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Abstract— In this paper we introduce a method for learning
motion patterns in dynamic environments. Representations of
dynamic environments have recently received an increasing
amount of attention in the research community. Understanding
dynamic environments is seen as one of the key challenges in
order to enable autonomous navigation in real-world scenarios.
However, representing the temporal dimension is a challenge yet
to be solved. In this paper we introduce a spatial representation,
which encapsulates the statistical dynamic behavior observed
in the environment. The proposed Conditional Transition Map
(CTMap) is a grid-based representation that associates a
probability distribution for an object exiting the cell, given its
entry direction. The transition parameters are learned from
a temporal signal of occupancy on cells by using a local-
neighborhood cross-correlation method. In this paper, we intro-
duce the CTMap, the learning approach and present a proof-of-
concept method for estimating future paths of dynamic objects,
called Conditional Probability Propagation Tree (CPPTree).
The evaluation is done using a real-world data-set collected
at a busy roundabout.

I. INTRODUCTION

Environment representations, or maps, play an important
role in robotics. One of the most influential works to robotics
mapping has been the occupancy grid map, introduced by
Moravec and Elfes [15]. Occupancy grid maps are prob-
abilistic, grid-based representations of static environments.
Occupancy maps have been used in many localization [7]
and SLAM [10] implementations, and serve as a basis in an
abundance of autonomous navigation applications. However,
the static-world assumption made in [15] is a shortcoming
and recently the attention has shifted from treating the
dynamics as a disturbance (as in e.g. [11], [21], [22]) to
treating it as part of the representation. However, representing
the temporal dimension in a representative manner, is a
challenge yet to be solved.

One category of approaches to represent both the spatial
and the temporal features of the environment is to store
the occupancy signal over time in the map [1], [14]. The
disadvantage of such approach is memory consumption and
that the environment is not explicitly modeled. Another
category aims to estimate the change of occupancy over time
[12], [17], [19]. While these representations are compact,
the major shortcoming is that the cells are assumed to be
independent of each other and thus the change of occupancy
does not affect to the neighboring ones. In reality, a predicted
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Fig. 1. The tests in this paper are conducted using a data-set from a busy
roundabout. The test environment provides clear patterns of motions and is
used in order to emphasize the functionality of algorithm.

change of occupancy in one cell should affect the neighbor-
ing cells as well—because objects do not just disappear into
thin air.

In this paper, we introduce an environment representation
called Conditional Transition Map (CTMap). The CTMap
is a grid-based representation, which models transitions of
dynamic objects in the environment. The model is created
by learning the probability distribution of an object leaving
to a certain neighboring cell, given the cell from which it
entered into the current cell. This expressiveness comes at
the cost of using 64 parameters per cell (e.g., compared to
four parameters used by Saarinen et al. [17]). However, the
CTMap is also able to predict the likely motions of dynamic
objects based on the learned patterns of dynamics, which is
a very important feature for future autonomous navigation
applications.

As an example, consider the roundabout shown in Fig. 1.
and the corresponding CTMap in Fig. 2. The CTMap was
trained from observations over 1.5 hours. The vectors, show
the exit directions from the cells. Please note that the vectors
are distributed along the areas that are highly dynamic, and
closely correspond to the shape of the roads as illustrated in
Fig. 1.

Along with the CTMap, we also propose a method for
learning the transition parameters. The transition parameters
are learned from a temporal signal of occupancy of cells
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Fig. 2. Pattern of movement on the roundabout, extracted with the described
algorithm. As a simple denoising step we have removed the edges with less
then 10 exit events. For clarity the entry directions are not shown. (The cell
size is 2x2 m. The colors referees to orientation of vectors.)

by using a local-neighborhood cross-correlation method. The
learning of the stochastic model only assumes that the motion
of the dynamic objects is continuous and that we can observe
the motion over a sequence of observations.

The rest of this paper is organized as follows. Sec. II
reviews related work, especially on dynamic mapping. Sec.
III introduces and formally describes the CTMap, the cross
correlation based learning method and the CPPTree. Sec.
IV provides an experimental evaluation of the CTMap and
CPPTree. Sec. V concludes the paper with discussion.

II. RELATED WORK

Dynamic environments have been considered as a chal-
lenge in robotics for a long time. Early approaches treat
the dynamics in the environment by altering the sensor
model in localization [8] or by removing the dynamic events
for mapping [11], [20]. While these approaches have been
successful in improving the positioning accuracy to some
degree, the stationary-world assumption does not apply if
the state of the environment changes essentially.

Arbuckle et al. [1] proposed an extension to occupancy
grids. The Temporal Occupancy Grid (TOG) is a layered
occupancy grid map, where one layer incorporates a certain
amount of measurements up to most recent ones. Arbuckle
et al. used the TOG for classifying the dynamics by match-
ing “patterns” (if long term map and medium term map
are empty, but the short term map is occupied, then a
moving object is observed). The downside of the TOG is
that the representation needs to preserve the full history
of measurement up to the longest time scale. Instead of
fusing observations into any specific representation, Biber
and Duckett [2] propose, that observations directly represent
the world. The map representation in [2] is a set of local
maps, organized as “virtual observations”. Each map has
a different learning rate, or timescale, in order to make
it possible to both have a map that keeps mostly static
features and filters noise, and maps with higher learning
rates that more quickly adapt to changes. Using several
timescales one can capture the stationary changes in the
environment. A related method for learning semi-static states

of the environment was introduced in [3]. The approach
extract the map batches where the dynamics have been
observed during the different time intervals and learns the
different configurations of the batch, which are then utilized
to improve the localization. In comparison to our approach,
all of the above mentioned approaches represent past states
of the environment, however in the level of representation
the dynamic behavior of environment is not learned.

Mitsou and Tzafestas in [14] proposed Temporal Occu-
pancy Grid (TempOG), which stores the discrete observa-
tions as a time signal for each cell in a grid map. The
representation used a time index access structure, which is a
special case of a B+ tree. The representation is an interesting
approach for capturing the change events in the environment
for further analysis. However for on-line use the amount of
memory it requires is huge (and grows without bounds as
the time goes on). By contrast in our approach we learn
parameters of a representation with constant size.

Our approach also relates closely to modeling and pre-
diction of map state changes. Bayesian Occupancy Filters
(BOF) [5], [6], [9] have been applied to object tracking.
BOF model the environment using a grid representation, with
additional velocity components. The occupancy transitions
are then predicted using collected observations of moving
obstacles. In addition, in [9] the prior knowledge of the
shape of the environment to regulate the possible motions
in prediction of an object trajectory. In this approach the
probabilities of transitions depends on the velocity and
geometrical constrains of the environment. Our approach
in contrast learns these probability distributions based on
observed motion gaining additional implicit knowledge. In
fact our representation could be used as an extension for
BOF; however, this is out of the scope of this paper.

Luber et al. in [12] proposed to use a spatial affordance
map in the context of people tracking. A spatial affordance
map is a long-term representation of human-activity events in
the environment. The model is grid based and assumes that
an observation of a moving human in the environment is an
independent event. Events are modeled as nonhomogenous
Poisson processes. The spatial affordance map was used to
represent the probability of change events and it was used
to improve people tracking performance.

Meyer-Delius [13] introduced an expectation-
maximization-based approach to learn state-transition
probabilities for an occupancy map. The changes in the
environment were assumed to be caused by semi-static
objects and due to a stationary process. The assumption of
semi-static changes was relaxed in [16] by using a similar
approach for learning as in [12], but modeling each cell as
an independent two-state Markov chain (iMac).

Common for Luber et al. [12], Meyer-Delius [13] and
Saarinen et al. [16] is that they learn the patterns of dynamic
changes at the cell level, assuming independent cells. In
reality, when the occupancy state is predicted to change
in some cell, it must affect the neighboring cells, since
matter does not disappear suddenly. The CTMap represents
conditional transition probabilities for each cell. Thus, in

1197



A B C

ED

F G H

Entry
Event

Fig. 3. An example of conditional probabilities in CTMap. The cell
describes the probability distribution over all eight exit directions for an
event arriving from cell D.

contrast to earlier work, it explicitly models the probability
distribution of an object to move from the current cell to
neighboring cells. Linking entry and exit events of cells
provides a tool to capture and predict motion patterns.

In this paper we propose to learn transition parameters be-
tween cells by using a local-neighborhood cross-correlation
method. Cross-correlation is a well-known signal processing
method.

Our learning method has some similarities to the fast
optical flow algorithm [18]. However in our approach we
are only focusing on cells or pixels whose state is changing
over time and we are working with more then just subsequent
frames. Our approach further relates to visual crowd monitor-
ing techniques [23], particularly with the floor field approach
[4]. However, while CTMap is focusing on the properties of
space, the crowd monitoring algorithms are trying to learn
explicitly the behavior of objects.

III. CONDITIONAL TRANSITION MAP

A. The representation

CTMap is a grid-based probabilistic model describes the
state-transition process from one cell to its neighbors. Each
cell in the grid contains eight sets of eight parameters; in
total 64 parameters. Each of the sets is associated with one
possible entry direction into the cell. Each set of parameters
describes the probability of exit directions, conditioned on
the given entry direction. In our approach we are only
modeling motion of object, all stationary objects are filtered
out. A visualization of CTMap is given in Fig. 3. An
object, has arrived from cell D and this constitutes an entry
event. The set of arrows pointing outwards represents the
conditional exit probabilities.

The parameters of the CTMap are learned by counting
frequencies of events over time. Both entry and exit events
are detected by computing cross-correlation of the occupancy
signal for adjacent cells.

B. Cross-correlation-based learning of parameters

In this paper we assume that objects are moving in 2-D
on continuous paths f(t).

The objects will move in one time step only to adjacent
cells, given an appropriate discretization of space and time
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Fig. 4. Sequence of one dimensional maps
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Fig. 5. State of cells 3,4,5 in time

(according to the Nyquist-Shannon theorem and a known
maximum speed of objects).

We associate to each cell in the grid a function which
describe the state over time:

GO
X,Y (T ) =

{
1 if occupied
0 otherwise . (1)

A cell is considered occupied if any object was present
in the cell during time step, otherwise we mark the cell as
empty.

Fig. 4 shows a sequence of one dimensional occupancy
maps. We are focusing on the central cell (number 4) with
adjacent cells number 3 and 5. The figure illustrates an object
moving from left to right, and Fig. 5 shows the corresponding
state change signals for the cells 3, 4, and 5 over time. Fig. 5
show hows the occupancy signal is shifted in time for each
cell. Treating changes of state as a signal in time we can
compute the relative shift parameters using cross-correlation,
which for our purpose as:

(GO
i ? GO

j )[m] =

2N−T−1∑
m=0

GO
i [T +m]GO

j [m]. (2)

We assume that each signal is finite and equals to N samples.
The number of samples is proportional to the time that the
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Fig. 6. Graphs of cross-correlations

cell was observed as being occupied. The cross-correlation
of the signals in Fig. 5 is shown in Fig. 6.

The next step is to distinguish the shift direction. The shift
is computed using following equation:

Si,j = argmax
m

(GO
j ?GO

j )[m]−argmax
m

(GO
i ?GO

j )[m] (3)

To determine the direction of movement we need to calculate
the sgn(Si,j). If it is equal to 1 the object has entered the
cell, if -1 the object has exited the cell and if 0 cell was static.
Transition is a single action of moving the object across the
edge of the cell. Since we are considering continuous motion,
an entry transition is always related to a corresponding
exit transition. Each transition is characterized by one peak
of GO

X,Y (that is, a state change from low to high, and
to low again) in the central cell. To compute the cross
correlation of a transition we extract only the time interval
where there is simultaneously a peak in G in at least one of
the neighboring cells. Fig. 8 illustrates two objects passing
through the neighborhood, and the resulting time series for
marked cells. The vertical line separates the intervals, which
will be analyzed for the movement detection. As we can
see, the red object is entering cells earlier then the green
one. Both of them are changing the state of each cell, which
is visible on the graphs related to each cell. Our method
gives proper results if there is only one peak in the analyzed
interval, therefore we divided each time series according to
that requirement as shown in the Fig. 8.

In most scenarios objects do not move completely ran-
domly and thus the exit direction depends on the entry direc-
tion. The CTMap estimates the probability distribution of exit
directions conditioned on the entry direction. The parameters
of distribution are learned by counting frequencies of events
given by Eq. (4). To distinguish the exit directions we use
the information provided by cross-correlation. In the future
we will replace this with more robust estimator.

P (Exiti|Enterj) =
#Exits to i

#Enters from j
(4)

Because we are using a discretized grid as underlying repre-
sentation, there are cases in which the entries and exits are
detected in multiple directions simultaneously. We have to
assume that each entry and exit is equally possible therefore
we get a set of entries and exits. Next we combine all
entry directions with all exit directions into tuples (entry,exit)
as illustrated in Fig 7 and then we use those tuples to
consistently update the frequencies.

All the equations introduced in 1-D can be easily modified
for 2-D just by extending the size of the neighborhood from
2 to 8 cells.

The procedure of building the CTMap is as follow:

Fig. 7. Set of tuples for a single analyzed time interval

1) Creation of occupancy grid-map snapshots - Combine
the scans to build a map of environment for every
considered time interval.

2) Extract time series for each cell - Build a vector of
states for each cell in the map in time.

3) Analysis of the neighborhood
a) Divide time-series into intervals - In Fig 8 it is

shown that each interval contain only one event
of occupancy for each cell and start and ends at
the same moment for all adjacent cells.

b) Compute the direction of movement for each
neighborhood - See Eq. (3).

4) Compute set of conditional probabilities for each cell
- See Eq. (4).

C. Conditional Probability Propagation Tree

The Conditional Probability Propagation Tree (CPPTree)
is a graph representing all reachable transitions which are
connected to the initial transition. Information provided by
CPPTree can be used either to estimate the future paths of
tracked objects or extract reachable areas for path planning.

Since the CTMap is focusing on the transitions between
cells, to initialize CPPTree building algorithm we need two
adjacent cells, between which there has been a transition.
For a given number of iterations, to each node, all reachable
edges are added (if the probability of transition along the
edge is higher than a threshold).

IV. RESULTS

In this section we will present and discuss the results of
CPPTree and CTMap.

A. Data Set Preparation

The evaluation of the algorithm was done by using a data
set recorded during Swedish rush hour with a Velodyne-
HDL64 3D laser scanner situated at the center of the
roundabout shown in Fig 1. The algorithm requires a time
series of occupancy for each cell. The 3D data is pro-
jected to 2D by using the ROS (see ros.org) node velo-
dyne obstacles from the package velodyne height map(see
http://www.ros.org/wiki/velodyne height map, used version
0.3.0.). To get complete map for each interval we combine
a sequence of three scans.

B. Model Training

Our current approach records all disturbances and outliers
observed during the learning step. Because all neighborhoods
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Fig. 8. Intervals over time for a sequence of cells.

Fig. 9. Pattern of motion for sidewalk(upper one) and road(lower one).

are treated independently, there is also no way to distinguish
if the measurement is part of a longer chain of events.

On the other hand, the model keeps detailed information
about the environment. As we can see in Fig.9, for example
the sidewalk differs from the road. The motion pattern of the
road is orientated along one direction, while the vectors on
the sidewalk are pointing in all directions. The reason is that
on the road all objects are moving in one direction (restricted
by the traffic rules), while on side walk people are going in
both directions on the same path.

C. CPPTree example

The main purpose of the CPPTree is to build a set of
reachable transitions between adjacent cells, starting from a
given initial transition. As we can see in Fig. 10 the set of
transitions define all the possible paths starting in the root
node determined by the initial transition. This graph provides
information about all reachable points on the map from the
present configuration. In the example considered in Fig. 10,
we can see that not only the geometrical constrains were
capture but also additional information about the allowed
direction of motion. We can exploit this information for
object tracking or for path planning.

D. Memory consumption

The CTMap does not only encode the spatial configuration
but also temporal changes of the environment. We therefor

Fig. 10. The CPPTree (cell size 0.8x0.8 m)

compare its memory consumption to approaches that also
model temporal changes. Saarinen et al. [17] use less pa-
rameter however do not catch the relations among adjacent
cells. The approach presented by Arbuckle et al. [1] does
not require a fixed number of parameters to represent the
dynamics in the environment and the memory consumption
rise as the length of the length of the longest interval rises.
We expect that CTMap has a lower memory requirements.

V. SUMMARY & FUTURE WORK

In this paper we have introduced CTMap: a probabilistic
representation of the dynamics in an environment. CTMap
extends a grid map representation with a set of conditional
probabilities describing the expected direction of movement.
Additionally, an approach for learning the parameters of
CTMap was introduced. Finally, in order to demonstrate the
expressiveness of CTMap, we introduced the Conditional
Probability Propagation Tree, which extracts the predicted
path of an observed objects. The evaluation of the approach
was done using a real-world data set from a busy roundabout.
We observed that the CTMap quickly convergences to a
sensible distribution and that the structure remains stable
over long periods of time. This data set represented ideal
conditions for our algorithm, providing plenty of large dy-
namic objects that follow traffic rules in the environment.
We also note that the dynamics from the pedestrians on a
walkway were convincingly mapped by the CTMap resulting
in a pattern that identifies the main motion directions. Finally,
the CPPTree was shown to be able to predict the expected
motion patterns for vehicles.

The CTMap is currently at an early stage and there are
many long-term autonomy applications that can greatly bene-
fit from the approach. One of the most promising directions
is in the field of object tracking. The CTMap provides an
excellent basis for predicting over the whole map. This, on
the other hand, opens new revenues for planning safe actions
in dynamic environments. Ultimately, an autonomous robot
acting among humans should be able to operate in a manner
that is the least disturbing or stressful for the humans. Thus,
learning the patterns of motions in an environment will also
help in planning trajectories that take into a consideration
the most likely actions of humans.
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There are many possible directions for future work, in-
cluding:

a) Incorporating time and velocity: The present version
of CTMap only estimates the probability of transition over
the cell edges. A natural next step is to incorporate the time
into the model, in order to be able to predict the trajectory
of objects, not just the path. One promising approach is to
merge CTMap and the iMac approach proposed in [17].

b) Partial observability: Although the data used in this
paper are only partially observable, artifacts coming from
occlusions only had a minor influence on the result; mainly
because the whole map area is within the range of the
stationary sensor. A mobile sensor platform, will have to
deal with effects of partial observability. An important topic
for future work will thus be to enable CTMap to function
in situations where large parts of the environment are not
visible for extended time periods.

c) Different Scenarios: The approach was tested so
far only in one scenario. A major direction of future work
will be to test the performance of the algorithm in different
scenarios.

d) Vector field: In the present implementation, each
transition is treated as an edge with an associated weight.
Every cell is associated with 64 such edges, therefore the
size of the CPPTree graph grows exponentially, and does not
scale well with larger maps. Instead of building a CPPTree
graph, another option is to treat the transitions as a vector
field, which exerts influence on an object moving through
the map.

e) Dynamic motion patterns: The CTMap models the
general motion patterns in an environment, but in its present
form it assumes that the motion patterns themselves are
static. In some cases, the motion patterns may change
depending on the time of day; for example, with a path being
traversed in one direction in the mornings and the opposite
direction in the evenings. Future work should also focus on
modeling temporal variations of the dynamics.

f) Semantically meaningful regions: In the form that
we can see in Fig. 9 the map is very cluttered and is very
difficult to read. To make the output more human friendly we
are going to build a representation which will show clustered
regions with consistent exit properties.
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