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Robotic Visual Servoing of Moving Targets
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Abstract— We present a new image-based visual servoing
scheme for tracking moving targets. This is achieved with a
twofold approach. First, we devise a straightforward adaptation
of a previously proposed depth observer to account for the
fact that the target is not stationary. Second, we estimate the
disturbance on the visual feature dynamics due to the target
motion, and we add a related compensation term to the visual
controller. In particular, the target velocity components parallel
to the image plane are reconstructed using a disturbance
observer, whereas the orthogonal component is retrieved from
the measurement of the Focus Of Expansion. Comparative
experiments show that the proposed method can improve over
classical visual servoing schemes by 50% or more.

I. INTRODUCTION

Image-Based Visual Servoing (IBVS) is a classical approach
to improve the quality of task execution in robotic systems.
The main idea is to define the task and accordingly control
the robot using visual features, such as points or elementary
shapes, defined within the image provided by an eye-in-hand
camera.

The strength of the visual servoing approach results from
the combination of an intuitive, human-oriented task de-
scription with the robustness and accuracy of the control
action [1], [2]. In the classical IBVS scheme, however, the
target object used to define the visual features must be
stationary to guarantee convergence; moreover, the depth
associated to these features must be known for computing
the so-called interaction matrix. If these two conditions are
violated, the performance of the classical scheme may dete-
riorate [3]. In particular, motion of the target will generate a
tracking error, whereas imprecise knowledge of the feature
depth reduces the convergence region. Instability may occur
if either of these non-idealities is particularly severe.

A possible approach to estimate the depth of a feature
is to increase the sensing capabilities of the robot by using
stereo vision [4] or time-of-flight sensors [5]. These solutions
may be inappropriate in service or industrial applications of
visual servoing; for example, stereo cameras have a reduced
field of view and usually need more mounting space with
respect to monocular cameras, whereas time-of-flight sensors
are sensitive to light conditions and surface properties. Other
depth estimation methods, such as [6], [7], make use of
highly structured visual features at the price of a reduced
flexibility of the visual servoing system.

A conceptually different approach to depth estimation
of fixed targets was proposed in [8] based on a nonlinear
observer. The main advantage of this technique, which is that
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neither special cameras nor structured features are required.
In particular, the method works with monocular cameras and
simple point features. Other subsequent works followed the
same approach, including, e.g., [9]-[11].

As for the target motion, object tracking methods existing
in the literature are based on Kalman filtering [12]-[15] or
dedicated algorithms [16]. Another approach is to treat the
motion of the target as a disturbance for the visual servoing
task, see, e.g., [17]. Finally, a predictive controller is used
in [18].

The objective of this paper is to bring together the two
above issues — depth estimation and target motion — so as
to improve the performance of classical IBVS schemes in the
presence of a moving target. This is achieved with a twofold
approach. First, we devise a straightforward adaptation of
the depth observer of [8] to account for the fact that the
target is not fixed. Second, we estimate the disturbance on
the visual feature dynamics due to the target motion, and
we add a related compensation term to the visual controller.
In particular, the target velocity components parallel to the
image plane are reconstructed using a disturbance observer,
whereas the orthogonal component is retrieved from the
measurement of the Focus Of Expansion.

The paper is organized as follows. First, the general
structure of the proposed IBVS for the case of moving
targets is discussed in Section II. Section III presents the
adaptation to this case of the the depth observer presented
in [8] for fixed visual targets. A two-phase technique is then
described in Section IV for estimating the target velocity
using a disturbance observer in combination with an optical
flow estimator. Experimental results with a 6-DOF industrial
manipulator carrying a monocular camera are presented in
Section VI. Some future work is briefly mentioned in the
concluding section.

II. VISUAL SERVOING WITH MOVING TARGET

Basic visual servoing (VS) schemes, either Position-Based
(PBVS) or Image-Based (IBVS), assume that the target is
stationary [1], [2]. If the target is moving, it is possible to
modify such schemes so as to guarantee the same stability
properties provided that its velocity is known. In particular, in
this paper we will consider IBVS control of a single point
feature associated to a 3D point P (extension to multiple
point features is straightforward).

Denote by f = (f. f,)7 the point feature in the image
plane, with coordinates expressed in centered pixel coordi-
nates with respect to the camera principal point. If point P is
stationary, the rate of variation of f depends on the camera
linear and angular velocities v., w. expressed in the camera



frame via the following relationship (see [19])

P=ara( ).

where the interaction matrix J; depends on the depth Z of
the point feature
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and A is the focal length of the calibrated camera.

Now assume that point P is moving with a certain world
velocity vp, also expressed in the camera frame (note that
P as a point does not have angular velocity). Then eq. (1)
is modified as follows
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where J } is the pseudoinverse of J¢, K is a positive definite
gain matrix, and e = f,; — f is the feature error w.r.t. the
desired set-point f, (typically, one sets f; = O to drive the
feature to the center of the image plane). By substitution
of (4) in (3) it may be easily verified that the closed-loop
error dynamics becomes e = —Kle, i.e., global asymptotic
stability is obtained.

The interpretation of (4) is obvious: since vp acts as an
input disturbance on the feature dynamics, the controller
simply compensates this disturbance. In general, however,
the nominal control law (4) cannot be computed for two
reasons:

1) The depth Z is unknown in a pure IBVS setting and
therefore the pseudoinverse of the interaction matrix (2)
cannot be computed.

2) The velocity of vp to be compensated is unknown.

The first is a well-known issue already in the case of
stationary targets, and is usually solved by using a constant
depth value Z in place of the true Z; global stability is
lost but error convergence is still guaranteed provided that
Z is sufficiently close to the value of Z at the set-point.
As shown in [8], a better solution is to use a time-varying
estimate Z produced by using a nonlinear observer, because
this significantly increases the basin of attraction of the VS
controller. We argue that this approach may be even more
beneficial in the case of moving targets, where the feature
depth can be expected to undergo larger variations.

The second problem can be addressed by using an estimate
v p of the velocity of P. To preserve the pure visual nature of
the control scheme, we would like to compute this estimate
using image data only.

Wrapping up the above discussion, the implementable
control law will be
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with Z produced by the depth observer and v p by the target
velocity estimator.

The next section briefly describes the structure of the depth
observer, including a straightforward modification to take
into account the motion of the target. The procedure for
estimating the target velocity is at the core of this paper
and will be discussed at length in Section IV.

IITI. DEPTH OBSERVER WITH MOVING TARGET

Define the state vector & = (z1 @2 23)7 = (fu fo 5)7
and the input vector u = (v, — vp w.)?. Following [8]
the dynamical system that produces the point features f,,, f,
can be written as
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where k1, ko, ks > 0 and eq, e are the first two components
of the observation error e = & — &, which can be directly
measured.

The resulting error dynamics is
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Under a persistency of excitation condition [8] on the camera
velocity inputs, it is possible to prove local asymptotic
stability for the observation error, i.e., convergence of Z
to Z provided that the observer initialization is sufficiently
close to the true value. Asymptotic stability becomes global
if ug,uy and us are guaranteed to be small enough; in a visual
servoing loop, this can be achieved by suitable scaling of the
control inputs.

Note that the observer (8) needs in principle the velocity
vp of point P to reconstruct the input vector u. In practice,
we will use ¥p produced by the target velocity estimator in
place of vp.

(25 — 23)us +



IV. TARGET VELOCITY ESTIMATION

We now describe a two-stage method for estimating the
velocity of the target point P. In the following, we assume
that the depth Z of P is known. This is needed to overcome
the scale ambiguity present in any perspective system, i.e.,
the impossibility of distinguishing an object from the same
object twice as large, twice as far and moving twice as
fast. In practice, our target velocity estimator will use the
Z produced by the depth observer.

A. Disturbance observer

One way to estimate vp from visual data is to build a
disturbance observer. To this end, consider the following
disturbance-free copy of the feature dynamics (3)
. Ve
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with an additional forcing signal which depends on the
mismatch between the actual features f and their virtual

counterparts w through matrix H = h - I, with h > 0.
The dynamics of the error » = f — w is readily computed
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which, in the Laplace domain, becomes
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where J;, denotes the submatrix obtained taking the first
three columns of the interaction matrix Jy. Thus, vector Hr
is a low-pass filtered version of —Jy ,(f, Z)vp with time
constant h:

Hr=-H(sI+H) 'J;,(f, 2)vp

and note that H (sI + H)~! = diag{h/(s+h),h/(s+h)}.
One can then obtain an estimation vp of vp as

bp =J} (f.Z)Hr. (10)

Simulations and experiments have shown this method
reconstructs with reasonable accuracy the velocity of P in
the = and y directions of the camera frame. However, the
estimation of velocities along in the z direction is poor,
essentially due to the lesser influence of such motions on
the visual feature. For this reason, we will use a different
approach for estimating the z component of vp.

B. Focus of expansion

When the relative motion between the camera and the target
object is purely translational, it is possible to define the Focus
of Expansion (FOE) as the point of the image plane where all
feature velocity vectors associated to the target object tend
to intersect (Figure 1). Its coordinates are
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Fig. 1. The Focus of Expansion. The target object is in white, while the
region of interest around the target point is the red square. Vectors in red
belong to the optical flow, whie the green vector is the velocity of the target
point. The FOE is always located on the purple dashed line.

where vp = (URr,z,VR,y,VR,2) = VUp — V. is the relative
velocity between the camera and the target. Once the FOE
associated to our target is measured from the image, it is
possible to reconstruct an estimate 0g , of vg . using (11).
Note that in this computation we use the estimates 0p , and
©p, produced by the disturbance observer, as well as the
known camera velocity. From 9 ., one directly obtains 9p .

A few remarks are in order concerning the computation
of the FOE associated to the target motion. The first is
that the velocity vectors of several feature points associated
to the target object must be available. To this end, an
appropriate region of interest centered at the target point is
considered (see Figure 1) for computing the optical flow at
each sampling instant.

Another issue is that — as already mentioned — the
FOE is only defined for pure translational motions between
the camera and the target object. Since the camera angular
motion is commanded and thus exactly known, its undesired
effect on the FOE computation can be removed using a de-
rotation procedure [20]. As for the target object, however,
we must assume pure translational motion at this stage of
our research.

In our implementation, the FOE is obtained with the
method of [21], which is based on optical flow and uses
a matched filter. The optical flow is computed with Lucas-
Kanade’s method, see, e.g., [22]. The matched filter finds the
FOE by searching for the pixel that minimizes a cost function
related to optical flow. The time needed to actually come
up with the optimal solution obviously depends on the size
of the region of interest. In any case, the computation time
may be reduced using a two-level search: a rough estimate
of the FOE is first found using a lower resolution, and then
refined increasing the resolution in a limited area around the
estimate.

In our case, a further reduction of the time needed to
compute the FOE can be obtained by searching only on the
line passing through the target point feature and having the
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same direction as its velocity (see Figure 1).

V. THE COMPLETE SYSTEM

Figure 2 shows the block diagram of the complete system.
The depth observer is in charge of estimating the depth of the
target point, whereas the disturbance observer and the FOE
are used to reconstruct the target velocity. This information
is then fed to the IBVS control law, which generates the
motion of the eye-in-hand camera.

Note the presence of an algebraic loop between the depth
and the disturbance observer. Namely, the depth observer
needs to know the target velocity to account for it, while
the disturbance observer uses the depth estimate to compute
the interaction matrix. As a consequence, we can expect
convergence of both observers only if the target depth is
initialized at a value close to the actual one, or if the target
velocity is small enough.

VI. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed approach, we
performed experiments on a setup consisting of a 6-DOF
industrial manipulator, (KUKA KRS sixx R650), and a
monocular CCD Camera (Point Grey Flea 2), illustrated in
Figure 3. The target is attached to the end-effector of another
robot (KUKA LWR IV), so that its motion is accurately
known as a ground truth.

The visual servoing task is to track a point feature rep-
resented by the center of a black dot. Feature extraction
is implemented using the Visual Servoing Platform (ViSP,
see [23]), a library which allows fast development of visual
tracking and servoing applications. The optical flow, needed
to compute the FOE, is computed via the Open Source
Computer Vision library (OpenCV, see [24]), which provides
many real-time computer vision routines. Figure 4 shows a
sample of the detected target and the associated optical flow.

To allow a comparative assessment, we report results of
two experiments in which the target motion was the same; in
particular, the target trajectory in Cartesian space is shown
in Figure 5. The first experiment was run under the classical
IBVS scheme which uses a constant depth for the target,
while in the second experiment the proposed control law (5)
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Block diagram of complete visual servoing system.

Fig. 4. A sample camera image with the target centroid (green cross) and
associated optical flow (red arrows).

was applied. The initial depth of the target was Z,
1.226 m. Both servoing schemes were correctly initialized
with this depth and used a gain matrix K = diag{1, 1}.

As shown by Figure 6, the norm of the visual error in
the first experiment has a maximum of 94 pixels and a
mean value of 54.74 pixel. In the second experiment, the
maximum error is around 49 pixels and the mean value
is 28.70. Overall, the improvement of the proposed IBVS
controller over the classical scheme is close to 50%.

The significant improvement with the proposed visual
servoing scheme is obviously due to the combined action of
the depth and disturbance observers. Figures 7 and 8 show,
respectively, the actual vs. estimated depth and the actual vs.
estimated target velocity. The plots confirm the effectiveness
of the designed observers.

Movie clips of both experiments are contained in the video
attachment to the paper.

VII. CONCLUSIONS

In this paper, a new visual servoing scheme has been pro-
posed for tracking moving point targets. A non-linear depth
observer provides an estimate the depth of the point target,
which is then used in the computation of the interaction
matrix. In itself, this enlarges the region of convergence of
the visual controller. In addition, the velocity of the target



Fig. 3.
on the right. The camera image is shown in the bottom-right corner.

point is reconstructed with a two-phase technique, which
makes use of a disturbance observer in combination with a
FOE-based estimator. Such velocity is then used to compute
a disturbance compensation term to be included in the VS
controller. Comparative experiments have shown that the
proposed method can improve over classical visual servoing
schemes by 50% or more.

Future work will focus on reducing the limitation of
the proposed system; in particular, we would like to allow
rotational motions of the target object. We are also working
towards an analytic proof of the overall stability of the
proposed method.
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