataset obtained from
NUS campus environment.

I. INTRODUCTION

Long term navigation in an urban environment requires
prior knowledge of the environment. Our previous work
[3] showed that a map with abstract representation of the
environment is required for a successful autonomous navi-
gation. In particular, through the use of a prior map, precise
navigation in an urban environment can be achieved by the
effective use of a fixed LIDAR augmented with synthetic
LIDAR measurements. We believe that the prior knowledge
can augment sensor packages to create an autonomous sys-
tem with a minimalist infrastructure.

Murphy et al. [17] introduced Rao-Blackwellized Particle
Filters to perform mapping. In their seminal work, the robots
trajectory and the associated map is represented by each
particle. It was later extended by Montemerlo et al. [16] to
perform landmark based mapping.

The other approach is graph-based mapping, proposed by
Lu and Milios [15], where it proved to be highly effective
in solving large scale mapping problems by exploiting the
inherent sparsity of a map. In [8], a simple loop closure
detection is performed by pair wise matching for any obser-
vations that are within a vicinity from the current location.
On the other hand, Granstorm et al. [7] used machine
learning to perform loop closure detection. In the work,
AdaBoost is used as a strong classifier to find a positive
match for a loop closure. Newman et al. in [18] described an
automated loop closure detection that performs probabilistic
measurement using a sequence of images. When an image
was found to have a high confidence of loop closure, the
corresponding laser scans are retrieved to obtain the relative
transformations.

While many graph type SLAM back-end programs exist,
for example TreeMap[6], TORO[9], iSAM [11], iSAM2 [10]
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and g2o [12], recent researches have shown promising results
that showcase the capability of SLAM back-ends to reject
false loop closure, some are the extension to the current
SLAM back-ends. The leading examples include Switchable
Constraints [24], Max-Mixture Model [19], and Realizing,
Reversing, Recovering (RRR) [13]. However, recent analysis
[25] comparing those methods have shown that none of these
algorithms work perfectly.

The contribution of this paper is threefold. First, to
improve the correctness of a scan matching, an extended
correlative scan matcher is proposed. Second, we show that
a Monte Carlo based loop closure detection is an efficient
technique to perform place recognition. Lastly, we imple-
mented a heuristic based loop closure rejection to a graph
based optimization method that allows robust mapping of the
environment.

This paper is organized as follows, in Section II, we give
an overview to the synthetic 2D LIDAR. Section III provides
details on the implementation of our approach to mapping.
Finally, experimental results for the implemented framework
is included in Section IV.

II. SYNTHETIC 2D LIDAR OVERVIEW

The synthetic LIDAR [3] is constructed in real time using
interest points extracted from a 3D rolling window assuming
that many surfaces in the urban environment are rectilinear
in the vertical direction. To form a synthetic LIDAR, interest
points that are extracted from the rectilinear surface are
projected on a horizontal 2D plane.

The synthetic LIDAR uses 3D rolling window that allows
accurate reconstruction of the real environment. More specif-
ically,

Pn =
∪

k=n−w

{pk, . . . , pn} n > w (1)

where Pn is the points accumulated, pn the points collected
on the n-th scan and w is the window size. This is illustrated
in Fig. 1, where β is used to ensure a minimum distance is
maintained between 2 scan line in a rolling window.

To select the interest points efficiently, 2 rolling windows
are maintained. The first rolling window contains only the
interest points, while the other much smaller window con-
tains the raw, unprocessed points. This is reflected by the
following:

Pϕ
n+1 = Pϕ

n

∪
Φ(Pn+1 \ Pn) (2)

where Φ can be any points classification function, Pϕ con-
sists of the processed points and P contains the raw points.
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Fig. 1. A 3D rolling window

One such point classification function is the surface normal
estimation. The normal of each point is calculated using
a first order 3D plane fitting[1], where it is approximated
by performing least-square plane fitting to a point’s local
neighborhood PK [23].

The plane is represented by a point x, a normal vector n⃗
and distance di from a point pi ∈ PK , where di is defined
as

di = (pi − x) · n⃗ (3)

By taking x = p = 1
k

∑k
i=1 pi as the centroid of pk,

the values of n⃗ can be computed in a least-square sense
such that di = 0. The solution for n⃗ is given by computing
the eigenvalue and eigenvector of the following covariance
matrix C ∈ R3x3 of PK [22]:

C =
1

k

k∑
i=1

(pi − p) · (pi − p)T , C · v⃗j = λj · v⃗j , j ∈ {0, 1, 2}

(4)
Where k is the number of points in the local neighborhood,

p as the centroid of the neighbors, λj is the jth eigenvalue
with v⃗j as the jth eigenvector. The principal components
of PK corresponds to the eigenvectors v⃗j . Hence, the ap-
proximation of n⃗ can be found from the smallest eigenvalue
λ0. Once the normal vector n⃗ is found, the vertical points
can then be obtained by taking the threshold of n⃗ along the
vertical axis, e.g. 0.5. This can vary depending on how noisy
the sensor data is.

Once a complete Pϕ
n is obtained, the construction of

synthetic LIDAR is completed by performing projection into
a virtual horizontal plane (z=0).

III. ROBUST MAPPING WITH SINGLE LIDAR

The overall mapping process is depicted in Fig. 2, where
it can be separated into two general categories, the front-end
and back-end. The front-end usually has different modules
depending on the sensor types, the back-end usually consist
of least-square optimization that relies on the information
matrix given by the front-end data.

The mapping process starts with the acquisition of raw
sensor data. In our work the sensors are 2D LIDAR, encoder
and IMU. The raw sensor data are processed through a real
time 2D synthetic LIDAR, as discussed in Section II. The
scan matching works together with loop closure detection to
generate a constraint graph. Finally, the graph is used by the
back-end to generate a globally consistent map while at the

Fig. 2. The mapping framework

same time performs loop constraint rejection. The following
will provide detailed description to each of the modules.

A. Extended Correlative Scan Matcher

The correlative scan matcher (CSM) [20] is a family of
cross-correlation scan matching algorithms. It employs the
probabilistic framework to search for a rigid transformation
that maximizes the probability of having the observed data.
Correlative scan matching has an advantage that it is robust
to large initialization error while taking advantage of fast
computation using lookup-table rasterization.

1) Multiple Lookup-table Rasterization: Instead of using
only point information in the lookup-table m, other features
associated with the point can be included to form multiple
lookup-table mn, where n corresponds to the number of
features used. In a single lookup-table rasterization, each
point mi in a map is computed its conditional probability that
a nearby point pi can be observed. In a multiple lookup-table
rasterization, other feature of the point pni can be encoded.
This can either be the point’s curvature, normal, depth/height,
or color value. To encode an additional lookup-table for a
different feature, the nearest point pis feature value is used.
Loosely speaking, the features from the nearest point are
simply cast to the additional lookup-table, taking the value
at mni .

The observation model is then becomes:

p(z|xi,m,mn) =
∏
j

p(zj |xi,m,mn) (5)

The additional term mn is included to take into account
the extra features that is encoded in the additional look-up
table. To obtain the value of P (zj |xi,m,mn), a weighted
sum of each feature can be used:

p(zj |xi,m,mn) =
∑
n

wn p(zj |xi,m)f(zj , xi,mn) (6)

where wn are weighting factors with
∑

wn = 1.0,
f(zj , xi,mn) is an evaluation function that has a value of
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Fig. 3. Multiple look-up table rasterization showing different encoding of
point features. Left: Euclidean distance Right: Surface normal

[0, 1]. Should none but only the Euclidean point information
is used, this implies that f(xi,mn) = 1.0 and the observation
model is reduced to

p(z|xi,m) =
∏
j

p(zj |xi,m) (7)

In this work, surface normal of a point is used as the
additional feature. To build the look-up table, encoding of the
elements in the table is done by obtaining the point’s surface
normal, derived from the n⃗ along the horizontal plane. In this
case, the information is readily available as the result from
the construction of the synthetic LIDAR.

Fig. 3 shows such rasterized look-up table with the ad-
ditional surface normal as the new prior. The seemingly
striking contrast is expected since the rotation of the surface
normal on the horizontal plane operates on a range of
[−π, π). To speed out the initialization of the raster table,
only cells that contain non-zero value from the Euclidean dis-
tance table is encoded with the additional information. Then,
the evaluation function can be designed based on the included
angle between 2 surface normals, i.e. ∠(m⃗xy, o⃗xy)/π, where
m⃗xy is the vector of the surface normal from the matching
points, and o⃗xy can be inferred directly from the additional
look-up table. The normalization factor, π is used to scale
the value into range [0,1].

A comparative result showing the advantage of using
multiple raster table is provided in Fig. 4, together with the
3D correlation cost function. As evidence from the matching,
the use of multiple raster table allows precise matching that
are correspond to the true match. The value of the cost
function also reveals the matching problem contains many
local minima. By using multiple raster table, the true global
maxima can be found successfully.

2) Scan Matching Verification: While searching for the
maximum likelihood of a scan with a prior could lead to a
correct matching, directly inferring the score from the scan
matching can sometimes result in a wrong match. This is
especially true when covering a large urban environment,
as two places can share some similarities geometrically
although there are located far away.

The verification is essentially the reversed process of a
standard scan matching. Since the transformation of the
supposed match is known, the result is used to transform
the prior points and test against the matching points. An

(a) CSM with points information
only

(b) Extended CSM with points and
surface normal information

Fig. 4. Comparative examples with extended correlative scan matcher.
The cost function is visualized with each tile represents a slice of the cost
volume for a fixed orientation. In each example, the maximum numerical
value is marked with a crosshair

Fig. 5. Wrong matching resolved through scan matching verification. The
scan matching score was 64% while verification through reversed process
shows the score of only 17%

example of the use of the verification process is shown in
Fig. 5, where the wrong match shows a lower score through
the verification process.

B. Monte Carlo Based Loop Closure Detection

The well-known Monte Carlo Localization [4], [5] has
been applied successfully that allows accurate positioning
[21], [3] of a robot within a known environment. The use of
the particle filters are the key that enable localization to be
done efficiently. Similar to the work of [14], where particle
filters are used to perform place recognition between 2 visual
pair images, particle filters are used to perform loop closure
detection that designed to take the advantage of the view
point invariant of a LIDAR scan.

In a particle filter based loop closure detection, each
particle corresponds to a node in the map and the particle
set:

Xt = x
[1]
t , x

[2]
t , · · · , x[M ]

t

x
[j]
t ∈ 1, 2, · · · , N

(8)

where x
[j]
t is jth particle at time t, M is the total number of

particles and N gives the current total number of nodes. The
particles are the representation of the probability distribution
of the current active node. As more nodes are being added to
the map, loop closure is detected when there is high density

4717



of particles on a different node. The details of the loop
detection process is described below:

1) Motion Model: A motion model is applied to propagate
the particles when a new node is being added, which is given
by:

x
[j]
t = p(xt|ut, x

[j]
t−1) (9)

where ut is the robot’s control input. The motion model
is part of the important function in the iterative nature of
the particle sampling framework. Due to the 1D structure of
the graph topology, a simple forward motion is used with
large probability of particles moving from a node to another
at each step. For the LIDAR measurements, determining
forward motion of a node can be ambiguous since the
measurements are rotational invariant. A forward motion may
not necessary imply an increment to the node number. To
overcome this ambiguity, heading information from the scan
matching result is used when propagation of the particles is
performed. The motion models is given as follows:

p(xt = n|xt−1, ut) = p0

p(xt = (n+ 1)|xt−1, ut) = p1

p(xt = (n+ 2)|xt−1, ut) = p2

p(xt = (n+ 3)|xt−1, ut) = p3

(10)

Here p1 is normally assigned with a high probability while
a small value is given to the rest of the pn.

Input: Xt−1, zt, N
Output: Xt

1 Xt = X̄t = ∅;
2 for i = 1 → M do
3 x

[i]
t = p(xt|ut, x

[i]
t−1);

4 w
[i]
t = p(zt|x[i]

t );
5 X̄t = X̄t + ⟨x[i]

t , w
[i]
t ⟩;

6 end
7 for i = 1 → M do
8 draw j ∈ {1, · · · , N} with probability ∝ w

[j]
t ;

9 add x
[j]
t to Xt;

10 end
11 for i = 1 → αM do
12 j = R[1, N ];
13 k = U [1,M ];
14 x

[k]
t = j;

15 end
16 return Xt

Algorithm 1: Monte Carlo Close Loop Detection

2) Monte Carlo Loop Closure Detection Algorithm:
The overall algorithm is summarized in Alg. 1. The input
to the algorithm are the previous particles set Xt−1, the
measurements zt and the current total number of nodes N .

At line 11-15, random samples is added to maintain
diversity of the particles. To add a random sample, different
random number generators are used. To generate j, a particle

index is drawn according to the weighted Euclidean distance
from the current node based on the latest optimized position
available from the back-end. This is to increase the chances
of discovering close loop even when a low number of
particles is used. On the other hand k is generated with a
discrete uniform distribution.

At each the new particle set, the proposal of possible loop
closure can be obtained. In this work, it is estimated by a
node that has the maximum number of particles.

C. Automatic Loop Closure Rejection

Even though a robust scan matching can be achieved, there
are areas where observations are very similar in an urban
environment. The pose graph is known to have issues with
a falsely recognized loop closure. When the false loop is
included in the optimization, it is often ended up having an
inconsistent map.

To address the problem, heuristic based loop closure
rejection is implemented. Although there are efforts in having
a robust pose graph optimizer, our experiment shows that a
simple threshold based loop closure rejection have a more
desirable graph convergence properties that leads to a high
quality map. By keeping track on the development of the
residual error value available from the optimizer, a decision
on a good or bad close loop can be made based on the growth
rate of the error values. This can be achieved by iterative
optimization, where a constraint can be retained/removed
based on a threshold value. When the error rate exceeds
certain threshold, the loop constraint is removed from the
graph and optimization is performed, thereby regaining an
accurate map.

IV. EXPERIMENTS

A. Experiment Setup

All experiments are based on the raw sensor data col-
lected around the NUS campus area. This is an urban
environment containing many different types of building
structures and natural foliage. There are hilly roads with
significant difference in elevation and real traffic with many
pedestrians traveling through the environment. Our robot
is an autonomous Yamaha G22E golf cart equipped with
various types of sensors [2]. The vehicle has a simple sensor
package with full autonomous capability. The data collected
for the mapping purpose consist of sensor data from a single
tilted down LIDAR and odometry derived from encoders and
a low cost IMU.

B. Mapping of NUS campus area

A dataset is created by driving the vehicle around the
campus area covering an area of 720 m x 900 m while
traveling more than 6 km. For the first experiment, we used
the recorded dataset to perform scan matching. In order to
quickly identify areas that may contain the correct match,
a multi-level resolution correlation is used. The correlation
is started with an exhaustive search on the low resolution
search space, covering large volumes of 3D searches (x, y
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Fig. 6. Mapping of the NUS campus area

TABLE I
PERFORMANCE COMPARISON BETWEEN CSM AND ECSM

Scan matcher CSM ECSM
Accuracy (%) 6.7 2.3
Average Scores (%) 73.9 64.6
Scores Std. Dev 12.4 12.5
Average run time (ms) 225 328

and θ). Then, the search is continued by evaluating through
slices that might have the global maximum.

To compare the performance between the Correlative Scan
Matcher (CSM) and the extended CSM, matching pairs that
contain only the true matches are used. The scan matching
is performed against a subset of the dataset containing 342
pairs of true scan data, then the results are verified manually.
In all the experiment, the window of the scan matching is
set to cover search space of up to ±15 m in the longitudinal
direction, ±22 m in the lateral direction and ±32◦ rotation.
A fairly large translational window is used due to the nature
of an outdoor urban area scan matching. The lateral window
of 22 m is about the length of a four lanes traffic with a lane
seperator (fig. 6a). To maintain a reasonable scan matching
speed, the resolution of translation and rotation is set to
0.1 m and 1◦ respectively. This is to match the occupancy
grid size for localization and the LIDAR’s angular resolution.

Table I shows the CSM has a false matching of 6.7%.
This is improved to 2.3% with the extended CSM while the
average run time is increased by 0.1 s. Fig. 7 shows the
upper triangular similarity matrix for the complete dataset
from the scan matcher. It reflects the nature of the complex
environment that is characterized by several bright spots.

For Monte Carlo loop closure detection experiment, differ-
ent number of particles are used to perform mapping on the
same dataset. For the back-end, iSAM [11] is used to perform
graph optimization. To accept a loop closure, the proposed
loop constraint is added temporary to the graph and perform
optimization. It is accepted when the difference of optimized
resultant residual error is smaller than a threshold, in which
the value is selected through experiment on the same dataset

Fig. 7. The similarity matrix of the mapping environment.

TABLE II
MONTE CARLO LOOP DETECTION AND LOOP REJECTION RESULTS

M
Loops Detection Loops Rejection NetExp.1 Exp.2 Ave. Exp.1 Exp.2 Ave.

30 456* 482 469 142 146 144 325
40 492 507* 500 143 160 152 348
50 499 525 512 154 160 157 355
60 520 520 520 185 155 170 350
80 527 520 524 156 153 155 369
100 518 542 530 140 145 143 387

with different number of particles.
Table II shows the experimental result. A consistent map

is produced in all the attempts except the experimental set
that is marked with *. It shows that only 30 particles are
required to produce a consistent map. However, at least
50 particles are required to perform a successful mapping.
Generally, the number of loop closure detected increases with
the number of particles. The same is applied to the number
of net loop closures after taking into account the rejected
loop constraints.

Fig. 8 shows a snapshot of the mapping process. The green
lines are the visualized factor graph, red circles represent
the position of the particles at a node and the radius of
the circle scales linearly with the density of particles at
the current node. The snapshot shows the scan matcher is
able to perform accurate matching of large offset at the

Fig. 8. Visualization showing the mapping process.
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opposite direction. Fig. 6b highlights the most challenging
area. It is an overhead bridge of about 250 m in length,
connecting the NUS main campus with NUS UTown. It
poses a stiff challenge to the mapping framework due to
the highly uniform structure of a bridge. In this area, the use
of Monte Carlo loop detection and loop constraint rejection
successfully creates an accurate map of the environment. A
video showing the process of the mapping can be found at
http://db.tt/cYrDdtOV

V. CONCLUSIONS AND FUTURE WORK

In conclusion, a robust mapping platform that allows de-
tailed mapping of the environment is established. To enable
accurate scan matching, multiple look-up table is introduced
as an extension to the correlative scan matcher . For efficient
discovery of loop closure, Monte Carlo based loop closure
detection is used. We also showed a heuristic approach to
perform reliable loop constraint rejection. For the future
work, we would like to investigate the use of robustified pose
graph SLAM, and establish a flexible framework that allows
multi-vehicle mapping operation. We would also like to
perform more in-depth analysis to the underlying topological
structure of the map to allow efficient map maintenance in
a large environment.
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