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Abstract— This paper presents a map-merging method
which builds a 3D visual map by connecting part maps.
The purpose is to increase flexibility and robustness in 3D
mapping. Map merging is performed by combining image
retrieval using bag-of-words, geometric verification, and
pose adjustment. A key issue is robust data association.
To cope with false matches, we perform group matching
with pose propagation, which checks the geometric consis-
tency of point correspondences over multiple frames. Also,
we perform path consistency check, which examines the
accumulated errors along a loop to eliminate inconsistent
part map connections. Experiments show our method suc-
cessfully built detailed 3D maps of indoor environments.

I. Introduction

Map merging is an important issue in robotic map-
ping, and there have been studies mainly for multi-
robot mapping [11], [7], [9], [2], [8], [27], [4]. This
paper considers map merging as a tool for increasing
flexibility and robustness in 3D mapping.

In most SLAM systems, sensor data are assumed to
be sequential, and adjacent data in the sequence are as-
sociated with each other using wheel/visual odometry.
If the data sequence is interrupted for some reasons,
the mapping process will be terminated. There are
many reasons for interruption: motion blur caused by
quick motions or collisions, large occlusions caused by
obstacles in front of the sensor. Furthermore, sensor
data can be interrupted intentionally by the user or
robot. Large or complex environments are hard to be
covered efficiently by a single sequence, and sensor
data must be collected separately. If the system accepts
only a single data sequence without interruption, it will
be inconvenient in practical use.

A solution to this problem would be a submap-
based scheme, in which sensor data are obtained as
a set of subsequences, and a whole map is built by
automatically connecting submaps generated from the
subsequences. This scheme will free the user/robot from
obtaining a long, complete data sequence. Here, we call
submaps as part maps to emphasize their role as parts
of a whole map. This paper proposes a method of 3D
mapping from stereo image sequences based on the
map merging scheme. This system builds detailed 3D
maps using the edge-point based SLAM (EdgeSLAM
for short) [24], which provides rich shape information.

M. Tomono is with Future Robotics Technology Center, Chiba
Institute of Technology, Narashino, Chiba 275-0016, Japan.
tomono@furo.org

The system uses a stereo camera only. When connecting
part maps, pose adjustment [13] is used to adjust the
shape of the whole map.

A key issue in map merging is data association be-
tween part maps. Similarly to the conventional vision-
based approaches, our method employs image retrieval
based on bag-of-words (BoW) and geometric verifi-
cation based on camera pose estimation using 2D-
3D matching. However, difficulty in data association
emerges in indoor environments such as corridors and
halls, which have non-textured objects and similar
structures which repeatedly appear. Such places can
generate false positives and false negatives.

To cope with these false matches, this paper proposes
two techniques. One is group matching with pose
propagation, in which data association by BoW and ge-
ometric verification is performed over multiple frames.
The relative poses between adjacent frames obtained
by EdgeSLAM can be additional geometric constraints
to reduce accidental false matches. The other is path
consistency check, which finds loops in a connected
graph of part maps, and eliminates false connections
based on loop constraint. This is effective for false
positives due to similarly looking places which are hard
to distinguish by appearance.

The contributions of the paper are twofold. First,
it proposes a robust data association scheme based
on group matching with pose propagation and path
consistency in the context of map merging. Second, it
provides a scheme of 3D map merging by integrating
EdgeSLAM, image retrieval, data association, and pose
adjustment.

II. RelatedWork

Many studies on map merging are motivated by
multi-robot mapping [11], [7], [9], [2], [8], [27], [4]. Some
studies assume that relative poses between robots can
be obtained when the robots encounter one another
[11], [8], [27]. This information greatly helps data as-
sociation. On the other hand, there have been studies
on merging submaps without relative poses between
robots [7], [9], [2], [4]. Our approach belongs to this
class although our purpose is single-robot mapping.
In [7], 2D laser local maps are joined into a single
global map based on data association using image
sequence matching. In [2], 2D occupancy grid maps
are connected by finding maximum overlaps between
them using a stochastic search algorithm. In [9], 2D
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topological maps are merged using subgraph matching
and image registration techniques. In [4], appearance
based maps (topological maps) are joined using BoW
matching and geometric verification. Our method con-
nects submaps using BoW and 3D pose estimation with
group matching and path consistency check for outlier
rejection. To our knowledge, there are no conventional
map merging systems which build a detailed 3D map
using image edge points.

Bundler [22] collects a large amount of unordered
images from web sites and builds a large scale 3D
model based on structure-from-motion and bundle ad-
justment. This system does not need the sequentiality
of the images, and makes an image graph which repre-
sents neighborhood relationships between images. This
makes the data collection procedure much flexible, but
at least one perfect image sequence must be found
in the images to reconstruct the whole scene. This
needs a lot of images if images are collected randomly.
This approach is good for modeling from web site
images, but for visual SLAM, combining short image
sequences would be a good tradeoff between flexibility
and efficiency. Our approach is in the middle between
the two extremes: conventional SLAM with perfectly
ordered data and Bundler with unordered data.

A key issue in map merging is how to find con-
nections between submaps. Visual SLAM can provide
strong data association using image descriptors such
as SIFT [17]. The BoW scheme has been used for data
association in robot localization and place recognition
[26], [6], [5], [12], [25]. The BoW uses no geometric
constraints between feature points and can generate
many false positives. To filter out false positives, many
systems employ geometric verification such as 2D-2D
feature matching based on epipolar geometry [26], [6],
[4] or 2D-3D feature matching based on reprojection
error minimization [12], [25]. Such geometric compu-
tation is used also to obtain relative poses between
submaps to create a pose graph for pose adjustment.

Grouping of matched pairs are used to improve place
recognition [19], [16]. In [19], geometrically consistent
pairs are grouped using a graph partitioning method
in order to eliminate false positives. In [16], grouping
is performed based on BoW matching followed by
geometric verification in order to reduce redundant
matches, but it is also useful to select correct matches.
In this paper, we employ group matching with pose
propagation, where we first reduce false negatives us-
ing pose propagation and then reduce false positives
using group matching.

The concept of our path consistency check is similar
to the recent studies on outlier rejection in loop closing
[14], [20], [23]. In [14], false loop closures are eliminated
based on consensus among loop closures and with the
robot trajectory. In [20] and [23], outlier rejection pro-
cess is incorporated into the pose graph optimization.
In these methods, a whole robot trajectory obtained by

Fig. 1. Flow diagram of the proposed method.

odometry plays an important role for efficient outlier
rejection. On the other hand, in map merging, no whole
robot trajectory is provided beforehand. Map merging
includes a combinatorial problem of finding a complete
trajectory by connecting submaps, which makes it hard
to apply these methods to map merging.

III. PartMap Generation
A. Problem Statement

We assume that map merging is performed for the
following cases; (1) Sensor data sequences are sep-
arately collected from divided regions, and a whole
map is created from the set of data sequences; (2) A
data sequence is interrupted by disturbances, and data
acquisition is resumed around the failure point. In both
cases, it is possible to narrow down the candidates of
part map connections if prior information is available,
e.g., the region where the previous data sequence was
collected. This is useful especially for large-scale map-
ping. In this paper, however, we assume that the system
has no prior information about part map connections.
This is the most general case, and it can be a basis for
improving efficiency using prior information in future.

Fig. 1 shows the flow diagram. The first stage is
part map generation. Part maps are generated using
EdgeSLAM, and key frames are stored in an image
database. The second stage is part map merging. The
system builds a whole map from multiple part maps
by finding the connections between them and by ad-
justing the poses of the part maps. Sensor data can be
divided arbitrarily at any points, but they must have
overlapping regions to connect part maps. We assume
the length of an overlapping region is typically 3 to 10
meters.

B. Local Map Building
A 3D map is built based on the method proposed by

our previous work [24]. We briefly review the method
for completeness.

A local map is built using EdgeSLAM [24], which
uses image edge points detected by the Canny detector
[3]. Note that edge points can be obtained from not
only long segments but also fine textures. Edge points
are reconstructed for each frame based on the parallel-
stereo reconstruction.
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The camera motion from time t − 1 to t is estimated
by matching the edge points in frame It−1 and those
in frame It. Our method employs 2D-3D matching,
in which the 3D points reconstructed from It−1 are
matched with the 2D points detected in It. The reg-
istration is performed using a variant of ICP algorithm
[1] on the image plane. Let rt be the camera pose at t,
Pi

t−1 be the i-th 3D edge point reconstructed at t − 1,
and p̂i

t−1 be the projected point of Pi
t−1 onto image It.

Let pi
t be the image edge point at t which corresponds

to p̂i
t−1. A cost function F is defined as follows.

F(rt) =
1
N

N∑

i=1

d(pi
t, p̂

i
t−1) (1)

Here, d(pi
t, p̂

i
t−1) is the perpendicular distance between

p̂i
t−1 and the edge segment on which pi

t lies.
Camera pose rt and edge point correspondences are

searched by minimizing F(rt) using the ICP. The initial
value of rt is set to rt−1, and the initial correspondence
pi

t of p̂i
t−1 is set to the edge point which is the closest

to p̂i
t−1 in terms of Euclidean distance. By repeating

the minimization of F(rt) and edge point matching,
the optimal rt and edge point correspondences are
obtained.

Based on the obtained camera pose, a 3D map is built
by transforming the stereo 3D points from the camera
coordinate system to the world coordinate system.

C. Part Map

A part map is created from a local map generated
in the previous section. A part map mn is defined as
(Fn,GI

n,GE
n ,Cn). Fn is a set of map elements, GI

n is an
internal graph, and GE

n is an external graph. Cn is the
reference frame of mn. Cn is initially set at the origin of
the world frame, and is transformed by map merging.

A map element (mapel for short) is a key frame with
extra information, and is used as the smallest building
block for mapping. A mapel fk,n of mn is defined as
(Ik,n, rk,n,Ek,n,Pk,n). Ik,n is a key frame (left image of a
stereo frame), and rk,n is the camera pose of Ik,n in Cn.
Ek,n is the set of the edge points detected in Ik,n, and
Pk,n is the set of the 3D points reconstructed from Ek,n.
All of rkn , Ek,n and Pk,n are obtained by EdgeSLAM.
A key frame is extracted from the image sequence
when the camera movement from the previous key
frame exceeds a threshold (±200 [mm] and ±10 [deg]
in implementation). The key frame extraction reduces
redundancies in the image sequence since the distance
between two successive frames are small to make the
ICP work stably in EdgeSLAM.

D. Pose Graphs for Part Maps

A part map has two kinds of pose graphs: internal
graph and external graph. Fig. 2 shows an example.

An internal graph GI
n = (NI

n,AI
n) is a pose graph

which represents the internal structure of a part map.

Fig. 2. Pose graphs. This figure illustrates internal graphs for
part maps m1 and m3, and an external graph for m2.

NI
n is a set of internal nodes, each of which corresponds

to a mapel. There is a one-to-one correspondence be-
tween NI

n and Fn, and we identify nodes with mapels.
AI

n is a set of internal arcs. An internal arc has the
relative pose and its covariance between two nodes.
Internal arcs are created between neighborhood mapels
based on the camera poses estimated by EdgeSLAM.

An external graph GE
n = (NE

n ,AE
n) is used to connect

part maps. NE
n is a set of the nodes connected to other

part maps. Note that NE
n ⊂ NI

n. AE
n consists of two sets

of arcs as AJ
n
⋃

AS
n. AJ

n is a set of external arcs between
NE

n and nodes of other external graphs. AS
n is a set of

shortcut arcs between nodes in NE
n . The nodes in NE

n
may have no internal arcs since NE

n ⊂ NI
n. To avoid

such nodes being isolated, we create shortcut arcs. The
relative pose of a shortcut arc is computed simply
from the current poses of the nodes. The covariance is
calculated by accumulating the covariances along the
path from one node to the other node.

The method how to perform pose adjustment using
these graphs is explained in Section IV-E.

IV. 3D Mapping byMerging PartMaps

As shown in Fig. 1 (b), a whole 3D map is generated
by image retrieval, group matching, path consistency
check and pose adjustment.

A. Image Retrieval

In order to build a whole map from part maps,
connections between part maps must be found. To
find the connections, we adopt the image retrieval
scheme proposed by our previous work [25]. Since
key points extracted by SIFT can be sparse in non-
textured environments, we employ edge points as key
points. For each edge point in Ek,n of mapel fk,n, a SIFT
descriptor is computed through the scale-space analysis
[15] to make the descriptor scale-invariant. Then, the
descriptor is converted to a visual word through the
vocabulary tree [18].

The vocabulary tree is an image database based on
tree search and inverted files. Each node in the tree
corresponds to a visual word and has an inverted file
to store the identifiers of the images that contain the
features corresponding to the visual word. When a
query mapel fk,n is given, the mapels matched with fk,n

5174



are retrieved from the vocabulary tree and the inverted
files based on the TF-IDF scoring scheme [21], [18].

An inverted file is created for each part map. This
makes image retrieval available for every combination
of part maps. If the system has prior information on
connections of part maps, retrieval is performed for a
small set of part maps pruned by the prior. Otherwise,
retrieval is performed for all the part maps.

Image retrieval generates a TF-IDF score matrix,
which is used for pose estimation. The row and col-
umn of the score matrix indicates the mapels in the
current part map and those in the reference part map,
respectively. Each element of the score matrix has a TF-
IDF score of a mapel pair. An example of score matrix
is shown in Fig. 7 in Section V-A.

B. Pose Estimation
After retrieving part maps, we calculate the relative

pose between part maps. One purpose is to create
pose graphs. To create a whole map through pose ad-
justment, we need the relative poses between mapels.
The other purpose is to reduce false positives. Image
retrieval using BoW can generate false positives, and
pose estimation can be used as geometric verification
mentioned in Section II.

We apply pose estimation to the mapel pairs each
of which has a score larger than a threshold th1 from
the TF-IDF score matrix. The relative pose is obtained
by estimating the camera pose of a mapel fj,2 with
respect to a mapel fi,1 in another part map m1 in a
similar manner to our previous work [25]. First, we
find point correspondences between the 3D points of
fi,1 and the edge points of fj,2. This is done based on
two kinds of point correspondences. One is the point
correspondences between the 3D points and the edge
points in fi,1, which have been obtained by EdgeSLAM.
The other is the point correspondences between edge
points in fi,1 and fj,2 obtained through the image re-
trieval mentioned above. Then, we compute the camera
pose of fj,2 relative to fi,1 by minimizing the reprojection
errors of the 3D points of fi,1 onto the edge points of
fj,2. This is done by the ICP algorithm based on Eq. (1).

We create a pose score matrix based on the following
score Si, j, which is used for group matching.

Si, j =
2Ni, j

Ni +Nj
(2)

Ni and Nj are the numbers of the edge points in fi and
fj respectively. Ni, j is the number of the edge points
matched between fi and fj.

It is difficult to completely eliminate false positives
due to noises, occlusions, sparse features, and similar
appearances. Group matching and path consistency in
the next sections cope with this problem. Furthermore,
due to bad initial values, the ICP can fail to esti-
mate correct poses, which generate false negatives. The
randomized ICP in [25] can cope with this problem,

but applying it to every candidate mapel pair is time
consuming. Instead, group matching with pose propa-
gation addresses this problem.

C. Group Matching with Pose Propagation
We introduce group matching with pose propagation

to cope with false matches between part maps. Since
an overlapping region of two part maps has multiple
images, the accuracy of part map matching will be
improved by exploiting geometric constraints over the
images. For this purpose, we employ group matching
based on a consensus scheme among estimated poses.
However, false negatives in pose estimation will make
the consensus less reliable. Therefore, before group
matching, pose propagation is performed to reduce
false negatives.

Another purpose of group matching is to reduce
the computation time of the path consistency check in
the next section. Since its computational complexity is
exponential in the number of arcs between part maps,
we reduce the arcs by grouping them into one arc (map
arc defined later).

Fig. 3 shows an example of the geometric constraint
over multiple images. By the method mentioned in the
previous section, mapel fj,2 in part map m2 is matched
with mapel fi,1 in part map m1, and fj,2 has a pose qj,1
in the reference frame of m1. Likewise, qn,1 is obtained
from fk,1 and fn,2. If these matches are correct, the
relative pose between qj,1 and qn,1 is equivalent with
relj,n, which is the relative pose between rj,2 and rn,2
obtained by EdgeSLAM. Thus, we have the following
equation.

qn,1 = qj,1 ⊕ relj,n (3)

False negatives are reduced by pose propagation
using these constraints. We find the mapel pairs M1
each of which has a score larger than a threshold
th2 from the pose score matrix. Using the pose qj,1
estimated for ( fi,1, fj,2) in M1, the pose q̃n,1 of a nearby
mapel pair ( fk,1, fn,2) is calculated according to Eq. (3),
that is, q̃n,1 = qj,1⊕relj,n. Then, we calculate the matching
score based on Eq. (1) for q̃n,1. If the score is better
than that for the original one qn,1, q̃n,1 overrides qn,1 in
the pose score matrix. Repeating this process for each
mapel pair in M1, the pose score matrix is updated.

In this process, for efficiency, Eq. (1) is calculated for
q̃n,1 without the ICP. When the distance between fi,1 and
fk,1 is small, the accumulated errors by EdgeSLAM or
visual odometry will be small and the simple predic-
tion by Eq. (3) will provide a good matching score.

Next, false positives are reduced by group match-
ing using the updated pose score matrix based on a
consensus based scheme. We find the mapel pairs M2
each of which has a score larger than a threshold th2
from the updated pose score matrix. Then, for mapel
pair pi, j = ( fi,1, fj,2) ∈ M2, we find a group for pi, j, which
is defined as the mapel pairs having a relative pose
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Fig. 3. Geometric constraints between robot poses. qj,1 is the camera
pose which makes the image of f j,2 matched with 3D points of fi,1.
The relative pose between qj,1 and qn,1 is equivalent with that between
rj,2 and rn,2.

Fig. 4. Examples of similar structures. (a) Similar looking corridor
except the window in the front. (b) The floor number is different. (c)
Completely same appearance on different floors.

consistent with the relative pose of pi, j. We search mapel
pairs in the region of radius N from pi, j for efficiency. If√

Dn,1 ≤ th3 in Eq. (4) holds, qn,1 is added to the group
as an inlier. Otherwise, qn,1 is an outlier for the group.

Dn,1 = (qn,1 − q̃n,1)TΣ−1
j,n(qn,1 − q̃n,1) (4)

Σ j,n is a covariance of relj,n. We examine all the mapel
pairs for each group, and select the groups having
inliers more than a threshold th4. An external arc is
created for each mapel pair in the groups obtained.

In implementation, the threshold values are as fol-
lows; th1 = 0.15, th2 = 0.4, th3 = 3, th4 = 10, and N = 5.

D. Path Consistency Check

Man-made environments such as buildings have sim-
ilar structures which repeatedly appear. Fig. 4 shows
examples. The group matching is effective for acciden-
tal false positives, but it is not for systematic ones. It is
possible to distinguish such places by checking differ-
ences on a long trajectory, but sharing a long trajectory
by part maps is not suitable for our motivation, and
we employ another approach.

We exploit path consistency to address the false pos-
itives which escape group matching. The path consis-
tency here is the constraint that one returns to the same
position after traversing along a loop. We introduce map
graph to examine path consistency. A map graph is a set

Fig. 5. A map graph is created by connecting external graphs using
map arcs. This graph is used for path consistency check.

of external graphs combining with one another. We use
map arcs to reduce redundancies in the external arcs. A
map arc is a representative of the external arcs in a
group obtained by group matching. The representative
arc has the relative pose and its covariance of the mapel
pair which has the best score in the group. Fig. 5 shows
a map graph. If the connections between part maps is
correct, the loops along map arcs and shortcut arcs in
the map graph must be true loops in the real world.

We detect all the simple loops (or circuits in graph
theory [10]) in the map arcs and examine whether
or not each loop is a true one. Simple loops can be
detected using a cycle basis [10]. For the nodes n1
and n2 of a map arc ai in each loop, we calculate
the relative pose rel(n1,n2) and its covariance Σ(n1,n2)
between n1 and n2 along the longer path in the loop.
These are calculated by accumulating the relative pose
and covariance of each map arc and shortcut arc in
the longer path. Then, based on Eq. (5), we calculate
the distance between the relative pose along the longer
path and that of the shorter path, which is ai itself.
Here, reli is the relative pose of ai.

E = (rel(n1,n2) − reli)TΣ(n1,n2)−1(rel(n1,n2) − reli) (5)

If
√

E ≤ th3, the loop is regarded as consistent. Oth-
erwise, the loop has one or more false positive arcs.
These false positives are hard to find directly. Thus, we
select good arcs by combining the consistent loops in
the following manner.

We generate a map graph by combining the con-
sistent loops. Note that the combination of individu-
ally consistent loops might generate inconsistent loops.
Therefore, we check path consistency again for the
loops in the map graph. If an inconsistent loop is
found, that combination is discarded. By repeating this
process, we build a consistent map graph. If multiple
candidates are obtained, we select the candidate which
firstly has the largest set of part maps and secondly has
the smallest average errors in terms of Eq. (5).

The computation cost of this method is exponential
in the number of map arcs. A solution to this issue
would be a hierarchical scheme, which is future work.
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E. Pose Adjustment
In order to perform pose adjustment, external arcs

AJ
n are created as follows. We explain it with Fig. 3 as

an example. For each pose pair (qj,1, ri,1) in the matched
group, an external arc is created between fi,1 and fj,2.
The arc has the relative pose and its covariance between
fi,1 and fj,2. Note that the relative pose is computed
between qj,1 and ri,1 since fj,2 must be at qj,1 to connect
m1 and m2. The covariance is simply calculated as the
sum of those of qj,1 and ri,1.

Pose adjustment is performed in a two stage fash-
ion. The first stage is done using the external graphs
connected by the external arcs which belong to the
map arcs selected by the path consistency check. At
the second stage, pose adjustment is applied to a whole
graph, which is generated by combining all the internal
graphs using the external arcs. The poses of the nodes
in the whole graph are updated by the first pose
adjustment, and they provide good initial values for
the second pose adjustment.

In implementation, we use the Sparse Pose Adjust-
ment (SPA) software developed by Konolige et al. [13].

V. Experiments
We conducted experiments using Point Grey Re-

search’s stereo camera Bumblebee2. Images were cap-
tured manually by a walking human. The image size
was reduced to 320×240 pixels. The system is imple-
mented in C++ and runs on a laptop PC with Core
i7-2960XM 2.7GHz. Neither multicore computing nor
GPGPU were used.

A. Part Map Retrieval
We conducted experiments on data association in

indoor environments (a room, corridor, and stairs). In
these environments, image sequences were captured
twice, and two sets of part maps were built from the
image sequences. Then, we examined the performance
of data association between the two part maps. Fig.
6 shows images of the environments. While the room
have many features and a variety of appearances, the
corridor and stairs have similar structures and appear-
ances.

We evaluated the performance of part map re-
trieval using BoW-only, BoW+single matching, and
BoW+group matching. Single matching means geo-
metric verification by pose estimation using a single
image. BoW-only and BoW+single matching are widely
used by conventional vision-based SLAM systems.
BoW+group matching includes the pose propagation.

Fig. 7 shows the score matrices by image retrieval
using BoW as presented in Section IV-A. Brightness
indicates the magnitude of the matching score. The
diagonal elements tend to be brighter since the camera
moved along similar paths in this experiment. Note
that in the case of map merging the overlapping region
will be much smaller. Fig. 7 (a) is the result for the

Fig. 6. Images of the environments.

room, and the scores along the diagonal are clearly
high. This indicates that the room is well distinguished
by BoW due to salient features. Fig. 7 (b) and (c) are
the results for the corridors (1/4 of the whole trajectory)
and stairs respectively, and non-diagonal elements have
high scores, which are false positives.

Fig. 8 shows the score matrices for the stairs dataset.
As shown in (b), the score matrix for BoW+single
matching has false negatives due to the failure of the
pose estimation by the ICP. As shown in (c), the pose
propagation reduced the false negatives.

Fig. 9 shows the precision-recall curves. In all the
matching methods, the precision and recall were eval-
uated using the matches with the top score. In the room
experiment, there are no significant differences between
the three methods. The single matching has relatively
small recall value due to several false negatives, which
was improved by the group matching. In the corridor
experiment, BoW-only generates several false positives.
BoW+group matching reduce false positives using ge-
ometric verification. In the stairs experiment, all the
methods generates several false positives, since this
environment has similarly looking places (e.g., the first
and second images in Fig. 6(c)). The group matching
can keep multiple matches for similar places, but this
experiment records only the matches having the top
score, which might be a false positive with slightly
better score than a true positive.

B. 3D Mapping
We conducted experiments of 3D mapping from

images captured in our university building. Fig. 10
shows some images of the environments.

1) Building 4th Floor: We built a map of a building
floor from seven part maps. This dataset consists of
three image sequences, one of which captured the outer
loop of the floor. Five part maps were created by
dividing randomly this image sequence. The remaining
two image sequences captured paths across two long
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Fig. 7. Score matrices by image retrieval.

Fig. 8. Score matrices for the stairs dataset.

corridors in the outer loop. Two part maps were created
from these image sequences.

Fig. 11 (a) shows the seven part maps built from
the image sequences, and (b) shows the partial map
corresponding to the external graphs after pose adjust-
ment. Note that an external graph has only the mapels
connecting to other part maps.

Fig. 12 shows the whole map generated after the
second pose adjustment. The total number of the key
frames of all the part maps is 1461. The whole map has
1,552,991 landmarks (3D points). The computation time
for this dataset is as follows. Part map generation took
23 [msec/frame] in average for EdgeSLAM, and 134
[msec/key frame] in average for image database regis-
tration with SIFT descriptor generation for key frames.
Part map retrieval took totally 11.5 [sec], most of which
was spent by group matching. Path consistency took 43
[msec] for 17 map arcs, but 574 [msec] for 31 map arcs.
As mentioned above, the computational complexity of
the path consistency check is exponential. Therefore,
it is very important to eliminate spurious map arcs by
group matching. The software has yet to be customized
to improve the performance.

We evaluated the stability of map merging at several
precisions with respect to true positives (TP) and false
positives (FP) of part map connections (map arcs); pre-
cision=0.82 (#TP=14, #FP=3), precision=0.71 (#TP=15,
#FP=6), and precision=0.52 (#TP=16, #FP=15). In all the
cases, the proposed methods eliminated the false pos-
itives by path consistency and generated a 3D whole
map with correct topology.

We currently have no ground truth for this environ-
ment and the evaluation of the accuracy of the whole
map is future work.

Fig. 9. Precision-recall curves for part map retrieval.

Fig. 10. Images of the environments.

2) Building 3rd and 4th Floors: We built a map of two
floors of the same building. The map has a loop along
two floors connected by stairs. This dataset consists of
four image sequences captured on different days and
they were randomly divided into eight part maps. Fig.
13 shows the part maps.

Fig. 14 shows the whole map. The total number of
the key frames of all the part maps is 1498. The whole
map has 1,576,462 landmarks.

We evaluated the stability at several precisions
with respect to part map connections; precision=0.74
(#TP=14, #FP=5), precision=0.67 (#TP=14, #FP=7), and
precision=0.57 (#TP=16, #FP=12). In all the cases, elim-
inating the false positives, the proposed methods gen-
erated a 3D whole map with correct topology.

The 3rd and 4th floors have similar structures and
appearances. In particular, the regions around the el-
evators and stairs have very similar appearances and
led to false positives. Our method successfully built the
whole map in such a condition.

VI. Conclusions

This paper has presented a map-merging method
which builds a 3D visual map by connecting part
maps. This method provides flexibility and robustness
in the mapping procedure. A key issue is robust data
association achieved by group matching with pose
propagation, which checks the geometric consistency
of point correspondences over multiple frames; and
also path consistency check, which examines the accu-
mulated errors along a loop to eliminate inconsistent
part map connections. Experiments show our method
successfully built detailed 3D maps of indoor environ-
ments.

Future work includes the framework of part map
management for efficient map merging in large-scale
environments.
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Fig. 11. Connections of the part maps.

Fig. 12. Whole 3D map generated by map merging.
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