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Abstract— In this paper, we propose and develop a frame-
work for automatic switching of manual driving and au-
tonomous driving based on driver drowsiness detection. We
first present the scale-down intelligent transportation system
(ITS) testbed. This testbed has four main parts: an arena; an
indoor localization system; automated radio controlled (RC)
cars; and roadside monitoring facilities. Second, we present the
drowsiness detection algorithm which integrates facial expres-
sion and racing wheel motion to recognize driver drowsiness.
Third, a manual and autonomous driving switching mechanism
is developed, which is triggered by the detection of drowsiness.
Finally, experiments were performed on the ITS testbed to
demonstrate the effectiveness of the proposed framework.

I. INTRODUCTION

A. Motivation

With nearly 43,000 deaths a year on U.S. roads [1], [2]
and increasing traffic delays in major metropolitan areas, a
need exists for countermeasures to reduce the number and
severity of traffic accidents, as well as relieve traffic jams.
Intelligent Transportation Systems (ITS) has attracted more
and more attention in recent years due to their great potential
in meeting this need [3], [4], [5]. As a rigorous part of the
ITS research, autonomous vehicles such as Google’s self-
driving car [6] has been developed recently.

Though fully autonomous driving appears promising for
future transportation systems, mass deployment of driverless
cars may still be decades away. There are many hurdles to
the wide adoption of fully autonomous driving, including
reliability to liability issues. In this paper we argue that
integrated manual driving and autonomous driving may be
more practical for real world deployment. A vehicle can be
equipped with autonomous driving capability but it will only
drive by itself in certain special conditions for a short period
of time. For example, when the driver is getting drowsy,
or in some urgent situations when the driver loses control
of the car. In this paper, we aim to validate such integrated
driving by considering the case that the driver is drowsy. Our
experiments will be conducted on a small-scale ITS testbed
developed in our lab.

The rest of this paper is organized as follows. In the re-
mainder of this section, we present the related work. In Sec-
tion II we give an introduction to the ITS testbed developed
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in our lab, including both hardware and software platforms.
Section III describes the drowsiness detection algorithm.
Section IV details the mechanism for manual/autonomous
driving switching. Experiment evaluation is explained in
Section V and Section VI concludes this paper and discusses
some future research directions.

B. Related work

Autonomous driving has been researched for a long time.
In the 1980s a vision-guided Mercedes-Benz robotic van, de-
signed by Ernst Dickmanns and his team at the Bundeswehr
University Munich in Munich, Germany, achieved 100 km/h
(62 mph) on streets without traffic [7]. Also in the 1980s the
DARPA-funded Autonomous Land Vehicle (ALV) achieved
the first road-following demonstration that used laser radar
and computer vision to control a robotic vehicle up to 30
km/h [7]. The PATH (Partners for Advanced Transportation
Technology) project conducted in California [8], [9] is one
of the earliest to demonstrate the platooning of a fleet of
self-driving cars. Following the successful DARPA Grand
Challenge, autonomous driving has been attracting growing
interest in recent years [10].

However, the real world mass deployment of such au-
tonomous cars is still far away. First, the reliability and ro-
bustness of the autonomous cars should be greatly improved
before they can be really used in various weather, lighting,
and road conditions. Current technologies still fall far short
of autonomous driving in extreme conditions. Second, legal
issues concerning the liability when such autonomous cars
are involved in accidents have not been sorted out, which
may make the automotive industry reluctant to manufacturing
driverless cars, even when the cars are reliable and robust.
Therefore, research efforts have been devoted to the use of
autonomous cars in applications where safety is not a major
concern, such as on golf courses.

We believe that intermittent autonomous driving during
human driving when special conditions occur can be a good
application, for example, when the driver temporarily loses
the control of the car, such as getting drowsy. In recent years,
the development of robust and practical drowsiness detection
system has been gaining attention. Many of the world’s
major motor companies like Toyota, Ford, Mercedes-Benz
and others are currently employing car safety technologies
which prevent accidents from happening when the driver
is getting drowsy. However, their approach is to wake up
the driver after drowsiness is detected, which may not be
effective in avoiding accidents if the driver reacts too late.
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Fig. 1. The overall ITS testbed.

Real time drowsiness detection has been implemented
through different detection techniques analyzing different
types of input data. The first approach is analyzing the car
controller information such as steering wheel and gas pedals
to detect the drowsiness of the driver [11], [12]. The second
set of techniques makes use of the measurement of variations
in the physiological activities of the human body such as
brain wave (EEG), heart rate or pulse rate [13], [14], [15].
Even though the measurements and their correlation with the
alertness of the driver is quite accurate, they are not practical
as it would require the driver to always wear the sensing
devices and the hardware cost is too high to be used for
commercial purposes. The third approach is making use of
computer vision and image processing applications to detect
the drowsiness of the driver through the changes in his/her
facial expressions [16].

With the ultimate goal being finding a practical and
unobtrusive method of detecting drowsiness of a driver, using
the steering wheel data analysis or the computer vision
approach alone may not be sufficient to determine the state
of the driver under different circumstances and different
behavioral manifestations of the driver. For example, the
nature of the road or the way the driver drives will highly
affect the decision making process when using the steering
wheel data analysis. Similarly the presence of sufficient light
and the way the driver behaves when he/she is drowsy will
influence the detection accuracy when using the computer
vision approach. Therefore integrating the two approaches
will certainly increase the detection reliability and encompass
situations where only one approach may not give sufficient
results. Hence, we implemented the steering wheel data
analysis approach and the computer vision approach, which
are then integrated to give a final decision on the state of the
driver.

II. INTELLIGENT TRANSPORTATION SYSTEM TESTBED

To verify our proposed idea, we will conduct experiments
on a scale-down testbed, which is useful for preliminary
study and feasibility test. This approach strikes a balance
between real-size vehicles and pure computer simulations.
Our small scale testbed can simulate real traffic environ-
ments, autonomous driving, vehicle communication, as well
as human driving experience.

A. Hardware Setup of the Testbed

The overall testbed is shown in Figure 1. The scale-down
ITS testbed we developed has four main parts:1) an arena, 2)
an indoor localization system, 3) automated radio controlled
(RC) cars and 4) roadside monitoring facilities, which are
described below:

1) Arena: The arena is built based on a wooden floor
on which streets, roads and intersections can be set up. It
has a dimension of 16 feet by 12 feet. A carpet on top of
the wooden floor is used to mimic concrete or asphalt road
surfaces.

2) Indoor localization system: An indoor localization
system is built up to localize RC cars in the simulated
traffic environment. The purpose of this system is to provide
location feedback of the cars to support autonomous driving.
This indoor localization system can mimic the function of the
GPS system in the real world. It is developed from an optical
motion capture system (OptiTrack) from NaturalPoint, Inc
[17]. There are 12 cameras to cover the whole arena. The
OptiTrack system is capable of capturing 100 frames per sec-
ond, therefore the location and orientation information can be
obtained in real time and with high accuracy. The OptiTrack
system tracks each RC car via the markers mounted on top
of the RC car.
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Fig. 2. The automated RC car for both manual and autonomous driving.

3) Automated RC cars: We used commercial off-the-shelf
RC cars with a scale of 1:14 to develop the automated RC
car. There are two major parts in the hardware design: a
control board embedded in the RC car body and an XBee
wireless module. An embedded control board is developed
to replace the original circuit board inside the RC car. The
PWM output from the control board is used to drive the front
servo motor and the rear DC motor so that the orientation
and the velocity of the RC car can be controlled, respectively.
The XBee wireless module has a data rate up to 250Kbps and
can serve as the communication channel between RC cars,
as well as between RC cars and roadside infrastructures.

The automated RC car has both autonomous driving
and human driving capability. For autonomous driving, four
markers are mounted on top of the automated RC car to
build a rigid body so that the location and orientation of the
car can be tracked. The tracking control algorithm that allows
the RC car to track predefined trajectories is developed in the
computer, and the control commands are sent to the RC car
via the Xbee wireless communication. For manual driving,
a miniature wireless camera is mounted on the hood of the
RC car to provide visual inputs, as shown in Figure 2. It is
used to observe the environment in front of the car and send
the video stream through wireless communication to the PC.
The human driver sits in front of a racing wheel stand (a
Logitech G27) and drives the RC car while he/she observes
the video stream on the monitor. We developed a program
using the software development kit (SDK) of the wheel stand
to read the data from the racing wheel which include the
wheel turning angle, brake, gas pedal and gear shift status.
Based on that, we send control commands, such as “move
forward”, “backward”, “turn left”, “turn right”, “speed up”,
or “slow down”, through the Xbee wireless communication
to the automated RC car. The whole setup of this human
driving system is shown in Figure 3.

4) Roadside monitoring facilities: A Mobotix Q24 fish-
eye camera as shown in Figure 1 is mounted over the arena
to serve as a roadside monitoring facility. This camera is
capable of providing different views simultaneously, includ-
ing a full 360 degree all-round view, hence it can cover the
whole arena to monitor the traffic underneath it. This camera
uses an IP-based interface. The stream of live images from
the camera is obtained through a socket connection. The
features of the camera (including resolutions, frame rates,
etc) can be easily modified by sending a web request. The

 Connect to 
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Fig. 3. The setup for manual driving.
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Fig. 4. The data collection setup.

camera provides a highest resolution of 3M pixels and the
color images are scalable from 160×120 to 2048×1536. This
camera can be used in research projects involving traffic
monitoring, such as automated collision detection or anomaly
detection through visual surveillance.

B. Data collection setup

To make our ITS testbed accessible to users, both local and
remote, we developed a data server to stream all the sensor
data to clients. Therefore, as long as the client has access to
the Internet, it can connect to the server and request for the
data it needs. This will enable cloud-based computing and
process on the collected data.

The overall data collection setup is illustrated in the
Figure 4. The dashed lines represent the wireless commu-
nication. The solid lines represent the wired communication
via USB or Ethernet cables. The server can stream the sensor
data from the racing wheel, the indoor localization system
and an IMU motion sensor on the RC car which can obtain
the raw 3D acceleration, angular rate and the roll, pitch, yaw
data of the car. Additionally, we also streamed video from
the webcam that monitors the driver’s face and the overhead
fisheye camera that monitors the whole testbed. All the data
are synchronized at a sampling frequency of 20HZ.

III. DRIVER DROWSINESS DETECTION

Drowsiness is one of the main causes of severe traffic
accidents. In our implementation, we used two channels of
information: images of the driver’s face and steering wheel
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data. Previous works have mainly focused on developing
a drowsiness detection method using only one channel of
information, but we employed both of them, preprocessed
them and integrated them at feature level to obtain reliable
drowsiness decisions. The drowsiness detection algorithms
are implemented as a remote client application where the
two sets of inputs transmitted from the server are processed
and the final decision is sent back to the server.

As can be seen from the system diagram in Figure 5, there
are three main components of the system: facial expression
feature extraction, steering wheel feature extraction and
feature level integration.

A. Facial Expression Feature Extraction

Using facial expressions to determine the drowsiness con-
dition involves the following steps: accepting the stream of
images in real time from the data server through the TCP/IP
network, detecting the face of the driver from the image
frame, processing the image to determine the state of the
driver.

The system accepts a stream of images from the server at
a rate of 20 frames per second. When a frame is captured, we
first convert it to grayscale and use histogram equalization
to facilitate face detection. We have used the Viola-Jones
robust real time face detection algorithm [18] implemented
in OpenCV [19] to detect the driver’s face. Once the face
is detected, features are extracted. To do that, two different
areas of interest are used: the face area and the eye region.
The area of interest is fed to Gabor wavelet decomposition
of 2 scales and 4 orientations to extract the facial features.
To reduce the number of features, we employed Adaboost
weak learning algorithm [20] to select the most important
features for classification. The weak classifiers are based on
a single facial feature and the features with the minimum
classification error are selected. For the weak classifiers, two
different thresholds are used: 1) Averaging: We take the
average of the values of the facial feature of all training
images. 2) Searching maximum: We use each value of the
facial feature of all training images as a threshold of the
weak classifier and choose the one that gives the maximum
separation between the drowsy and non-drowsy training
images.

B. Steering Wheel Feature Extraction

According to previous researches in drowsiness detection,
it has been shown that there is a good correlation between
the steering wheel movement and the drop in the state of
vigilance while driving [11], [12]. In an alert state, the driver
tends to make small adjustments to the steering wheel angle
and hence there will only be small variations in the steering
wheel angle. Whereas when the driver is in a drowsy state,
the way he/she drives becomes unpredictable resulting in a
large change in trajectory (zigzag driving) and there will be
a larger amplitude of movement to keep the vehicle in the
center of the lane. As shown in Figure 5, the system accepts
racing wheel data from the data server at a rate of 20 packets

per second. The features are extracted out of a fixed length
of steering wheel data.

C. Feature Level Integration

To attain a more reliable drowsiness detection system,
integrating the two independent sources of information helps
improve the accuracy. After obtaining the selected facial
features and the steering wheel features, we concatenate the
two vectors to form a single feature vector. We feed the
feature vector to an SVM classifier with Gaussian Radial
Basis Function (RBF) kernel which provides a nonlinear de-
cision hyper-plane between drowsy and non-drowsy feature
vectors. During the training, we save the stream of images
with detected face, the face locations, the steering wheel data
vectors and their corresponding labels and train the classifier
offline. During the real time testing, the final decision from
the classifier is sent back to the server application to trigger
the corresponding action.

IV. SWITCHING BETWEEN MANUAL AND AUTONOMOUS
DRIVING

Here we describe the mechanism that enables the switch-
ing from manual driving to autonomous driving, if a drowsi-
ness state is detected by the client program. We first give the
details of the techniques for manual and autonomous driving,
respectively, then we explain the switching mechanism.

A. Manual driving

During manual driving, the RC car was controlled by the
Logitech G27 controller set which includes a steering wheel,
gas, brake, transmission pedal and gear stick. This controller
set interfaces with the computer via a USB port. Once the
computer received signal from the controller, a corresponding
command is sent wirelessly to the RC car via the Xbee
transceiver. The command frequency is set at 20Hz. The data
set of the controller includes: steering wheel; brake; gas and
gear.

B. Autonomous driving

The control algorithm for autonomous driving in this
project was developed in our previous work [21] which uses a
virtual car-based approach to control the automated RC cars.
In this project the RC car will follow a figure eight trajectory.
We defined the virtual car’s trajectory following the street
geometry and traffic rules. To do so, we defined twelve
segments. Each segment specifies the virtual car’s location:
xd = p(s) and yd = q(s). When the RC car reaches one
segment, the virtual car in this segment would start moving
and guide the RC Car to track along the designed trajectory.
When the virtual car reaches the end of a segment, it waits
until the RC car reaches the end of that segment and then
the virtual car starts moving into next segment and repeats
this process.
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Fig. 5. The overall system diagram of drowsiness detection.
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Fig. 6. Determining the virtual car starting location for the switching from
manual to autonomous driving.

C. Switching between manual and autonomous driving

The driver’s status is constantly monitored by the client
program which sends to the server a Boolean variable to let
the server determine the suitable control of the RC car based
on the driver’s status. When the driver is awake, the server
can let him manually control the RC car via the Logitech
racing wheel. When the driver gets drowsy, the server would
take control of the RC car by tracking a predefined trajectory
which follows the street. Before the switch, the RC car might
go off the trajectory. We have to find the point (xp, yp) that
has the shortest distance h from the RC car’s current location
to the predefined trajectory. Then we add the offset distance
d to find the starting location (xd, yd) for the virtual car.
The virtual car’s starting location is illustrated in Figure 6.
Then we use the control algorithm developed in our previous
work [21] to autonomously drive the RC car.

V. EXPERIMENTAL VALIDATION

We conducted scale-down experiments to validate the
proposed manual/autonomous driving framework. The exper-
imental setup is shown in Figure 7. The webcam is mounted
on the monitor to watch the driver’s face. By integrating the
facial expression and steering wheel data, the client program
determines if the driver is awake (Figure 8 (left)) or drowsy
(Figure 8 (right)). The drowsiness detection runs on the client
computer and the results are sent back to the server to trigger
the switching from manual driving to autonomous driving.
At the beginning we set the control to be manual driving.
Once a “drowsy” state is detected, the server switches to
autonomous driving along the predefined trajectory. When
the driver is awake again and the “non-drowsy” state is
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Fig. 7. Manual/autonomous switching experimental setup.

�

� �
Fig. 8. The driver gets drowsy during the driving. Left: awake; Right:
drowsy.

detected, the server let the driver gain the control again. It
is worth noting that at the time of experiments, we let the
driver mimic drowsiness instead of making the driver really
sleepy.

The racing wheel data are plotted in Figure 9, which
capture the moment of the switching. We can observe that
the steering and gas values vary at the beginning. This means
that the driver was controlling the RC car manually. After
300 samples (15 seconds), the steering data stays unchanged
since the driver got drowsy. Then, the RC car is controlled
autonomously by the server to track the predefined trajectory.
After 400 samples (20 seconds), the steering and gas data
changed again which means the driver is detected to be non-
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Fig. 9. The racing wheel data. The 1st red dotted lines indicate the moment
of switching from manual to autonomous driving. The 2nd red dotted lines
indicate the moment of switching from autonomous to manual driving.
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Fig. 10. The trajectory of the car.

drowsy then he can manually control the RC car. During the
experiment, the brake pedal was not pressed, so its value
remained unchanged.

Figure 10 illustrates the trajectory the RC car traveled by
manual driving (blue curve and green curve) and autonomous
driving (red curve). The black curve represents the planned
trajectory. The RC car was first placed at the point (-250,
1000) and manually controlled by the driver to run downward
along the blue curve. The end of the blue curve indicates the
point when the driver got drowsy and this is also the point
where the server autonomously controlled the RC car and
started the red curve. The end of the red curve indicates the
point when the driver woke up and manually controlled the
RC car to run along the green curve. The recovering time
depends on the distance from the RC car to the predefined
trajectory. In this experiment, we noticed that the recovering
time is around 4 seconds.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes an integrated driving framework
which can switch the car from manual driving to autonomous
driving when the driver gets drowsy. This framework demon-
strates that intermittent autonomous driving can be adopted

as a mechanism to prevent accidents in certain abnormal sit-
uations. We conducted a scale-down experiment to evaluate
the proposed framework using a small scale ITS research
platform developed in our lab. In the future we will in-
vestigate how to use the motion sensor data of the car to
detect abnormal driving behaviors and trigger the switching
between manual and autonomous driving.
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