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Abstract— Biologically-inspired robotic (biorobotic) plat-
forms have been successfully adapted for engineering use, but
it is difficult to extend these platforms’ locomotive gaits to meet
optimization goals. The gait spaces of biorobotic platforms can
be very large, with multiple local optima and intractable numer-
ical models. Further, the time cost of empirical exploration is
often prohibitive. Micro-genetic algorithms have been successful
in developing inverse kinematics in simulation, optimizing in
spaces with numerous local optima, and working quickly to
optimize with low numbers of trials, but have not yet been
evaluated for online robotic gait development. To address the
problem of engineering gait development in a biorobotic space,
a micro-genetic algorithm (µGA) is evaluated on a biorobotic
pectoral fin platform. The µGA effectively optimizes in the gait
space with low time costs, discovering new gaits that optimize
thrust force production on the swimming fin. The µGA also
reveals parameter tuning strategies for changing propulsive
forces. Overall, the µGA framework is shown to be effective at
online optimization in a large, complex biorobotic gait space.

I. INTRODUCTION

Researchers in biologically-inspired locomotion have suc-
cessfully used robotic platforms to understand and approxi-
mate complex animal gaits [1][2][3][4][5]. Biorobotic plat-
forms have also been adapted to meet specific engineering
goals [6][7][8], but it is difficult to optimize these platforms
for force production over their broad gait spaces (the high
dimensional spaces formed by the kinematic parameters). By
design, most studies evaluate a small region of the space
near the biological behavior of interest. Optimization over
the broader gait space could extend the range of behavior
possible with bio-inspired platforms.

However, the gait spaces of bio-inspired robots are fre-
quently large and complex due to many actuated degrees
of freedom [9], compliant mechanisms [10], and non-linear
dynamics, making broad optimization challenging. Optimiza-
tion can be even more difficult without a numerical system
model, making simulation infeasible and local optima hard
to identify. Even if a model exists, generalized numerical
modeling is often infeasible beyond the gaits and behaviors
of interest. These gait spaces are usually too large for
empirical evaluation; new gait development strategies must
be employed to optimize for engineering goals.
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Fig. 1. In this study, a biologically-inspired pectoral fin platform was used
to test the effectiveness of a micro-genetic algorithm for developing gaits
in large kinematic spaces. The biorobotic fin (A) matches the kinematics,
mechanical properties, and hydrodynamics of the steady swimming gait of
a bluegill sunfish (C). The fin is composed of 5 fin rays (B) connected by
a flexible webbing (D) that is driven by a servo tendon system to produce
forces underwater. The kinematics of the first DOF (“cupping”) were labeled
FR1, FR4, FR7, FR10, and FR14; these indices refer to their biological
counterparts. The kinematics of the second DOF (“sweeping”) were labeled
FR1b, FR10b, and FR14b. The fin was functionally divided into segments.
The long, flexible dorsal leading edge is formed by the fin rays and webbing
of FR1 and FR4; the ventral leading edge formed by the shorter length
FR10,FR14 and webbing; the medial area formed by FR7 and webbing.
Sunfish image (C) used with permission of George V. Lauder.

Genetic algorithms, or heuristic approaches that “evolve”
a population of solutions based on a fitness function, can
successfully optimize in large parameter spaces without a
numerical model, but fall short in online implementation.
A few studies have evolved behaviors with the use of
simulated robot teams [11][12] and in simulated optimization
of gait parameters [13][14]. However, traditional genetic
algorithms can converge too quickly to local optima [15],
exploring small regions of the solution space with a depth-
first approach. Genetic algorithms can be time-consuming for
online implementation in large spaces, where the evaluation
of each solution requires an experimental trial. These factors
make the basic genetic algorithm a good choice for simulated
robotic gait development, but a poor choice for online
biorobotic gait development where spaces are complex and
fewer general models exist.

Micro-Genetic algorithms (µGAs) present a framework
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to optimize in large parameter spaces by identifying and
evolving diverse local optima, but they have yet to be evalu-
ated in online robotic platforms. Recent work by Hedrick
et al. developed a micro genetic algorithm µGA for the
inverse kinematic problem of hawkmoth flight [16], evolving
simulated wing gaits to approximate force trajectories in
live moths. Work by Doorly et al. used a general genetic
algorithm in online framework to test the evolutionary
principle of selection with robots [17]. Theoretical work
developing µGAs demonstrates their effectiveness in finding
near-optimal solutions in landscapes with multiple local
optima [18]. These developments suggest that µGAs could
be effective for generating optimized gaits for bio-inspired
robots, though to the authors’ knowledge µGAs have not
been evaluated for this application.

A biologically-inspired robotic model of a bluegill sunfish
pectoral fin (Fig. 1) is an excellent candidate for evaluation in
the µGA framework. The platform was designed to study the
mechanisms of pectoral fin force production during swim-
ming. It approximates the kinematics, mechanical properties,
forces, and hydrodynamics of the fish fin and has been used
to study the gaits of steady forward swimming [19][20], yaw
turn maneuvers [21], and hovering in place [22]. Engineering
(non-biological) gaits have been developed by modifying a
steady swimming gait [23], though no broad gait optimiza-
tion has been conducted. Researchers have developed low
order numerical models of sunfish steady swimming [24] and
yaw turn maneuvers [25] and validated these models against
robot performance. But given the variable fin stiffness, non-
linear dynamics, and complex vorticity, a general numerical
model of kinematics and forces is currently infeasible [26].
The lack of a numerical model, the complexity and size of
the gait space, and the empirical nature of the platform make
it appropriate for µGA evaluation.

To address the problem of gait optimization in large
biorobotic parameter spaces, a µGA is evaluated on the
biorobotic pectoral fin platform. The µGA develops swim-
ming gaits that optimize for thrust production. Contributions
include the development of methods for implementing a µGA
on a robotic platform (Sections II-A,II-B), µGA discovery of
engineered gaits for swimming fins, detailed understanding
of the parameter space and outputs for fin gaits and propul-
sive forces, and the comparison of known fish swimming
gaits with those found in the µGA framework (Section III).

II. METHODS

To evaluate the effectiveness of a µGA in a large, com-
plex parameter space, the µGA was applied to an existing
biologically-inspired robotic (biorobotic) pectoral fin. The
µGA was developed based on the methods described in
[16] and included the genetic operators of roulette-wheel
selection, bit-wise mutation, and crossover of parameters to
evolve candidate gaits. Successive generations of candidate
swimming gaits were tested with propulsive force measure-
ment on the biorobotic platform. The fitness of a gait was
determined experimentally by the average thrust produced
through a stroke.

A. Micro-genetic Algorithm

A µGA works by testing a large population of random
gaits, sampling quality gaits from the population to form a
sub-population, and evolving multiple sub-populations with
the use of genetic operators. The µGA first generated a
random population (P) of candidate solutions of fixed size
(N). This entire random population P was tested with force
measurement and fitnesses were computed for each candidate
gait. At each major iteration, a fixed number of gaits (i) were
sampled from P, forming an sub-population Pi (Fig. 2). The
sub-population was then evolved iteratively.

At each loop iteration, genetic operators were used to
improve the fitness of gaits in the sub-population Pi. For
each generation, elitism was applied to Pi, selecting the
first non-dominated vector of the population, Pelite. Elitism
preserved the genetic information of the best solutions. Next,
selection was applied, where i− 1 candidate solutions were
sampled from a fitness-weighted distribution, forming the
selected population Pi,s. The probability of an individual
candidate solution’s selection p(Xi = CGi) was given a
normalized weight of its fitness as in (1). Following selection,
crossover was applied between randomly generated pairs
of candidate gaits, in which their genetic information was
swapped at a random index, forming two offspring candidate
gaits and creating Pi,c. Crossover shares genetic information
of high-fitness gaits, forming offspring of paired gaits. Bit-
wise mutation was applied to the members of Pi,c with
a fixed probability p(m), forming Pi,m. Mutation added
randomness to the search by inverting bits of the candidate
gait binary representation. The non-dominated solution Pelite

and the mutated solutions Pi,m were merged into a new
population Pi, completing one iteration of the µGA. The
fitness of the new population Pi was established through
force testing. Following testing, when the planned number
of generations was reached, the loop terminated.

p(Xi = CGi) =
CGi,fitness∑
CGfitness

(1)

After loop termination, all elite candidate gaits from the
evolved sub-population were saved to the growing portion
of the random population. These filtered gaits could be re-
sampled in future iterations during the sampling stage. The
use of a growing random population is unique to µGAs and
typically produces a diverse distribution of solutions along a
near-optimal front [27].

B. Biorobotic Fin Implementation

The biorobotic fin was developed to approximate the
kinematics, mechanical properties, and hydrodynamics of a
swimming sunfish pectoral fin (see [20],[22], Fig. 1). The
biorobotic fin was composed of multiple fin rays enclosed in
a fabric webbing; a servo-tendon system driving up to two
degrees of freedom (DOF) on each fin ray to produce gaits
(Fig. 1A,B).

To apply a µGA to the biorobotic fin, the components of a
gait were parametrized and represented in a genetic algorithm
framework. To parametrize kinematic trajectories for each
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Fig. 2. A block diagram shows the steps of the live testing µGA - a
genetic algorithm that tests small populations and allows for reinitialization
of the evolving population. The fitness of candidate gaits was determined
through testing when the random population was first generated, and at
the generation of each new population (shaded blocks). The main program
iterated (dotted line) and tested generations of initial populations until the
convergence criterion was reached. Convergence was determined by number
of generations per iteration. Diagram modified from [28].

actuated fin ray DOF, the underlying kinematic trajectory
of steady swimming ([20]) was used and the amplitude
(A; degrees), phase offset (P; fraction of period T), and
flapping frequency (F; Hz) were varied, forming the range
of kinematic patterns (Table I). Changes in fin mechanical
properties require time-consuming swaps of fin equipment so
fin ray flexural rigidity was fixed at a stiffness with known
strong thrust production (EI = 800 times the biological
rays;[19]). Parameter values were selected so as to avoid
damage to the platform, by restricting phase lags between
segments and limiting flapping frequency. The kinematics of
an individual fin ray were represented by a binary array of
18 elements, and thus the kinematics of an entire fin were
represented using 144 binary elements, forming a “candidate
gait” for the genetic algorithm. The solution space specified
by the kinematic parameters contains over 2 million possible
fin trajectories, so brute force search of the space was not
feasible.

TABLE I
PARAMETER SPACE OF FIN RAY KINEMATICS

Amp. (A;◦) Phase (P;T) Freq. (F;Hz)
Minimum 0 0.00 0.25
Maximum 63 0.31 1.52
Increment 1 0.01 0.01

2#bits 26 25 27

Each candidate gait was represented by a data clus-
ter containing the kinematic parameters (see Table I), the
servo trajectories, the measured propulsive forces in thrust
and lateral planes, and the fitness (or quantitative measure
of solution quality). The kinematic parameters and servo
trajectories were selected by the µGA, while forces and
fitness were determined through testing. Average thrust (N)
through a fin beat period was used as the fitness criterion to
explore basic forward swimming. The fitness landscape was
a 25-dimensional space, formed by the {Amplitude, Phase,
Frequency} parameters of each of the candidate gaits and
the fitness of their forces.

C. Experiments

Candidate gaits were tested in real time on the biorobotic
platform with measurement of force and execution of µGA-
specified kinematic patterns. All force and kinematic data
were sampled at 100 Hz on analog input channels and stored
in a single delimited log file. The trials were filmed at 60
frames per second (Exilim FX-1, Casio, JP) to observe gaits
and fin bending underwater. Experiments were carried out
through use of a custom robot graphical user interface in the
LabVIEW programming environment (National Instruments,
Austin, TX, U.S.A.) that drove servo kinematics on the
robot (described in [20]). The robot was mounted onto a
low-friction air bearing carriage (New Way Air Bearings,
Aston, PA, USA) and propulsive forces were measured in
the thrust and lateral directions (LSB200, Futek Advanced
Sensor Technology, LLC., Irvine, CA, USA) in a standing
water tank.
µGA trial parameters were tuned to reduce trial time, ob-

tain diverse elite gaits, and evaluate a simple fitness criteria.
Each trial had a random population P of 50 candidate gaits,
a total of 10 iterations of sub-populations Pi, 5 generations
per sub-population, and 5 candidate gaits per generation,
leading to a testing of 300 candidate gaits per trial. A total
of 5 trials were conducted, each lasting approximately 50
minutes. Fitness was calculated as the average thrust force
through the fin stroke. After each generation, elite candidate
gait data were streamed to file, including parameters, force,
and fitness measures. Each candidate gait took between 4 and
10 seconds to test and save, and genetic operator run-times
were negligible.

III. RESULTS & DISCUSSION

The µGA was effective at identifying diverse, locally-
optimal gaits for the optimization of thrust in the large
biorobotic parameter space. The µGA developed new gaits
that extended existing strategies of thrust production on the
biorobotic fin. The µGA identified a new non-biological
gait for thrust production with comparable force produc-
tion to the bio-inspired steady swimming gait. This gait,
termed “µGA-bimodal” (see Fig. 3), used a high-amplitude,
early-deployment, rapid dorsal edge movement (AFR1,4 =
[40, 50]◦,PFR1,4 ≈ 0T ,FFR1,4 = [1.0, 1.3]Hz) in combi-
nation with a high-amplitude, late-deployment, slow ventral
edge movement (see Fig. 3). These kinematics caused a
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thrust-producing instroke followed by a burst of thrust in
the later outstroke, something not documented before in fish
or the robotic platform. Elite gaits (local optima) of the µGA
approximated the kinematics and force production of known
bio-inspired gaits of steady swimming and hovering. One
elite solution generated matched closely the kinematic pa-
rameters of steady swimming (Fig. 5), following the typical
pattern of: low or no amplitude along the second degree of
freedom fin rays (AFR7,10,14 → 0◦), high amplitudes along
the dorsal leading edge (AFR1,4 → 60◦), and little phase
lag between segments (Pall ≈ 0T ). µGA solutions typically
produced between 80 and 90% of the average thrust of a
bio-inspired steady swimming gait.

Another elite solution generated, “µGA-hover,” closely
matched the kinematics used by the sunfish in hovering,
typified by: early deployment of the dorsal leading edge
(PFR1,4 ≈ 0.0T ), late deployment of the ventral leading
edge (PFR7,10,14 → 0.3T ), and late, high-amplitude, de-
ployment of the second DOF along the ventral leading edge
(AFR10b,14b ≈ 30◦;“lift and drop” pattern detailed in [22]).
Typical bio-inspired hover gaits produce nearly balanced
lateral and thrust forces (Force Means ≈ 0N ), but when
hover was executed at high speeds (F ≈ 1.0Hz) and with
stiff fins (EI = 800x), it was a strong thrust producing mode
[22].

Local optima were quickly reached in µGA execution.
The “µGA-bimodal” gait converged (less than 1% change
in solution quality between generations) after 50 total gaits
were tested (Fig. 3), “µGA-hover” after 23 gaits, and “µGA-
steady” after 10 gaits (each in their respective trials). With
trial times ranging on 4− 10s, this meant that local optima
convergence was obtained on the order of minutes.

The µGA revealed fine-tuning strategies for improving the
thrust production of the biorobotic fin. Changes to individual
fin ray parameters affected the fitness of candidate solutions
(Fig. 4). Fitness was negatively affected by large differences
in phase lag between fin rays, except in the case where
the ventral rays and dorsal rays were deployed at similar
lags respectively (i.e. PFR1 ≈ PFR4 and PFR10 ≈ PFR14),
where fitness was positively affected by similar phase lags
among segments. Fitness increased as phase lags approached
zero (PFR1,4,7,10,14 → 0.0T ). Fitness increased as first DOF
amplitudes (AFR1,7,10,14) increased, excepting fin ray 4,
which produced high fitness at lower amplitudes (AFR10 =
[10, 20]◦). Increasing the flapping frequency of FR4 tended
to increase fitness. Increasing the flapping frequency on other
fin rays had no consistent effects on fitness.
µGA parameters required tuning to determine trial condi-

tions that would produce diverse, high-fitness gaits. Consis-
tent with simulation results in [18], increasing the number
of generations per iteration (beyond 5) did not significantly
affect the quality of solutions found, and increasing the
generation size resulted in a linear increase in testing time.
Increasing the size of the starting random population (P )
tested was the most effective way to improve the quality of
solutions found without significantly adding to testing time.
Increasing the number of iterations only improved quality

Fig. 3. The µGA evolved a new non-biological swimming gait for thrust
production. Evolution of the “bimodal” candidate gait over fifty generations
in a local optima region shows the improvement of thrust production (A).
The evolution of kinematics (B) show an increase of amplitude on the
dorsal leading edge fin rays, causing increase in thrust production through
the outstroke (t=[0, 0.25]s) and instroke (t=[0.75, 1.25]s). “Bimodal” gaits
evolved to employ a delayed movement of the ventral kinematics to produce
slight thrust in the late instroke (t=[1.0, 1.5]s). Data were low pass filtered
at 7Hz for clarity.

3787



Fig. 4. The µGA revealed fine tuning strategies for fin ray degrees of freedom (DOF) in the biorobotic platform. The kinematic parameters of “Amplitude”
and “Frequency” are varied along each of the DOF. “Phase” variations had unclear impacts on fitness and are excluded from these figures. Landscapes
were constructed by meshing of 300 candidate solution fitnesses over the broad range explored in one trial of the µGA.

Fig. 5. Elite gaits (local optima) of the µGA approximated the kinematics and force production of known bio-inspired gaits of steady swimming and
hovering (not shown). A comparison of an elite (i.e. locally optimal) candidate gait of the µGA (TOP) to a sunfish steady swimming gait (BOTTOM). Small
phase differences in the µGA solution led to near-optimal performance of the gait. Steady swimming in both the evolved gait and the biology produces a
strong thrust force using the dorsal leading edge segment of the fin with little phase lag between fin segments. µGA solutions typically produced between
80 and 90% of the average thrust of a biologically-inspired steady swimming gait. Steady swimming images modified from [21]..

of solutions when the random population was sufficiently
large (above 50 solutions), but was a very costly linear
operation. Increasing the number of iterations often resulted
in exploration of the same solution spaces without adding to
diversity. Increasing the bit-wise mutation rate beyond 5%
did not have a significant impact on solution quality.

IV. CONCLUSIONS

Overall, this study demonstrated that a µGA framework
is effective for optimizing in biorobotic gait spaces. Several
diverse gaits were developed for thrust production that were
comparable in quality to previous bio-inspired gaits. The
µGA discovered new gaits that extended the capabilities of
the biorobotic platform in short numbers of experiments. The

µGA identified gaits approximating the biological gaits of
steady swimming and hovering, and both were local optima
in the gait space. The µGA gait space also provided insight
into the effects on fitness of tuning individual parameters in
the robot degrees of freedom. µGA parameter tuning was
straightforward.

Future work can be done to improve the quality and
diversity of gaits developed in the µGA framework. While
regions of local optima were explored, precise local optima
were not determined in this study. For future work, a simplex
algorithm could be used to better explore the space of local
optima with hill climbing, using methods from [29]. The
µGA could be modified to produce better solution diversity
without increasing trial time with the technique of “niching,”

3788



with methods from [30].
The µGA framework will be used in future study with the

biorobotic fin platform to develop new gaits that optimize
for other useful engineering goals. Simple changes could
optimize for balanced forces through the fin stroke, strong
lateral forces to produce maneuver behaviors, or the inverse
kinematics problem. For instance, the µGA framework could
be used to search for gaits that minimize the mean square
error between a desired force trajectory and the observed,
developing inverse kinematics for force trajectories. In simi-
lar ways, the µGA can extend the effectiveness of biorobotic
platforms.
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