
Group Induction

Alex Teichman and Sebastian Thrun
Stanford University

Abstract— Machine perception often requires a large amount
of user-annotated data which is time-consuming, difficult, or
expensive to collect. Perception systems should be easy to train
by regular users, and this is currently far from the case.

Our previous work, tracking-based semi-supervised learning
[14], helped reduce the labeling burden by using tracking
information to harvest new and useful training examples.
However, [14] was designed for offline use; it assumed a fixed
amount of unlabeled data and did not allow for corrections
from users. In many practical robot perception scenarios we
A) desire continuous learning over a long period of time, B)
have a stream of unlabeled sensor data available rather than a
fixed dataset, and C) are willing to periodically provide a small
number of new training examples.

In light of this, we present group induction, a new mathe-
matical framework that rigorously encodes the intuition of [14]
in an alternating optimization problem similar to expectation
maximization (EM), but with the assumption that the unlabeled
data comes in groups of instances that share the same hidden
label. The mathematics suggest several improvements to the
original heuristic algorithm, and make clear how to handle
user interaction and streams of unlabeled data. We evaluate
group induction on a track classification task from natural
street scenes, demonstrating its ability to learn continuously,
adapt to user feedback, and accurately recognize objects of
interest.

I. INTRODUCTION

It is not uncommon for perception systems to be trained on
thousands or tens of thousands of labeled examples. At the
more extreme end of the spectrum, previous supervised work
on car, pedestrian, and bicyclist detection in autonomous
driving was trained on 600 million labeled instances of
objects [16]. Requiring thousands or more training examples
makes scaling up these perception systems to larger numbers
of object classes an onerous task, and puts the training of
object recognition systems firmly out of reach of regular
people.

For example, consider a farming robot designed for auto-
mated weeding. Each farm will have a different perception
task due to differences in soil color, weed populations,
crop types, crop age, and so on. Training a new perception
system for each farm from scratch using fully-supervised
techniques could easily be economically infeasible due to the
costs of collecting large numbers of hand-labeled training
examples. Typically, training examples for many different
viewpoints, lighting conditions, and poses are necessary to
produce a high accuracy perception system. However, a few
examples provided by a user should be enough for the robot
to recognize at least one object of interest, then look at it
from different angles to automatically harvest new and useful
training examples. It is this intuition that [14] harnessed, and

Fig. 1. We evaluate group induction on an object recognition task using
Stanford’s autonomous vehicle, Junior.

which we will continue to exploit in this paper. The goal
is accurate perception systems that can be trained by non-
experts using only tens of training examples. Towards this
end, the primary contributions of this work are:
• a more rigorous mathematical framework for the in-

tuition behind tracking-based semi-supervised learning,
generic to any scenario in which the unlabeled data has
group structure.

• extensions of this math for making use of streams of
unlabeled data and occasional user input.

• a particular implementation of the above which we
empirically demonstrate is practical for lifelong learning
of object recognition systems for autonomous driving.

II. RELATED WORK

Group induction makes use of both labeled and unlabeled
data and therefore falls into the category of semisupervised
methods, for which a broad overview can be found in
[20]. The abstract math is perhaps most related to the EM
algorithm [4]; both are alternating optimization problems
with training and hidden variable estimation steps, but group
induction additionally assumes the group structure in the
unlabeled data and uses hard rather than soft assignment.

Co-training [1] is a related semisupervised method which
uses different “views” of the same instances. A different
classifier for each view is maintained and used for labeling
the training set of the other view. An example from a robotics
context would be having a camera view and a pointcloud
view of every training example; then the system could,
in theory, be trained with camera images of cars, learn
to recognize them in laser range finder data, then harvest
camera image training examples of car headlights at night.
This is similar to group induction in that groups of (two)

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2757

unlabeled instances are assumed to have the same label, but
different in that the two unlabeled instances live in different
descriptor spaces. In group induction, we assume that all
instances live in the same descriptor space.

Active learning involves a machine learning system asking
a user for labels to particular examples. A broad overview
can be found in [11]. We make use of a very simple
version of active learning in which, when a user decides
to provide feedback to the system, examples are sorted by
confidence; useful examples can easily be found in low-
confidence regions of the space. In robotics, active learning
is used, for example, in [5] to reduce the labeling burden for
autonomous navigation.

Other ways to reduce the labeling burden have also been
explored in robotics. For example, in [8], domain adaptation
is applied to use 3D models to improve object recognition
in laser scans. Self-supervised learning is also common in
terrain classification, as terrain labels can be found automat-
ically using depth sensors [18, 2] or accelerometers [19].

A preliminary version of the work in this paper was
presented at an RSS 2012 workshop as a presentation only.
Slides can be found at [15]. The goals of online and active
learning were the same, but group induction had not yet been
developed.

III. GROUP INDUCTION

In this section, we introduce the abstract mathematics of
group induction. In Section V-B, we will consider a con-
crete instantiation of this math for the autonomous driving
problem.

Intuitively, group induction is a semi-supervised frame-
work for harvesting new and useful training examples from
unlabeled data by exploiting the fact that groups of un-
labeled examples are known to share the same (hidden)
label. Initially, a classifier is trained using only a small
amount of user-annotated data. This initial classifier is used
to search the unlabeled dataset for groups it can classify
confidently. These groups get added to the training set, the
classifier is updated using the new examples, and the process
repeats. New and useful training examples - i.e. those that
the classifier would otherwise classify incorrectly - can be
added during this procedure because of the grouping in the
unlabeled data. This intuition was introduced in [14]; what
follows is the new formalization of this intuition.

Formally, group induction is the optimization problem

minimize
H, yg∈{−1,0,+1}∀g∑

i

`(H(xi), yi) +
∑
g

∑
u

`(H(xg,u), yg), (1)

where H is a classifier, x ∈ RN is a descriptor, y ∈
{−1, 0,+1} is a class label, and ` is a loss function. The two
terms correspond to supervised training data and unlabeled
groups, respectively, with i ranging over the supervised data,
g ranging over all groups, and u ranging over instances
within a group.

Different machine learning models can be plugged in
to this problem. For example, with logistic regression,
H(x) = wTx and `(H(x), y) = log(1 + exp(−yH(x))).
Alternatively, with boosting, H(x) =

∑
k hk(x) is the

strong classifier composed of many weak classifiers and
`(H(x), y) = exp(−yH(x)). Much of the following math
remains the same or similar for different choices of `, but
we will use boosting and exponential loss from this point
on. Finally, we present only the binary classification case;
the extension to multiclass is straightforward.

The group induction problem as a whole is non-convex,
but we can find a local minimum by alternating between
an induction phase and a training phase, analogous to the
expectation and maximization steps of EM [4].

In the induction phase, we hold H fixed and solve for
each hidden group label yg . This problem is separable across
groups, so we can consider in isolation the problem

minimize
y∈{−1,0,+1}

∑
u

exp(−yH(xu)), (2)

where unnecessary indexing and constant terms have been
stripped. Drawing inspiration from self-paced learning [7],
the y = 0 label is allowed so that only unlabeled groups
which we are confident in will actually be used for training.
This problem has an analytical solution; we simply evaluate
the objective function for each of the possible labels and
choose the minimizer. This is significantly more conservative
from the induction heuristic in [14], which proposed a
threshold on average group confidence 1

U

∑U
u=1H(xu). See

Figure 2 for a concrete example of the induction criteria.
The training phase entails holding the group labels

fixed while training the classifier. In the generic case,
this reduces to the standard training objective function of∑
i `(H(xi), yi), where i ranges over all supervised instances

as well as all instances in the inducted groups.

A. Worst-case classifier noise

In [14], one could adjust the induction speed with a
threshold on average group confidence. Here, because the
induction criteria has changed, that method no longer applies.
Moreover, we would like to maintain the rigorousness of our
optimization; if we were to simply decree that the induction
phase must respect a threshold on average group confidence,
we would no longer be optimizing the problem (1).

Instead, we can propose an alternative optimization prob-
lem which encodes the intuition of [14] in a rigorous way.
The idea is simple: We assume that all classifier predictions
are corrupted by a fixed amount of worst-case noise. The full
optimization problem becomes

minimize
H, yg∈{−1,0,+1}∀g

maximize
εi,εg,u∈±εmax ∀i,g,u∑

i

exp(−yi[H(xi) + εi])

+
∑
g

∑
u

exp(−yg[H(xg,u) + εg,u]).

2758

-0.178.7 24 23 32 16

-408.7 24 23 32 16

y = -1

y = 0

y = +1

Objective

7.9e+13

6

1.2

H(x)

H(x)

y = -1

y = 0

y = +1

7.9e+13

6

2.4e+17

Fig. 2. Example of the induction phase for two hypothetical tracks, each of which defines a group of instances assumed to share the same label. Log
odds predictions H(x) for each frame were generated using a classifier trained with our method. The right column shows the objective function values
corresponding to the optimization problem (2). In the top row, y = +1 minimizes the objective function so the track is inducted as a pedestrian. The
result is that a useful training example - one for which the classifier predicts incorrectly - is added to the training set. In the bottom row, a transient
under-segmentation looks very unlike a pedestrian to the classifier, preventing induction; y = 0 minimizes the objective function and so the group does
not contribute during the training phase.

The optimization for the training phase reduces to

minimize
H

∑
i

exp(−yiH(xi) + εmax)

+
∑
g

∑
u

exp(−ygH(xg,u) + εmax),

and the worst-case errors drop out as a constant factor. We
are left with boosting training as usual.

During the induction phase, analogous to (2), we have

minimize
y∈{−1,0,+1}

maximize
εu∈±εmax ∀u

∑
u

exp(−y[H(xu) + εu]). (3)

As before, we can simply evaluate this sum for each possible
y and choose the smallest. Setting εmax > 0 allows us to make
the induction more conservative, analogous to increasing the
average group confidence threshold in [14].

B. Active learning and retrospection

In practice, it is often desirable to have a user provide oc-
casional input to guide the system to a good local minimum.
This amounts to adding new examples to the supervised term
of (1). These new examples could be acquired from any of
a number of active learning methods.

When new annotations arrive, we start a new optimization
problem that is similar to the old one, but with additional
terms of supervised data. The naı̈ve warm-start for this new
optimization problem is to simply use the previous classifier
and group labels untouched.

However, this can have undesirable effects when using
a highly discriminative classifier. Consider a case in which
several false positive inductions have been made and a user,
watching the system make false positive classifications at
runtime, provides new annotated examples to address the
issue. Since the false positive inductions remain in the
training set along with the new annotated examples, a highly
discriminative classifier will learn to distinguish the two
based on what seem to be minor and unnoticeable details.

What we actually want is to de-induct, i.e. set yg = 0,
just the false positive inductions. We refer to the process of
using new annotated examples to de-induct certain groups as
retrospection. Because we are choosing a warm start for a
new optimization problem rather than actually taking a step
during an optimization, we are free to apply heuristics that
seem reasonable and effective.

One way to accomplish retrospection is to make use of
the worst-case classifier noise formulation above: Do an
induction step using εmax = maxi[−yiH(xi)], where i ranges
over the new annotated examples. This provides a lower
bound on the true value of the worst-case noise, and the
result is that low confidence groups will be de-inducted
and high confidence groups will remain. A user annotation
which reveal a high confidence false positive will result in a
large εmax and therefore significant retrospection, whereas a
low confidence false positive will result in only moderate
retrospection. We also reset H , as otherwise at the next
induction phase, it will tend to re-induct the false positive
groups we were intending to be rid of in the first place.

C. Unlabeled data streams

When considering streams of unlabeled data, we need to
amend the optimization problem (1) somewhat, as the sum
over the unlabeled groups grows continuously. In practice,
we cannot store all unlabeled groups, so we resort to the
approximation of keeping a fixed-size set of groups that can
fit in memory. Specifically which groups is motivated directly
by the math: Choose those that contribute the most to the
training phase objective function, after constant terms (i.e.
groups with yg = 0) are dropped. Intuitively, this corresponds
to keeping the examples from which the classifier can learn
the most.

We assume that all groups have a bounded number of
instances and that unlabeled data arrives in chunks with a
bounded number of groups. During the induction phase, one
new chunk is added to the unsupervised term, induction is
run as described above, and then the least useful groups are

2759

dropped until the unsupervised term is equal to its maximum
size. In this way, the group induction system has an upper
bound on its memory footprint and thus can be expected to
run indefinitely even as new unlabeled data streams in.

IV. TRACK CLASSIFICATION

A. Problem overview

In this section, we briefly review the track classifica-
tion task introduced in [16] and addressed in [12, 14].
Track classification is defined as a sub-task of an object
recognition pipeline which includes segmentation, tracking,
and track classification. Objects are first segmented and
tracked without semantic labels, then tracks are classified
as a whole to determine semantic label. In our case, raw
data from a Velodyne HDL-64E is clustered using simple
obstacle detection and connected components analysis, and
then these clusters are tracked using Kalman filters [9, 10].
This segmentation and tracking stage has no knowledge of
semantic label, but it is known that all frames in a track
are likely to share the same label. Track classifications are
determined by taking the average of the frame classifications.

We make use of the Stanford Track Collection (STC) for
our evaluation. This is a large dataset designed for evaluating
on the track classification problem, containing about one
million labeled frames (i.e. single views of objects) across
about fourteen thousand tracks collected from natural street
scenes. Examples objects from the STC can be seen in
Figure 3.

Segmentation and tracking errors are considered out of
scope for the track classification task, as we need to avoid
confounding these errors with classification errors. Thus, the
test set does not include segmentation and tracking errors,
though the unlabeled data we use for group induction does.

B. Parametric boosting classifier

Many choices of classifier and loss function would likely
be effective for group induction on this task. For example,
we expect that one could probably achieve similar results
using the standard online learning approach of stochastic
gradient descent training of a logistic regression model1.
For completeness, however, we present our particular choice,
based on boosting. A brief introduction to boosting using
notation similar to that of this paper can be found in [14],
and further details can be found in [6], among many others.

We refer to our method as parametric boosting because
it has the form of a boosting classifier, but draws from a
fixed pool of possible weak classifiers. This results in a fixed
number of parameters that must be stored no matter how
many new weak classifiers are added.

The specialized boosting classifier of [14] used hyper-
spheres as weak classifiers. Training continuously, as we will
do with group induction, entails adding new weak classifiers
continuously, and at runtime one must compute distances to
all hyperspheres to make a prediction. This is a significant

1with one caveat about descriptor space choice, discussed in Figure 4.

Fig. 3. Example objects from the Stanford Track Collection [17]. This
dataset contains tracks of objects segmented using a standard depth-
segmentation algorithm used in autonomous vehicles [9]. Each track forms
a group of instances, all of which are assumed to share the same hidden
label.

impediment to lifelong learning because classification time
grows as training proceeds.

To avoid this slowdown, we first specify a simple descrip-
tor transformation. For each descriptor element in the original
space, we define a one dimensional grid, or array of bins.
Each bin represents a binary feature in the transformed space.
See Figure 4 for a visualization.

Then, we choose the form of our weak classifiers to be
h(x) = αc(x), where c : Rn → {0, 1} is a simple test and
α ∈ R is the response value for this weak classifier. In the
case of [14], c encodes containment within a hypersphere,
whereas in this paper it encodes containment in one of
the aforementioned bins. The boosting training algorithm is
similar to [14], but where we can now store one parameter
per bin rather than per weak classifier. That is, multiple weak
classifiers can live in the same bin, and their responses add.

The key property of this formulation is that we can express
classification as a sum over the fixed number of bins rather
than a sum over the growing number of weak classifiers.
Formally, this is

H(x) =

K∑
k=1

hk(x) =

B∑
b=1

zbcb(x),

where b is the bin index and zb is the sum of the αs for all
weak classifiers that live in bin b.

C. Descriptor spaces

We use the same 29 descriptor spaces as [14], all deriving
from pointcloud data. These descriptors include oriented
bounding box size, spin images, and HOG descriptors [3]

2760

0 1 2 3 4 5
Height of object (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
N

um
in

st
an

ce
s

Car
Non-car

Fig. 4. Intuition for the grid feature transform we use. The bar plot shows
histograms of positive and negative examples of cars vs descriptor element
value. A naive application of the standard online learning technique of
logistic regression assumes a linear relationship between each individual
descriptor element and the log odds. That would mean assuming, for
example, that as the height of an object increases, the log odds of being
a car increases or decreases linearly; this is clearly wrong for our data.
By instead having a binary variable per bin, we can learn that cars tend
to live within a certain height range. The parametric boosting classifier of
Section IV-B builds on this feature transform by using weak classifiers that
make predictions for a single bin.

computed on virtual orthographic camera images. This de-
fines an aggregate descriptor space of R4123. We then define
two grids, one with 10 bins and one with 100 bins, across
each element as described in the previous section. Bin width
for a descriptor element is determined by computing the
minimum and maximum values on a large unlabeled dataset.

V. EXPERIMENTS
A. Fully-supervised baseline

Before delving into group induction, we evaluate our para-
metric boosting classifier to ensure it can reach reasonable
accuracy on a fully-supervised problem. Simultaneously, we
provide an estimate of how many user-annotated examples
are needed to reach a given level of accuracy.

In this experiment, we train using subsets of the ∼8000
tracks (∼700,000 frames) in the STC training set and eval-
uate on the ∼6000 tracks in the STC test set. As in [14],
the training set is broken down into hand-labeled data T0

and automatically-labeled negative examples B0. The latter
dataset is collected by driving in places without pedestrians,
bicyclists, or cars and automatically labeling all segmented
objects as negative examples of each of the three classes.
This dataset does not require hand-labeling of individual
tracks and is typically quite easy to collect, so we do not
count it towards the number of hand-labeled examples.

To estimate accuracy as a function of hand-labeled data,
we provide T0 to the algorithm one logfile at a time,
repeating the experiment four times with different logfile
orderings. For each evaluation on a subset of T0, the full
background dataset B0 is also provided. Results can be seen
in Figure 5. The x-axis only counts the subset of T0.

0 1000 2000 3000 4000 5000
Number of hand-labeled tracks

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

Fully-supervised baseline

Fig. 5. Supervised accuracy of the parametric boosting classifier vs amount
of training data provided. (Group induction is not used here.) Each line
shows results for a different random ordering of the training data. Parametric
boosting is similar to that used in previous work [14], but has the advantage
of constant runtime - an essential property for lifelong learning. This exper-
iment demonstrates that the new formulation can produce accuracy similar
to the old method while delivering an asymptotic speed improvement. It
also informs us of the number of training examples needed to achieve a
given level of accuracy with supervised learning.

The STC dataset was sampled uniformly from the objects
seen by our vehicle, so the proportion of background objects
is quite high. Predicting y = −1 for all class problems
results in accuracy of 81.8%. Previous work [14] achieved
98.7% correct, and the parametric boosting classifier of this
paper gets to 98.3%. Thus, parametric boosting gives up a
small amount of accuracy, but this is a small price to pay for
constant runtime and thus the ability to run continuously.

B. Group induction experiments

We evaluate group induction for autonomous driving on
the STC test set. Because negative examples of cars, pedes-
trians, and bicyclists are so easy to collect, we simplify
the group induction problem by only allowing yg ∈ {0, 1}
and assuming that a large dataset of negative examples is
provided. For this, we use B0 from the previous section.

Our implementation otherwise follows that of Section III,
with εmax = 0 and using the retrospection strategy as de-
scribed in Section III-B. To ensure fixed memory footprint,
we use the method described in Section III-C and limit group
size to a maximum of 10. The latter is accomplished by
simply breaking long unlabeled tracks into shorter ones. The
group size of 10 is motivated by the use of exponential
loss; long tracks are difficult to induct in the presence of
segmentation and tracking noise, as visualized in Figure 2.

The number of unlabeled groups stored in memory is
bounded by the approximation described in Section III-C,
with the maximum number of unlabeled groups set to 20,000.
This number is motivated by the fact that B0 contains about
150,000 frames, and so our number of inducted positive
examples will be of the same order of magnitude.

We used T0 stripped of its labels along with several
additional unlabeled datasets for the unlabeled data, totaling
2.3M frames and 46GB on disk. To simulate an infinite data
stream with this finite dataset, during each induction phase

2761

a random logfile was loaded and added as a new unlabeled
chunk.

New user annotations were added by classifying logs,
sorting by confidence, and visually inspecting the low-
confidence tracks - a simple kind of active learning. Each
run of active learning resulted in new user annotations, and
each took on the order of one to ten minutes of user time.
Total computation time of the experiment was about 2 days.

Experimental results are presented in Figure 6. The key
results are that

• it is possible to achieve good accuracy (98.1%) using on
the order of ten to one hundred user-annotated examples
for each class problem, plus the automatically labeled
background dataset B0.

• supervised training on B0 and all user-annotated tracks
shown in Figure 6 produces only 88.6% accuracy; group
induction is necessary.

• the baseline experiment of Figure 5 suggests that in
a fully-supervised context, about 4000 user-annotated
examples (in addition to B0) would be necessary to
reach the same level of accuracy.

• unlike [14], our method can learn continuously while
maintaining constant classification speed.

• unlike [14], our method can adapt to small amounts of
user feedback.

Moreover, the user annotations are dominated by 104
annotations of non-cars. In practice, this is an indication
that one should simply use more automatically-labeled back-
ground data.

VI. CONCLUSIONS

In summary, we have presented a new mathematical frame-
work for semisupervised learning, applicable any time one
has access to groups of unlabeled instances with shared hid-
den labels. We have shown group induction can dramatically
reduce the amount of user-annotated data necessary and that,
unlike previous work, it can make use of streams of unlabeled
data and user feedback. Group induction is potentially a
viable path to lifelong learning perception systems that
are trainable by regular users rather than machine learning
experts.

Several primary avenues of future work are clear. First,
in our experiments we have made use of an automatically-
labeled background dataset and used a single-induction im-
plementation, i.e. the system only inducts positive examples.
While the background dataset is often easy to collect, it
would be better if it were not required. Second, our segmen-
tation and tracking solution is designed for street scenes,
where objects tend to avoid under-segmentation with the
environment. In less structured environments such as homes
or offices, this kind of model-free segmentation and tracking
is not generally available. Some initial work in this direction
exists [13], but more work remains to be done before a
sufficiently robust and real-time solution is available.

ACKNOWLEDGMENTS

Thanks to Neal Parikh and Jesse Levinson for helpful
discussions and comments.

REFERENCES

[1] Avrim Blum and Tom Mitchell. Combining labeled and unla-
beled data with co-training. In Conference on Computational
Learning Theory (COLT).

[2] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian
Thrun, and Gary Bradski. Self-supervised monocular road
detection in desert terrain. In Robotics: Science and Systems,
2006.

[3] Navneet Dalal and Bill Triggs. Histograms of oriented
gradients for human detection. In CVPR, 2005.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. In
Journal of the Royal Statistical Society, Series B (Method-
ological), 1977.

[5] Cristian Dima and Martial Hebert. Active learning for outdoor
obstacle detection. In RSS, 2005.

[6] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Ad-
ditive logistic regression: a statistical view of boosting. 2000.

[7] M. Pawan Kumar, Ben Packer, and Daphne Koller. Self-paced
learning for latent variable models. In NIPS, 2010.

[8] Kevin Lai and Dieter Fox. 3D laser scan classification using
web data and domain adaptation. In RSS, 2009.

[9] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson,
David Held, Soeren Kammel, J Zico Kolter, Dirk Langer,
Oliver Pink, Vaughan Pratt, Michael Sokolsky, Ganymed
Stanek, David Stavens, Alex Teichman, Moritz Werling, and
Sebastian Thrun. Towards fully autonomous driving: Systems
and algorithms. In Intelligent Vehicles Symposium, 2011.

[10] Mike Montemerlo. The DARPA Urban Challenge: Perspec-
tives on urban autonomous driving. In ICRA Workshop, 2008.

[11] Burr Settles. Active learning literature survey. Tech Report
1648, University of Wisconsin–Madison, 2010.

[12] Alex Teichman and Sebastian Thrun. Tracking-based semi-
supervised learning. In Robotics: Science and Systems, 2011.

[13] Alex Teichman and Sebastian Thrun. Learning to segment
and track in RBGD. In WAFR, 2012.

[14] Alex Teichman and Sebastian Thrun. Tracking-based semi-
supervised learning. In International Journal of Robotics
Research, 2012.

[15] Alex Teichman and Sebastian Thrun. Online, semi-supervised
learning for long-term interaction with object recognition sys-
tems. Invited talk at RSS Workshop on Long-term Operation
of Autonomous Robotic Systems in Changing Environments,
2012.

[16] Alex Teichman, Jesse Levinson, and Sebastian Thrun. To-
wards 3D object recognition via classification of arbitrary
object tracks. In International Conference on Robotics and
Automation, 2011.

[17] Alex Teichman, Jesse Levinson, and Sebastian
Thrun. The Stanford Track Collection, 2011. URL
http://cs.stanford.edu/people/teichman/stc.

[18] Paul Vernaza, Ben Taskar, and Daniel D. Lee. Online, self-
supervised terrain classification via discriminatively trained
submodular markov random fields. In ICRA, 2008.

[19] Kai M. Wurm, Rainer Kummerle, Cyrill Stachniss, and Wol-
fram Burgard. Improving robot navigation in structured
outdoor environments by identifying vegetation from laser
data. In ICRA, 2009.

[20] Xiaojin Zhu. Semi-supervised learning literature survey. Tech
Report 1530, University of Wisconsin–Madison, 2005.

2762

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Number unlabeled frames looked at ×107

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
h
a
n
d
-l
a
b
e
le

d
tr

a
c
k
s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

c
is

io
n

a
n
d

re
c
a
ll

Precision

Recall

Bicyclists

0.0 0.2 0.4 0.6 0.8 1.0
Number unlabeled frames looked at ×108

0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f
h
a
n
d
-l
a
b
e
le

d
tr

a
c
k
s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

c
is

io
n

a
n
d

re
c
a
ll

Precision

Recall

Cars

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number unlabeled frames looked at ×107

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
h
a
n
d
-l
a
b
e
le

d
tr

a
c
k
s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

c
is

io
n

a
n
d

re
c
a
ll

Precision

Recall

Pedestrians

Fig. 6. Experimental results showing ability of group induction to adapt to user feedback and make use of large amounts of unlabeled data. Bar plots
show user annotations, with positive examples in green and negative examples in gray. Notice, for example, the jump in recall when new positive examples
of pedestrians are added. The retrospection strategy discussed in Section III-B is particularly evident in the final addition of negative examples to the car
problem: Very confident false positive inductions were identified, leading to de-induction of most of the buffer. Performance then converges to a stable and
accurate solution. Bicyclist and pedestrian plots are clipped to show detail in the early stages; they remain stable through the end. The final accuracy of
group induction is 98.1%. In contrast, training on just the annotated examples from this run (i.e. without applying group induction) produces final accuracy
of 88.6%. Predicting y = −1 for all class problems produces final accuracy of 81.8%. Amounts of user-annotated data in this figure can be fairly compared
with those in the fully-supervised experiment of Figure 5.

2763

